reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
//===- HexagonNewValueJump.cpp - Hexagon Backend New Value Jump -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements NewValueJump pass in Hexagon.
// Ideally, we should merge this as a Peephole pass prior to register
// allocation, but because we have a spill in between the feeder and new value
// jump instructions, we are forced to write after register allocation.
// Having said that, we should re-attempt to pull this earlier at some point
// in future.

// The basic approach looks for sequence of predicated jump, compare instruciton
// that genereates the predicate and, the feeder to the predicate. Once it finds
// all, it collapses compare and jump instruction into a new value jump
// intstructions.
//
//===----------------------------------------------------------------------===//

#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>

using namespace llvm;

#define DEBUG_TYPE "hexagon-nvj"

STATISTIC(NumNVJGenerated, "Number of New Value Jump Instructions created");

static cl::opt<int> DbgNVJCount("nvj-count", cl::init(-1), cl::Hidden,
    cl::desc("Maximum number of predicated jumps to be converted to "
    "New Value Jump"));

static cl::opt<bool> DisableNewValueJumps("disable-nvjump", cl::Hidden,
    cl::ZeroOrMore, cl::init(false),
    cl::desc("Disable New Value Jumps"));

namespace llvm {

FunctionPass *createHexagonNewValueJump();
void initializeHexagonNewValueJumpPass(PassRegistry&);

} // end namespace llvm

namespace {

  struct HexagonNewValueJump : public MachineFunctionPass {
    static char ID;

    HexagonNewValueJump() : MachineFunctionPass(ID) {}

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineBranchProbabilityInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    StringRef getPassName() const override { return "Hexagon NewValueJump"; }

    bool runOnMachineFunction(MachineFunction &Fn) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

  private:
    const HexagonInstrInfo *QII;
    const HexagonRegisterInfo *QRI;

    /// A handle to the branch probability pass.
    const MachineBranchProbabilityInfo *MBPI;

    bool isNewValueJumpCandidate(const MachineInstr &MI) const;
  };

} // end anonymous namespace

char HexagonNewValueJump::ID = 0;

INITIALIZE_PASS_BEGIN(HexagonNewValueJump, "hexagon-nvj",
                      "Hexagon NewValueJump", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_END(HexagonNewValueJump, "hexagon-nvj",
                    "Hexagon NewValueJump", false, false)

// We have identified this II could be feeder to NVJ,
// verify that it can be.
static bool canBeFeederToNewValueJump(const HexagonInstrInfo *QII,
                                      const TargetRegisterInfo *TRI,
                                      MachineBasicBlock::iterator II,
                                      MachineBasicBlock::iterator end,
                                      MachineBasicBlock::iterator skip,
                                      MachineFunction &MF) {
  // Predicated instruction can not be feeder to NVJ.
  if (QII->isPredicated(*II))
    return false;

  // Bail out if feederReg is a paired register (double regs in
  // our case). One would think that we can check to see if a given
  // register cmpReg1 or cmpReg2 is a sub register of feederReg
  // using -- if (QRI->isSubRegister(feederReg, cmpReg1) logic
  // before the callsite of this function
  // But we can not as it comes in the following fashion.
  //    %d0 = Hexagon_S2_lsr_r_p killed %d0, killed %r2
  //    %r0 = KILL %r0, implicit killed %d0
  //    %p0 = CMPEQri killed %r0, 0
  // Hence, we need to check if it's a KILL instruction.
  if (II->getOpcode() == TargetOpcode::KILL)
    return false;

  if (II->isImplicitDef())
    return false;

  if (QII->isSolo(*II))
    return false;

  if (QII->isFloat(*II))
    return false;

  // Make sure that the (unique) def operand is a register from IntRegs.
  bool HadDef = false;
  for (const MachineOperand &Op : II->operands()) {
    if (!Op.isReg() || !Op.isDef())
      continue;
    if (HadDef)
      return false;
    HadDef = true;
    if (!Hexagon::IntRegsRegClass.contains(Op.getReg()))
      return false;
  }
  assert(HadDef);

  // Make sure there is no 'def' or 'use' of any of the uses of
  // feeder insn between its definition, this MI and jump, jmpInst
  // skipping compare, cmpInst.
  // Here's the example.
  //    r21=memub(r22+r24<<#0)
  //    p0 = cmp.eq(r21, #0)
  //    r4=memub(r3+r21<<#0)
  //    if (p0.new) jump:t .LBB29_45
  // Without this check, it will be converted into
  //    r4=memub(r3+r21<<#0)
  //    r21=memub(r22+r24<<#0)
  //    p0 = cmp.eq(r21, #0)
  //    if (p0.new) jump:t .LBB29_45
  // and result WAR hazards if converted to New Value Jump.
  for (unsigned i = 0; i < II->getNumOperands(); ++i) {
    if (II->getOperand(i).isReg() &&
        (II->getOperand(i).isUse() || II->getOperand(i).isDef())) {
      MachineBasicBlock::iterator localII = II;
      ++localII;
      Register Reg = II->getOperand(i).getReg();
      for (MachineBasicBlock::iterator localBegin = localII; localBegin != end;
           ++localBegin) {
        if (localBegin == skip)
          continue;
        // Check for Subregisters too.
        if (localBegin->modifiesRegister(Reg, TRI) ||
            localBegin->readsRegister(Reg, TRI))
          return false;
      }
    }
  }
  return true;
}

// These are the common checks that need to performed
// to determine if
// 1. compare instruction can be moved before jump.
// 2. feeder to the compare instruction can be moved before jump.
static bool commonChecksToProhibitNewValueJump(bool afterRA,
                          MachineBasicBlock::iterator MII) {
  // If store in path, bail out.
  if (MII->mayStore())
    return false;

  // if call in path, bail out.
  if (MII->isCall())
    return false;

  // if NVJ is running prior to RA, do the following checks.
  if (!afterRA) {
    // The following Target Opcode instructions are spurious
    // to new value jump. If they are in the path, bail out.
    // KILL sets kill flag on the opcode. It also sets up a
    // single register, out of pair.
    //    %d0 = S2_lsr_r_p killed %d0, killed %r2
    //    %r0 = KILL %r0, implicit killed %d0
    //    %p0 = C2_cmpeqi killed %r0, 0
    // PHI can be anything after RA.
    // COPY can remateriaze things in between feeder, compare and nvj.
    if (MII->getOpcode() == TargetOpcode::KILL ||
        MII->getOpcode() == TargetOpcode::PHI ||
        MII->getOpcode() == TargetOpcode::COPY)
      return false;

    // The following pseudo Hexagon instructions sets "use" and "def"
    // of registers by individual passes in the backend. At this time,
    // we don't know the scope of usage and definitions of these
    // instructions.
    if (MII->getOpcode() == Hexagon::LDriw_pred ||
        MII->getOpcode() == Hexagon::STriw_pred)
      return false;
  }

  return true;
}

static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII,
                                     const TargetRegisterInfo *TRI,
                                     MachineBasicBlock::iterator II,
                                     unsigned pReg,
                                     bool secondReg,
                                     bool optLocation,
                                     MachineBasicBlock::iterator end,
                                     MachineFunction &MF) {
  MachineInstr &MI = *II;

  // If the second operand of the compare is an imm, make sure it's in the
  // range specified by the arch.
  if (!secondReg) {
    const MachineOperand &Op2 = MI.getOperand(2);
    if (!Op2.isImm())
      return false;

    int64_t v = Op2.getImm();
    bool Valid = false;

    switch (MI.getOpcode()) {
      case Hexagon::C2_cmpeqi:
      case Hexagon::C4_cmpneqi:
      case Hexagon::C2_cmpgti:
      case Hexagon::C4_cmpltei:
        Valid = (isUInt<5>(v) || v == -1);
        break;
      case Hexagon::C2_cmpgtui:
      case Hexagon::C4_cmplteui:
        Valid = isUInt<5>(v);
        break;
      case Hexagon::S2_tstbit_i:
      case Hexagon::S4_ntstbit_i:
        Valid = (v == 0);
        break;
    }

    if (!Valid)
      return false;
  }

  unsigned cmpReg1, cmpOp2 = 0; // cmpOp2 assignment silences compiler warning.
  cmpReg1 = MI.getOperand(1).getReg();

  if (secondReg) {
    cmpOp2 = MI.getOperand(2).getReg();

    // If the same register appears as both operands, we cannot generate a new
    // value compare. Only one operand may use the .new suffix.
    if (cmpReg1 == cmpOp2)
      return false;

    // Make sure that the second register is not from COPY
    // at machine code level, we don't need this, but if we decide
    // to move new value jump prior to RA, we would be needing this.
    MachineRegisterInfo &MRI = MF.getRegInfo();
    if (secondReg && !Register::isPhysicalRegister(cmpOp2)) {
      MachineInstr *def = MRI.getVRegDef(cmpOp2);
      if (def->getOpcode() == TargetOpcode::COPY)
        return false;
    }
  }

  // Walk the instructions after the compare (predicate def) to the jump,
  // and satisfy the following conditions.
  ++II;
  for (MachineBasicBlock::iterator localII = II; localII != end; ++localII) {
    if (localII->isDebugInstr())
      continue;

    // Check 1.
    // If "common" checks fail, bail out.
    if (!commonChecksToProhibitNewValueJump(optLocation, localII))
      return false;

    // Check 2.
    // If there is a def or use of predicate (result of compare), bail out.
    if (localII->modifiesRegister(pReg, TRI) ||
        localII->readsRegister(pReg, TRI))
      return false;

    // Check 3.
    // If there is a def of any of the use of the compare (operands of compare),
    // bail out.
    // Eg.
    //    p0 = cmp.eq(r2, r0)
    //    r2 = r4
    //    if (p0.new) jump:t .LBB28_3
    if (localII->modifiesRegister(cmpReg1, TRI) ||
        (secondReg && localII->modifiesRegister(cmpOp2, TRI)))
      return false;
  }
  return true;
}

// Given a compare operator, return a matching New Value Jump compare operator.
// Make sure that MI here is included in isNewValueJumpCandidate.
static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
                                      bool secondRegNewified,
                                      MachineBasicBlock *jmpTarget,
                                      const MachineBranchProbabilityInfo
                                      *MBPI) {
  bool taken = false;
  MachineBasicBlock *Src = MI->getParent();
  const BranchProbability Prediction =
    MBPI->getEdgeProbability(Src, jmpTarget);

  if (Prediction >= BranchProbability(1,2))
    taken = true;

  switch (MI->getOpcode()) {
    case Hexagon::C2_cmpeq:
      return taken ? Hexagon::J4_cmpeq_t_jumpnv_t
                   : Hexagon::J4_cmpeq_t_jumpnv_nt;

    case Hexagon::C2_cmpeqi:
      if (reg >= 0)
        return taken ? Hexagon::J4_cmpeqi_t_jumpnv_t
                     : Hexagon::J4_cmpeqi_t_jumpnv_nt;
      return taken ? Hexagon::J4_cmpeqn1_t_jumpnv_t
                   : Hexagon::J4_cmpeqn1_t_jumpnv_nt;

    case Hexagon::C4_cmpneqi:
      if (reg >= 0)
        return taken ? Hexagon::J4_cmpeqi_f_jumpnv_t
                     : Hexagon::J4_cmpeqi_f_jumpnv_nt;
      return taken ? Hexagon::J4_cmpeqn1_f_jumpnv_t :
                     Hexagon::J4_cmpeqn1_f_jumpnv_nt;

    case Hexagon::C2_cmpgt:
      if (secondRegNewified)
        return taken ? Hexagon::J4_cmplt_t_jumpnv_t
                     : Hexagon::J4_cmplt_t_jumpnv_nt;
      return taken ? Hexagon::J4_cmpgt_t_jumpnv_t
                   : Hexagon::J4_cmpgt_t_jumpnv_nt;

    case Hexagon::C2_cmpgti:
      if (reg >= 0)
        return taken ? Hexagon::J4_cmpgti_t_jumpnv_t
                     : Hexagon::J4_cmpgti_t_jumpnv_nt;
      return taken ? Hexagon::J4_cmpgtn1_t_jumpnv_t
                   : Hexagon::J4_cmpgtn1_t_jumpnv_nt;

    case Hexagon::C2_cmpgtu:
      if (secondRegNewified)
        return taken ? Hexagon::J4_cmpltu_t_jumpnv_t
                     : Hexagon::J4_cmpltu_t_jumpnv_nt;
      return taken ? Hexagon::J4_cmpgtu_t_jumpnv_t
                   : Hexagon::J4_cmpgtu_t_jumpnv_nt;

    case Hexagon::C2_cmpgtui:
      return taken ? Hexagon::J4_cmpgtui_t_jumpnv_t
                   : Hexagon::J4_cmpgtui_t_jumpnv_nt;

    case Hexagon::C4_cmpneq:
      return taken ? Hexagon::J4_cmpeq_f_jumpnv_t
                   : Hexagon::J4_cmpeq_f_jumpnv_nt;

    case Hexagon::C4_cmplte:
      if (secondRegNewified)
        return taken ? Hexagon::J4_cmplt_f_jumpnv_t
                     : Hexagon::J4_cmplt_f_jumpnv_nt;
      return taken ? Hexagon::J4_cmpgt_f_jumpnv_t
                   : Hexagon::J4_cmpgt_f_jumpnv_nt;

    case Hexagon::C4_cmplteu:
      if (secondRegNewified)
        return taken ? Hexagon::J4_cmpltu_f_jumpnv_t
                     : Hexagon::J4_cmpltu_f_jumpnv_nt;
      return taken ? Hexagon::J4_cmpgtu_f_jumpnv_t
                   : Hexagon::J4_cmpgtu_f_jumpnv_nt;

    case Hexagon::C4_cmpltei:
      if (reg >= 0)
        return taken ? Hexagon::J4_cmpgti_f_jumpnv_t
                     : Hexagon::J4_cmpgti_f_jumpnv_nt;
      return taken ? Hexagon::J4_cmpgtn1_f_jumpnv_t
                   : Hexagon::J4_cmpgtn1_f_jumpnv_nt;

    case Hexagon::C4_cmplteui:
      return taken ? Hexagon::J4_cmpgtui_f_jumpnv_t
                   : Hexagon::J4_cmpgtui_f_jumpnv_nt;

    default:
       llvm_unreachable("Could not find matching New Value Jump instruction.");
  }
  // return *some value* to avoid compiler warning
  return 0;
}

bool HexagonNewValueJump::isNewValueJumpCandidate(
    const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  case Hexagon::C2_cmpeq:
  case Hexagon::C2_cmpeqi:
  case Hexagon::C2_cmpgt:
  case Hexagon::C2_cmpgti:
  case Hexagon::C2_cmpgtu:
  case Hexagon::C2_cmpgtui:
  case Hexagon::C4_cmpneq:
  case Hexagon::C4_cmpneqi:
  case Hexagon::C4_cmplte:
  case Hexagon::C4_cmplteu:
  case Hexagon::C4_cmpltei:
  case Hexagon::C4_cmplteui:
    return true;

  default:
    return false;
  }
}

bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n"
                    << "********** Function: " << MF.getName() << "\n");

  if (skipFunction(MF.getFunction()))
    return false;

  // If we move NewValueJump before register allocation we'll need live variable
  // analysis here too.

  QII = static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());
  QRI = static_cast<const HexagonRegisterInfo *>(
      MF.getSubtarget().getRegisterInfo());
  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();

  if (DisableNewValueJumps ||
      !MF.getSubtarget<HexagonSubtarget>().useNewValueJumps())
    return false;

  int nvjCount = DbgNVJCount;
  int nvjGenerated = 0;

  // Loop through all the bb's of the function
  for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
       MBBb != MBBe; ++MBBb) {
    MachineBasicBlock *MBB = &*MBBb;

    LLVM_DEBUG(dbgs() << "** dumping bb ** " << MBB->getNumber() << "\n");
    LLVM_DEBUG(MBB->dump());
    LLVM_DEBUG(dbgs() << "\n"
                      << "********** dumping instr bottom up **********\n");
    bool foundJump    = false;
    bool foundCompare = false;
    bool invertPredicate = false;
    unsigned predReg = 0; // predicate reg of the jump.
    unsigned cmpReg1 = 0;
    int cmpOp2 = 0;
    MachineBasicBlock::iterator jmpPos;
    MachineBasicBlock::iterator cmpPos;
    MachineInstr *cmpInstr = nullptr, *jmpInstr = nullptr;
    MachineBasicBlock *jmpTarget = nullptr;
    bool afterRA = false;
    bool isSecondOpReg = false;
    bool isSecondOpNewified = false;
    // Traverse the basic block - bottom up
    for (MachineBasicBlock::iterator MII = MBB->end(), E = MBB->begin();
         MII != E;) {
      MachineInstr &MI = *--MII;
      if (MI.isDebugInstr()) {
        continue;
      }

      if ((nvjCount == 0) || (nvjCount > -1 && nvjCount <= nvjGenerated))
        break;

      LLVM_DEBUG(dbgs() << "Instr: "; MI.dump(); dbgs() << "\n");

      if (!foundJump && (MI.getOpcode() == Hexagon::J2_jumpt ||
                         MI.getOpcode() == Hexagon::J2_jumptpt ||
                         MI.getOpcode() == Hexagon::J2_jumpf ||
                         MI.getOpcode() == Hexagon::J2_jumpfpt ||
                         MI.getOpcode() == Hexagon::J2_jumptnewpt ||
                         MI.getOpcode() == Hexagon::J2_jumptnew ||
                         MI.getOpcode() == Hexagon::J2_jumpfnewpt ||
                         MI.getOpcode() == Hexagon::J2_jumpfnew)) {
        // This is where you would insert your compare and
        // instr that feeds compare
        jmpPos = MII;
        jmpInstr = &MI;
        predReg = MI.getOperand(0).getReg();
        afterRA = Register::isPhysicalRegister(predReg);

        // If ifconverter had not messed up with the kill flags of the
        // operands, the following check on the kill flag would suffice.
        // if(!jmpInstr->getOperand(0).isKill()) break;

        // This predicate register is live out of BB
        // this would only work if we can actually use Live
        // variable analysis on phy regs - but LLVM does not
        // provide LV analysis on phys regs.
        //if(LVs.isLiveOut(predReg, *MBB)) break;

        // Get all the successors of this block - which will always
        // be 2. Check if the predicate register is live-in in those
        // successor. If yes, we can not delete the predicate -
        // I am doing this only because LLVM does not provide LiveOut
        // at the BB level.
        bool predLive = false;
        for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
                                                    SIE = MBB->succ_end();
             SI != SIE; ++SI) {
          MachineBasicBlock *succMBB = *SI;
          if (succMBB->isLiveIn(predReg))
            predLive = true;
        }
        if (predLive)
          break;

        if (!MI.getOperand(1).isMBB())
          continue;
        jmpTarget = MI.getOperand(1).getMBB();
        foundJump = true;
        if (MI.getOpcode() == Hexagon::J2_jumpf ||
            MI.getOpcode() == Hexagon::J2_jumpfnewpt ||
            MI.getOpcode() == Hexagon::J2_jumpfnew) {
          invertPredicate = true;
        }
        continue;
      }

      // No new value jump if there is a barrier. A barrier has to be in its
      // own packet. A barrier has zero operands. We conservatively bail out
      // here if we see any instruction with zero operands.
      if (foundJump && MI.getNumOperands() == 0)
        break;

      if (foundJump && !foundCompare && MI.getOperand(0).isReg() &&
          MI.getOperand(0).getReg() == predReg) {
        // Not all compares can be new value compare. Arch Spec: 7.6.1.1
        if (isNewValueJumpCandidate(MI)) {
          assert(
              (MI.getDesc().isCompare()) &&
              "Only compare instruction can be collapsed into New Value Jump");
          isSecondOpReg = MI.getOperand(2).isReg();

          if (!canCompareBeNewValueJump(QII, QRI, MII, predReg, isSecondOpReg,
                                        afterRA, jmpPos, MF))
            break;

          cmpInstr = &MI;
          cmpPos = MII;
          foundCompare = true;

          // We need cmpReg1 and cmpOp2(imm or reg) while building
          // new value jump instruction.
          cmpReg1 = MI.getOperand(1).getReg();

          if (isSecondOpReg)
            cmpOp2 = MI.getOperand(2).getReg();
          else
            cmpOp2 = MI.getOperand(2).getImm();
          continue;
        }
      }

      if (foundCompare && foundJump) {
        // If "common" checks fail, bail out on this BB.
        if (!commonChecksToProhibitNewValueJump(afterRA, MII))
          break;

        bool foundFeeder = false;
        MachineBasicBlock::iterator feederPos = MII;
        if (MI.getOperand(0).isReg() && MI.getOperand(0).isDef() &&
            (MI.getOperand(0).getReg() == cmpReg1 ||
             (isSecondOpReg &&
              MI.getOperand(0).getReg() == (unsigned)cmpOp2))) {

          Register feederReg = MI.getOperand(0).getReg();

          // First try to see if we can get the feeder from the first operand
          // of the compare. If we can not, and if secondOpReg is true
          // (second operand of the compare is also register), try that one.
          // TODO: Try to come up with some heuristic to figure out which
          // feeder would benefit.

          if (feederReg == cmpReg1) {
            if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) {
              if (!isSecondOpReg)
                break;
              else
                continue;
            } else
              foundFeeder = true;
          }

          if (!foundFeeder && isSecondOpReg && feederReg == (unsigned)cmpOp2)
            if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF))
              break;

          if (isSecondOpReg) {
            // In case of CMPLT, or CMPLTU, or EQ with the second register
            // to newify, swap the operands.
            unsigned COp = cmpInstr->getOpcode();
            if ((COp == Hexagon::C2_cmpeq || COp == Hexagon::C4_cmpneq) &&
                (feederReg == (unsigned)cmpOp2)) {
              unsigned tmp = cmpReg1;
              cmpReg1 = cmpOp2;
              cmpOp2 = tmp;
            }

            // Now we have swapped the operands, all we need to check is,
            // if the second operand (after swap) is the feeder.
            // And if it is, make a note.
            if (feederReg == (unsigned)cmpOp2)
              isSecondOpNewified = true;
          }

          // Now that we are moving feeder close the jump,
          // make sure we are respecting the kill values of
          // the operands of the feeder.

          auto TransferKills = [jmpPos,cmpPos] (MachineInstr &MI) {
            for (MachineOperand &MO : MI.operands()) {
              if (!MO.isReg() || !MO.isUse())
                continue;
              Register UseR = MO.getReg();
              for (auto I = std::next(MI.getIterator()); I != jmpPos; ++I) {
                if (I == cmpPos)
                  continue;
                for (MachineOperand &Op : I->operands()) {
                  if (!Op.isReg() || !Op.isUse() || !Op.isKill())
                    continue;
                  if (Op.getReg() != UseR)
                    continue;
                  // We found that there is kill of a use register
                  // Set up a kill flag on the register
                  Op.setIsKill(false);
                  MO.setIsKill(true);
                  return;
                }
              }
            }
          };

          TransferKills(*feederPos);
          TransferKills(*cmpPos);
          bool MO1IsKill = cmpPos->killsRegister(cmpReg1, QRI);
          bool MO2IsKill = isSecondOpReg && cmpPos->killsRegister(cmpOp2, QRI);

          MBB->splice(jmpPos, MI.getParent(), MI);
          MBB->splice(jmpPos, MI.getParent(), cmpInstr);
          DebugLoc dl = MI.getDebugLoc();
          MachineInstr *NewMI;

          assert((isNewValueJumpCandidate(*cmpInstr)) &&
                 "This compare is not a New Value Jump candidate.");
          unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2,
                                               isSecondOpNewified,
                                               jmpTarget, MBPI);
          if (invertPredicate)
            opc = QII->getInvertedPredicatedOpcode(opc);

          if (isSecondOpReg)
            NewMI = BuildMI(*MBB, jmpPos, dl, QII->get(opc))
                        .addReg(cmpReg1, getKillRegState(MO1IsKill))
                        .addReg(cmpOp2, getKillRegState(MO2IsKill))
                        .addMBB(jmpTarget);

          else
            NewMI = BuildMI(*MBB, jmpPos, dl, QII->get(opc))
                        .addReg(cmpReg1, getKillRegState(MO1IsKill))
                        .addImm(cmpOp2)
                        .addMBB(jmpTarget);

          assert(NewMI && "New Value Jump Instruction Not created!");
          (void)NewMI;
          if (cmpInstr->getOperand(0).isReg() &&
              cmpInstr->getOperand(0).isKill())
            cmpInstr->getOperand(0).setIsKill(false);
          if (cmpInstr->getOperand(1).isReg() &&
              cmpInstr->getOperand(1).isKill())
            cmpInstr->getOperand(1).setIsKill(false);
          cmpInstr->eraseFromParent();
          jmpInstr->eraseFromParent();
          ++nvjGenerated;
          ++NumNVJGenerated;
          break;
        }
      }
    }
  }

  return true;
}

FunctionPass *llvm::createHexagonNewValueJump() {
  return new HexagonNewValueJump();
}