reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
//==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of some scaled number algorithms.
//
//===----------------------------------------------------------------------===//

#include "llvm/Support/ScaledNumber.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;
using namespace llvm::ScaledNumbers;

std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS,
                                                       uint64_t RHS) {
  // Separate into two 32-bit digits (U.L).
  auto getU = [](uint64_t N) { return N >> 32; };
  auto getL = [](uint64_t N) { return N & UINT32_MAX; };
  uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS);

  // Compute cross products.
  uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;

  // Sum into two 64-bit digits.
  uint64_t Upper = P1, Lower = P4;
  auto addWithCarry = [&](uint64_t N) {
    uint64_t NewLower = Lower + (getL(N) << 32);
    Upper += getU(N) + (NewLower < Lower);
    Lower = NewLower;
  };
  addWithCarry(P2);
  addWithCarry(P3);

  // Check whether the upper digit is empty.
  if (!Upper)
    return std::make_pair(Lower, 0);

  // Shift as little as possible to maximize precision.
  unsigned LeadingZeros = countLeadingZeros(Upper);
  int Shift = 64 - LeadingZeros;
  if (LeadingZeros)
    Upper = Upper << LeadingZeros | Lower >> Shift;
  return getRounded(Upper, Shift,
                    Shift && (Lower & UINT64_C(1) << (Shift - 1)));
}

static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }

std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend,
                                                     uint32_t Divisor) {
  assert(Dividend && "expected non-zero dividend");
  assert(Divisor && "expected non-zero divisor");

  // Use 64-bit math and canonicalize the dividend to gain precision.
  uint64_t Dividend64 = Dividend;
  int Shift = 0;
  if (int Zeros = countLeadingZeros(Dividend64)) {
    Shift -= Zeros;
    Dividend64 <<= Zeros;
  }
  uint64_t Quotient = Dividend64 / Divisor;
  uint64_t Remainder = Dividend64 % Divisor;

  // If Quotient needs to be shifted, leave the rounding to getAdjusted().
  if (Quotient > UINT32_MAX)
    return getAdjusted<uint32_t>(Quotient, Shift);

  // Round based on the value of the next bit.
  return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor));
}

std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend,
                                                     uint64_t Divisor) {
  assert(Dividend && "expected non-zero dividend");
  assert(Divisor && "expected non-zero divisor");

  // Minimize size of divisor.
  int Shift = 0;
  if (int Zeros = countTrailingZeros(Divisor)) {
    Shift -= Zeros;
    Divisor >>= Zeros;
  }

  // Check for powers of two.
  if (Divisor == 1)
    return std::make_pair(Dividend, Shift);

  // Maximize size of dividend.
  if (int Zeros = countLeadingZeros(Dividend)) {
    Shift -= Zeros;
    Dividend <<= Zeros;
  }

  // Start with the result of a divide.
  uint64_t Quotient = Dividend / Divisor;
  Dividend %= Divisor;

  // Continue building the quotient with long division.
  while (!(Quotient >> 63) && Dividend) {
    // Shift Dividend and check for overflow.
    bool IsOverflow = Dividend >> 63;
    Dividend <<= 1;
    --Shift;

    // Get the next bit of Quotient.
    Quotient <<= 1;
    if (IsOverflow || Divisor <= Dividend) {
      Quotient |= 1;
      Dividend -= Divisor;
    }
  }

  return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor));
}

int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) {
  assert(ScaleDiff >= 0 && "wrong argument order");
  assert(ScaleDiff < 64 && "numbers too far apart");

  uint64_t L_adjusted = L >> ScaleDiff;
  if (L_adjusted < R)
    return -1;
  if (L_adjusted > R)
    return 1;

  return L > L_adjusted << ScaleDiff ? 1 : 0;
}

static void appendDigit(std::string &Str, unsigned D) {
  assert(D < 10);
  Str += '0' + D % 10;
}

static void appendNumber(std::string &Str, uint64_t N) {
  while (N) {
    appendDigit(Str, N % 10);
    N /= 10;
  }
}

static bool doesRoundUp(char Digit) {
  switch (Digit) {
  case '5':
  case '6':
  case '7':
  case '8':
  case '9':
    return true;
  default:
    return false;
  }
}

static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
  assert(E >= ScaledNumbers::MinScale);
  assert(E <= ScaledNumbers::MaxScale);

  // Find a new E, but don't let it increase past MaxScale.
  int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D);
  int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros);
  int Shift = 63 - (NewE - E);
  assert(Shift <= LeadingZeros);
  assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale);
  assert(Shift >= 0 && Shift < 64 && "undefined behavior");
  D <<= Shift;
  E = NewE;

  // Check for a denormal.
  unsigned AdjustedE = E + 16383;
  if (!(D >> 63)) {
    assert(E == ScaledNumbers::MaxScale);
    AdjustedE = 0;
  }

  // Build the float and print it.
  uint64_t RawBits[2] = {D, AdjustedE};
  APFloat Float(APFloat::x87DoubleExtended(), APInt(80, RawBits));
  SmallVector<char, 24> Chars;
  Float.toString(Chars, Precision, 0);
  return std::string(Chars.begin(), Chars.end());
}

static std::string stripTrailingZeros(const std::string &Float) {
  size_t NonZero = Float.find_last_not_of('0');
  assert(NonZero != std::string::npos && "no . in floating point string");

  if (Float[NonZero] == '.')
    ++NonZero;

  return Float.substr(0, NonZero + 1);
}

std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width,
                                       unsigned Precision) {
  if (!D)
    return "0.0";

  // Canonicalize exponent and digits.
  uint64_t Above0 = 0;
  uint64_t Below0 = 0;
  uint64_t Extra = 0;
  int ExtraShift = 0;
  if (E == 0) {
    Above0 = D;
  } else if (E > 0) {
    if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
      D <<= Shift;
      E -= Shift;

      if (!E)
        Above0 = D;
    }
  } else if (E > -64) {
    Above0 = D >> -E;
    Below0 = D << (64 + E);
  } else if (E == -64) {
    // Special case: shift by 64 bits is undefined behavior.
    Below0 = D;
  } else if (E > -120) {
    Below0 = D >> (-E - 64);
    Extra = D << (128 + E);
    ExtraShift = -64 - E;
  }

  // Fall back on APFloat for very small and very large numbers.
  if (!Above0 && !Below0)
    return toStringAPFloat(D, E, Precision);

  // Append the digits before the decimal.
  std::string Str;
  size_t DigitsOut = 0;
  if (Above0) {
    appendNumber(Str, Above0);
    DigitsOut = Str.size();
  } else
    appendDigit(Str, 0);
  std::reverse(Str.begin(), Str.end());

  // Return early if there's nothing after the decimal.
  if (!Below0)
    return Str + ".0";

  // Append the decimal and beyond.
  Str += '.';
  uint64_t Error = UINT64_C(1) << (64 - Width);

  // We need to shift Below0 to the right to make space for calculating
  // digits.  Save the precision we're losing in Extra.
  Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
  Below0 >>= 4;
  size_t SinceDot = 0;
  size_t AfterDot = Str.size();
  do {
    if (ExtraShift) {
      --ExtraShift;
      Error *= 5;
    } else
      Error *= 10;

    Below0 *= 10;
    Extra *= 10;
    Below0 += (Extra >> 60);
    Extra = Extra & (UINT64_MAX >> 4);
    appendDigit(Str, Below0 >> 60);
    Below0 = Below0 & (UINT64_MAX >> 4);
    if (DigitsOut || Str.back() != '0')
      ++DigitsOut;
    ++SinceDot;
  } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
           (!Precision || DigitsOut <= Precision || SinceDot < 2));

  // Return early for maximum precision.
  if (!Precision || DigitsOut <= Precision)
    return stripTrailingZeros(Str);

  // Find where to truncate.
  size_t Truncate =
      std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);

  // Check if there's anything to truncate.
  if (Truncate >= Str.size())
    return stripTrailingZeros(Str);

  bool Carry = doesRoundUp(Str[Truncate]);
  if (!Carry)
    return stripTrailingZeros(Str.substr(0, Truncate));

  // Round with the first truncated digit.
  for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
       I != E; ++I) {
    if (*I == '.')
      continue;
    if (*I == '9') {
      *I = '0';
      continue;
    }

    ++*I;
    Carry = false;
    break;
  }

  // Add "1" in front if we still need to carry.
  return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
}

raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E,
                                     int Width, unsigned Precision) {
  return OS << toString(D, E, Width, Precision);
}

void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) {
  print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
                                << "]";
}