reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
//===- ELF.cpp - ELF object file implementation ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Object/ELF.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/LEB128.h"

using namespace llvm;
using namespace object;

#define STRINGIFY_ENUM_CASE(ns, name)                                          \
  case ns::name:                                                               \
    return #name;

#define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)

StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
                                                 uint32_t Type) {
  switch (Machine) {
  case ELF::EM_X86_64:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
    default:
      break;
    }
    break;
  case ELF::EM_386:
  case ELF::EM_IAMCU:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/i386.def"
    default:
      break;
    }
    break;
  case ELF::EM_MIPS:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Mips.def"
    default:
      break;
    }
    break;
  case ELF::EM_AARCH64:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
    default:
      break;
    }
    break;
  case ELF::EM_ARM:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/ARM.def"
    default:
      break;
    }
    break;
  case ELF::EM_ARC_COMPACT:
  case ELF::EM_ARC_COMPACT2:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/ARC.def"
    default:
      break;
    }
    break;
  case ELF::EM_AVR:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/AVR.def"
    default:
      break;
    }
    break;
  case ELF::EM_HEXAGON:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
    default:
      break;
    }
    break;
  case ELF::EM_LANAI:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
    default:
      break;
    }
    break;
  case ELF::EM_PPC:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
    default:
      break;
    }
    break;
  case ELF::EM_PPC64:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
    default:
      break;
    }
    break;
  case ELF::EM_RISCV:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
    default:
      break;
    }
    break;
  case ELF::EM_S390:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
    default:
      break;
    }
    break;
  case ELF::EM_SPARC:
  case ELF::EM_SPARC32PLUS:
  case ELF::EM_SPARCV9:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
    default:
      break;
    }
    break;
  case ELF::EM_AMDGPU:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
    default:
      break;
    }
    break;
  case ELF::EM_BPF:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/BPF.def"
    default:
      break;
    }
    break;
  case ELF::EM_MSP430:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
    default:
      break;
    }
    break;
  default:
    break;
  }
  return "Unknown";
}

#undef ELF_RELOC

uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
  switch (Machine) {
  case ELF::EM_X86_64:
    return ELF::R_X86_64_RELATIVE;
  case ELF::EM_386:
  case ELF::EM_IAMCU:
    return ELF::R_386_RELATIVE;
  case ELF::EM_MIPS:
    break;
  case ELF::EM_AARCH64:
    return ELF::R_AARCH64_RELATIVE;
  case ELF::EM_ARM:
    return ELF::R_ARM_RELATIVE;
  case ELF::EM_ARC_COMPACT:
  case ELF::EM_ARC_COMPACT2:
    return ELF::R_ARC_RELATIVE;
  case ELF::EM_AVR:
    break;
  case ELF::EM_HEXAGON:
    return ELF::R_HEX_RELATIVE;
  case ELF::EM_LANAI:
    break;
  case ELF::EM_PPC:
    break;
  case ELF::EM_PPC64:
    return ELF::R_PPC64_RELATIVE;
  case ELF::EM_RISCV:
    return ELF::R_RISCV_RELATIVE;
  case ELF::EM_S390:
    return ELF::R_390_RELATIVE;
  case ELF::EM_SPARC:
  case ELF::EM_SPARC32PLUS:
  case ELF::EM_SPARCV9:
    return ELF::R_SPARC_RELATIVE;
  case ELF::EM_AMDGPU:
    break;
  case ELF::EM_BPF:
    break;
  default:
    break;
  }
  return 0;
}

StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
  switch (Machine) {
  case ELF::EM_ARM:
    switch (Type) {
      STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
      STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
      STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
      STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
      STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
    }
    break;
  case ELF::EM_HEXAGON:
    switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
    break;
  case ELF::EM_X86_64:
    switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
    break;
  case ELF::EM_MIPS:
  case ELF::EM_MIPS_RS3_LE:
    switch (Type) {
      STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
      STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
      STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
      STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
    }
    break;
  default:
    break;
  }

  switch (Type) {
    STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
    STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
    STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
    STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
    STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
    STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
    STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
    STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
    STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
    STRINGIFY_ENUM_CASE(ELF, SHT_REL);
    STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
    STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
    STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
    STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
    STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
    STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
    STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
    STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
    STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
    STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
    STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
    STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
    STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
    STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
    STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
    STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
  default:
    return "Unknown";
  }
}

template <class ELFT>
Expected<std::vector<typename ELFT::Rela>>
ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
  // This function decodes the contents of an SHT_RELR packed relocation
  // section.
  //
  // Proposal for adding SHT_RELR sections to generic-abi is here:
  //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
  //
  // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
  // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
  //
  // i.e. start with an address, followed by any number of bitmaps. The address
  // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
  // relocations each, at subsequent offsets following the last address entry.
  //
  // The bitmap entries must have 1 in the least significant bit. The assumption
  // here is that an address cannot have 1 in lsb. Odd addresses are not
  // supported.
  //
  // Excluding the least significant bit in the bitmap, each non-zero bit in
  // the bitmap represents a relocation to be applied to a corresponding machine
  // word that follows the base address word. The second least significant bit
  // represents the machine word immediately following the initial address, and
  // each bit that follows represents the next word, in linear order. As such,
  // a single bitmap can encode up to 31 relocations in a 32-bit object, and
  // 63 relocations in a 64-bit object.
  //
  // This encoding has a couple of interesting properties:
  // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
  //    even means address, odd means bitmap.
  // 2. Just a simple list of addresses is a valid encoding.

  Elf_Rela Rela;
  Rela.r_info = 0;
  Rela.r_addend = 0;
  Rela.setType(getRelativeRelocationType(), false);
  std::vector<Elf_Rela> Relocs;

  // Word type: uint32_t for Elf32, and uint64_t for Elf64.
  typedef typename ELFT::uint Word;

  // Word size in number of bytes.
  const size_t WordSize = sizeof(Word);

  // Number of bits used for the relocation offsets bitmap.
  // These many relative relocations can be encoded in a single entry.
  const size_t NBits = 8*WordSize - 1;

  Word Base = 0;
  for (const Elf_Relr &R : relrs) {
    Word Entry = R;
    if ((Entry&1) == 0) {
      // Even entry: encodes the offset for next relocation.
      Rela.r_offset = Entry;
      Relocs.push_back(Rela);
      // Set base offset for subsequent bitmap entries.
      Base = Entry + WordSize;
      continue;
    }

    // Odd entry: encodes bitmap for relocations starting at base.
    Word Offset = Base;
    while (Entry != 0) {
      Entry >>= 1;
      if ((Entry&1) != 0) {
        Rela.r_offset = Offset;
        Relocs.push_back(Rela);
      }
      Offset += WordSize;
    }

    // Advance base offset by NBits words.
    Base += NBits * WordSize;
  }

  return Relocs;
}

template <class ELFT>
Expected<std::vector<typename ELFT::Rela>>
ELFFile<ELFT>::android_relas(const Elf_Shdr *Sec) const {
  // This function reads relocations in Android's packed relocation format,
  // which is based on SLEB128 and delta encoding.
  Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
  if (!ContentsOrErr)
    return ContentsOrErr.takeError();
  const uint8_t *Cur = ContentsOrErr->begin();
  const uint8_t *End = ContentsOrErr->end();
  if (ContentsOrErr->size() < 4 || Cur[0] != 'A' || Cur[1] != 'P' ||
      Cur[2] != 'S' || Cur[3] != '2')
    return createError("invalid packed relocation header");
  Cur += 4;

  const char *ErrStr = nullptr;
  auto ReadSLEB = [&]() -> int64_t {
    if (ErrStr)
      return 0;
    unsigned Len;
    int64_t Result = decodeSLEB128(Cur, &Len, End, &ErrStr);
    Cur += Len;
    return Result;
  };

  uint64_t NumRelocs = ReadSLEB();
  uint64_t Offset = ReadSLEB();
  uint64_t Addend = 0;

  if (ErrStr)
    return createError(ErrStr);

  std::vector<Elf_Rela> Relocs;
  Relocs.reserve(NumRelocs);
  while (NumRelocs) {
    uint64_t NumRelocsInGroup = ReadSLEB();
    if (NumRelocsInGroup > NumRelocs)
      return createError("relocation group unexpectedly large");
    NumRelocs -= NumRelocsInGroup;

    uint64_t GroupFlags = ReadSLEB();
    bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
    bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
    bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
    bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;

    uint64_t GroupOffsetDelta;
    if (GroupedByOffsetDelta)
      GroupOffsetDelta = ReadSLEB();

    uint64_t GroupRInfo;
    if (GroupedByInfo)
      GroupRInfo = ReadSLEB();

    if (GroupedByAddend && GroupHasAddend)
      Addend += ReadSLEB();

    if (!GroupHasAddend)
      Addend = 0;

    for (uint64_t I = 0; I != NumRelocsInGroup; ++I) {
      Elf_Rela R;
      Offset += GroupedByOffsetDelta ? GroupOffsetDelta : ReadSLEB();
      R.r_offset = Offset;
      R.r_info = GroupedByInfo ? GroupRInfo : ReadSLEB();
      if (GroupHasAddend && !GroupedByAddend)
        Addend += ReadSLEB();
      R.r_addend = Addend;
      Relocs.push_back(R);

      if (ErrStr)
        return createError(ErrStr);
    }

    if (ErrStr)
      return createError(ErrStr);
  }

  return Relocs;
}

template <class ELFT>
std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
                                                 uint64_t Type) const {
#define DYNAMIC_STRINGIFY_ENUM(tag, value)                                     \
  case value:                                                                  \
    return #tag;

#define DYNAMIC_TAG(n, v)
  switch (Arch) {
  case ELF::EM_AARCH64:
    switch (Type) {
#define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef AARCH64_DYNAMIC_TAG
    }
    break;

  case ELF::EM_HEXAGON:
    switch (Type) {
#define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef HEXAGON_DYNAMIC_TAG
    }
    break;

  case ELF::EM_MIPS:
    switch (Type) {
#define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef MIPS_DYNAMIC_TAG
    }
    break;

  case ELF::EM_PPC64:
    switch (Type) {
#define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef PPC64_DYNAMIC_TAG
    }
    break;
  }
#undef DYNAMIC_TAG
  switch (Type) {
// Now handle all dynamic tags except the architecture specific ones
#define AARCH64_DYNAMIC_TAG(name, value)
#define MIPS_DYNAMIC_TAG(name, value)
#define HEXAGON_DYNAMIC_TAG(name, value)
#define PPC64_DYNAMIC_TAG(name, value)
// Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
#define DYNAMIC_TAG_MARKER(name, value)
#define DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef DYNAMIC_TAG
#undef AARCH64_DYNAMIC_TAG
#undef MIPS_DYNAMIC_TAG
#undef HEXAGON_DYNAMIC_TAG
#undef PPC64_DYNAMIC_TAG
#undef DYNAMIC_TAG_MARKER
#undef DYNAMIC_STRINGIFY_ENUM
  default:
    return "<unknown:>0x" + utohexstr(Type, true);
  }
}

template <class ELFT>
std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
  return getDynamicTagAsString(getHeader()->e_machine, Type);
}

template <class ELFT>
Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
  ArrayRef<Elf_Dyn> Dyn;
  size_t DynSecSize = 0;

  auto ProgramHeadersOrError = program_headers();
  if (!ProgramHeadersOrError)
    return ProgramHeadersOrError.takeError();

  for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
    if (Phdr.p_type == ELF::PT_DYNAMIC) {
      Dyn = makeArrayRef(
          reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
          Phdr.p_filesz / sizeof(Elf_Dyn));
      DynSecSize = Phdr.p_filesz;
      break;
    }
  }

  // If we can't find the dynamic section in the program headers, we just fall
  // back on the sections.
  if (Dyn.empty()) {
    auto SectionsOrError = sections();
    if (!SectionsOrError)
      return SectionsOrError.takeError();

    for (const Elf_Shdr &Sec : *SectionsOrError) {
      if (Sec.sh_type == ELF::SHT_DYNAMIC) {
        Expected<ArrayRef<Elf_Dyn>> DynOrError =
            getSectionContentsAsArray<Elf_Dyn>(&Sec);
        if (!DynOrError)
          return DynOrError.takeError();
        Dyn = *DynOrError;
        DynSecSize = Sec.sh_size;
        break;
      }
    }

    if (!Dyn.data())
      return ArrayRef<Elf_Dyn>();
  }

  if (Dyn.empty())
    // TODO: this error is untested.
    return createError("invalid empty dynamic section");

  if (DynSecSize % sizeof(Elf_Dyn) != 0)
    // TODO: this error is untested.
    return createError("malformed dynamic section");

  if (Dyn.back().d_tag != ELF::DT_NULL)
    // TODO: this error is untested.
    return createError("dynamic sections must be DT_NULL terminated");

  return Dyn;
}

template <class ELFT>
Expected<const uint8_t *> ELFFile<ELFT>::toMappedAddr(uint64_t VAddr) const {
  auto ProgramHeadersOrError = program_headers();
  if (!ProgramHeadersOrError)
    return ProgramHeadersOrError.takeError();

  llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;

  for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
    if (Phdr.p_type == ELF::PT_LOAD)
      LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));

  const Elf_Phdr *const *I =
      std::upper_bound(LoadSegments.begin(), LoadSegments.end(), VAddr,
                       [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
                         return VAddr < Phdr->p_vaddr;
                       });

  if (I == LoadSegments.begin())
    return createError("virtual address is not in any segment: 0x" +
                       Twine::utohexstr(VAddr));
  --I;
  const Elf_Phdr &Phdr = **I;
  uint64_t Delta = VAddr - Phdr.p_vaddr;
  if (Delta >= Phdr.p_filesz)
    return createError("virtual address is not in any segment: 0x" +
                       Twine::utohexstr(VAddr));
  return base() + Phdr.p_offset + Delta;
}

template class llvm::object::ELFFile<ELF32LE>;
template class llvm::object::ELFFile<ELF32BE>;
template class llvm::object::ELFFile<ELF64LE>;
template class llvm::object::ELFFile<ELF64BE>;