reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
//===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64ExpandImm stuff.
//
//===----------------------------------------------------------------------===//

#include "AArch64.h"
#include "AArch64ExpandImm.h"
#include "MCTargetDesc/AArch64AddressingModes.h"

namespace llvm {

namespace AArch64_IMM {

/// Helper function which extracts the specified 16-bit chunk from a
/// 64-bit value.
static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
  assert(ChunkIdx < 4 && "Out of range chunk index specified!");

  return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
}

/// Check whether the given 16-bit chunk replicated to full 64-bit width
/// can be materialized with an ORR instruction.
static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
  Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;

  return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
}

/// Check for identical 16-bit chunks within the constant and if so
/// materialize them with a single ORR instruction. The remaining one or two
/// 16-bit chunks will be materialized with MOVK instructions.
///
/// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
/// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
/// an ORR instruction.
static bool tryToreplicateChunks(uint64_t UImm,
				 SmallVectorImpl<ImmInsnModel> &Insn) {
  using CountMap = DenseMap<uint64_t, unsigned>;

  CountMap Counts;

  // Scan the constant and count how often every chunk occurs.
  for (unsigned Idx = 0; Idx < 4; ++Idx)
    ++Counts[getChunk(UImm, Idx)];

  // Traverse the chunks to find one which occurs more than once.
  for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
       Chunk != End; ++Chunk) {
    const uint64_t ChunkVal = Chunk->first;
    const unsigned Count = Chunk->second;

    uint64_t Encoding = 0;

    // We are looking for chunks which have two or three instances and can be
    // materialized with an ORR instruction.
    if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
      continue;

    const bool CountThree = Count == 3;

    Insn.push_back({ AArch64::ORRXri, 0, Encoding });

    unsigned ShiftAmt = 0;
    uint64_t Imm16 = 0;
    // Find the first chunk not materialized with the ORR instruction.
    for (; ShiftAmt < 64; ShiftAmt += 16) {
      Imm16 = (UImm >> ShiftAmt) & 0xFFFF;

      if (Imm16 != ChunkVal)
        break;
    }

    // Create the first MOVK instruction.
    Insn.push_back({ AArch64::MOVKXi, Imm16,
		     AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });

    // In case we have three instances the whole constant is now materialized
    // and we can exit.
    if (CountThree)
      return true;

    // Find the remaining chunk which needs to be materialized.
    for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
      Imm16 = (UImm >> ShiftAmt) & 0xFFFF;

      if (Imm16 != ChunkVal)
        break;
    }
    Insn.push_back({ AArch64::MOVKXi, Imm16,
                     AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
    return true;
  }

  return false;
}

/// Check whether this chunk matches the pattern '1...0...'. This pattern
/// starts a contiguous sequence of ones if we look at the bits from the LSB
/// towards the MSB.
static bool isStartChunk(uint64_t Chunk) {
  if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
    return false;

  return isMask_64(~Chunk);
}

/// Check whether this chunk matches the pattern '0...1...' This pattern
/// ends a contiguous sequence of ones if we look at the bits from the LSB
/// towards the MSB.
static bool isEndChunk(uint64_t Chunk) {
  if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
    return false;

  return isMask_64(Chunk);
}

/// Clear or set all bits in the chunk at the given index.
static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
  const uint64_t Mask = 0xFFFF;

  if (Clear)
    // Clear chunk in the immediate.
    Imm &= ~(Mask << (Idx * 16));
  else
    // Set all bits in the immediate for the particular chunk.
    Imm |= Mask << (Idx * 16);

  return Imm;
}

/// Check whether the constant contains a sequence of contiguous ones,
/// which might be interrupted by one or two chunks. If so, materialize the
/// sequence of contiguous ones with an ORR instruction.
/// Materialize the chunks which are either interrupting the sequence or outside
/// of the sequence with a MOVK instruction.
///
/// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
/// which ends the sequence (0...1...). Then we are looking for constants which
/// contain at least one S and E chunk.
/// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
///
/// We are also looking for constants like |S|A|B|E| where the contiguous
/// sequence of ones wraps around the MSB into the LSB.
static bool trySequenceOfOnes(uint64_t UImm,
                              SmallVectorImpl<ImmInsnModel> &Insn) {
  const int NotSet = -1;
  const uint64_t Mask = 0xFFFF;

  int StartIdx = NotSet;
  int EndIdx = NotSet;
  // Try to find the chunks which start/end a contiguous sequence of ones.
  for (int Idx = 0; Idx < 4; ++Idx) {
    int64_t Chunk = getChunk(UImm, Idx);
    // Sign extend the 16-bit chunk to 64-bit.
    Chunk = (Chunk << 48) >> 48;

    if (isStartChunk(Chunk))
      StartIdx = Idx;
    else if (isEndChunk(Chunk))
      EndIdx = Idx;
  }

  // Early exit in case we can't find a start/end chunk.
  if (StartIdx == NotSet || EndIdx == NotSet)
    return false;

  // Outside of the contiguous sequence of ones everything needs to be zero.
  uint64_t Outside = 0;
  // Chunks between the start and end chunk need to have all their bits set.
  uint64_t Inside = Mask;

  // If our contiguous sequence of ones wraps around from the MSB into the LSB,
  // just swap indices and pretend we are materializing a contiguous sequence
  // of zeros surrounded by a contiguous sequence of ones.
  if (StartIdx > EndIdx) {
    std::swap(StartIdx, EndIdx);
    std::swap(Outside, Inside);
  }

  uint64_t OrrImm = UImm;
  int FirstMovkIdx = NotSet;
  int SecondMovkIdx = NotSet;

  // Find out which chunks we need to patch up to obtain a contiguous sequence
  // of ones.
  for (int Idx = 0; Idx < 4; ++Idx) {
    const uint64_t Chunk = getChunk(UImm, Idx);

    // Check whether we are looking at a chunk which is not part of the
    // contiguous sequence of ones.
    if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
      OrrImm = updateImm(OrrImm, Idx, Outside == 0);

      // Remember the index we need to patch.
      if (FirstMovkIdx == NotSet)
        FirstMovkIdx = Idx;
      else
        SecondMovkIdx = Idx;

      // Check whether we are looking a chunk which is part of the contiguous
      // sequence of ones.
    } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
      OrrImm = updateImm(OrrImm, Idx, Inside != Mask);

      // Remember the index we need to patch.
      if (FirstMovkIdx == NotSet)
        FirstMovkIdx = Idx;
      else
        SecondMovkIdx = Idx;
    }
  }
  assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");

  // Create the ORR-immediate instruction.
  uint64_t Encoding = 0;
  AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
  Insn.push_back({ AArch64::ORRXri, 0, Encoding });

  const bool SingleMovk = SecondMovkIdx == NotSet;
  Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx),
                   AArch64_AM::getShifterImm(AArch64_AM::LSL,
                                             FirstMovkIdx * 16) });

  // Early exit in case we only need to emit a single MOVK instruction.
  if (SingleMovk)
    return true;

  // Create the second MOVK instruction.
  Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx),
	           AArch64_AM::getShifterImm(AArch64_AM::LSL,
                                             SecondMovkIdx * 16) });

  return true;
}

/// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
/// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize,
				      unsigned OneChunks, unsigned ZeroChunks,
				      SmallVectorImpl<ImmInsnModel> &Insn) {
  const unsigned Mask = 0xFFFF;

  // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
  // more MOVK instructions to insert additional 16-bit portions into the
  // lower bits.
  bool isNeg = false;

  // Use MOVN to materialize the high bits if we have more all one chunks
  // than all zero chunks.
  if (OneChunks > ZeroChunks) {
    isNeg = true;
    Imm = ~Imm;
  }

  unsigned FirstOpc;
  if (BitSize == 32) {
    Imm &= (1LL << 32) - 1;
    FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
  } else {
    FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
  }
  unsigned Shift = 0;     // LSL amount for high bits with MOVZ/MOVN
  unsigned LastShift = 0; // LSL amount for last MOVK
  if (Imm != 0) {
    unsigned LZ = countLeadingZeros(Imm);
    unsigned TZ = countTrailingZeros(Imm);
    Shift = (TZ / 16) * 16;
    LastShift = ((63 - LZ) / 16) * 16;
  }
  unsigned Imm16 = (Imm >> Shift) & Mask;

  Insn.push_back({ FirstOpc, Imm16,
                   AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });

  if (Shift == LastShift)
    return;

  // If a MOVN was used for the high bits of a negative value, flip the rest
  // of the bits back for use with MOVK.
  if (isNeg)
    Imm = ~Imm;

  unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
  while (Shift < LastShift) {
    Shift += 16;
    Imm16 = (Imm >> Shift) & Mask;
    if (Imm16 == (isNeg ? Mask : 0))
      continue; // This 16-bit portion is already set correctly.

    Insn.push_back({ Opc, Imm16,
                     AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
  }
}

/// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
/// real move-immediate instructions to synthesize the immediate.
void expandMOVImm(uint64_t Imm, unsigned BitSize,
		  SmallVectorImpl<ImmInsnModel> &Insn) {
  const unsigned Mask = 0xFFFF;

  // Scan the immediate and count the number of 16-bit chunks which are either
  // all ones or all zeros.
  unsigned OneChunks = 0;
  unsigned ZeroChunks = 0;
  for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
    const unsigned Chunk = (Imm >> Shift) & Mask;
    if (Chunk == Mask)
      OneChunks++;
    else if (Chunk == 0)
      ZeroChunks++;
  }

  // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias.
  if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) {
    expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
    return;
  }

  // Try a single ORR.
  uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
  uint64_t Encoding;
  if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
    unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
    Insn.push_back({ Opc, 0, Encoding });
    return;
  }

  // One to up three instruction sequences.
  //
  // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
  // fastest sequence with fast literal generation.
  if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) {
    expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
    return;
  }

  assert(BitSize == 64 && "All 32-bit immediates can be expanded with a"
                          "MOVZ/MOVK pair");

  // Try other two-instruction sequences.

  // 64-bit ORR followed by MOVK.
  // We try to construct the ORR immediate in three different ways: either we
  // zero out the chunk which will be replaced, we fill the chunk which will
  // be replaced with ones, or we take the bit pattern from the other half of
  // the 64-bit immediate. This is comprehensive because of the way ORR
  // immediates are constructed.
  for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
    uint64_t ShiftedMask = (0xFFFFULL << Shift);
    uint64_t ZeroChunk = UImm & ~ShiftedMask;
    uint64_t OneChunk = UImm | ShiftedMask;
    uint64_t RotatedImm = (UImm << 32) | (UImm >> 32);
    uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask);
    if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) ||
        AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) ||
        AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize,
                                            Encoding)) {
      // Create the ORR-immediate instruction.
      Insn.push_back({ AArch64::ORRXri, 0, Encoding });

      // Create the MOVK instruction.
      const unsigned Imm16 = getChunk(UImm, Shift / 16);
      Insn.push_back({ AArch64::MOVKXi, Imm16,
		       AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
      return;
    }
  }

  // FIXME: Add more two-instruction sequences.

  // Three instruction sequences.
  //
  // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
  // the fastest sequence with fast literal generation. (If neither MOVK is
  // part of a fast literal generation pair, it could be slower than the
  // four-instruction sequence, but we won't worry about that for now.)
  if (OneChunks || ZeroChunks) {
    expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
    return;
  }

  // Check for identical 16-bit chunks within the constant and if so materialize
  // them with a single ORR instruction. The remaining one or two 16-bit chunks
  // will be materialized with MOVK instructions.
  if (BitSize == 64 && tryToreplicateChunks(UImm, Insn))
    return;

  // Check whether the constant contains a sequence of contiguous ones, which
  // might be interrupted by one or two chunks. If so, materialize the sequence
  // of contiguous ones with an ORR instruction. Materialize the chunks which
  // are either interrupting the sequence or outside of the sequence with a
  // MOVK instruction.
  if (BitSize == 64 && trySequenceOfOnes(UImm, Insn))
    return;

  // We found no possible two or three instruction sequence; use the general
  // four-instruction sequence.
  expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
}

} // end namespace AArch64_AM

} // end namespace llvm