reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
//===--------------------- Scheduler.cpp ------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A scheduler for processor resource units and processor resource groups.
//
//===----------------------------------------------------------------------===//

#include "llvm/MCA/HardwareUnits/Scheduler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

namespace llvm {
namespace mca {

#define DEBUG_TYPE "llvm-mca"

void Scheduler::initializeStrategy(std::unique_ptr<SchedulerStrategy> S) {
  // Ensure we have a valid (non-null) strategy object.
  Strategy = S ? std::move(S) : std::make_unique<DefaultSchedulerStrategy>();
}

// Anchor the vtable of SchedulerStrategy and DefaultSchedulerStrategy.
SchedulerStrategy::~SchedulerStrategy() = default;
DefaultSchedulerStrategy::~DefaultSchedulerStrategy() = default;

#ifndef NDEBUG
void Scheduler::dump() const {
  dbgs() << "[SCHEDULER]: WaitSet size is: " << WaitSet.size() << '\n';
  dbgs() << "[SCHEDULER]: ReadySet size is: " << ReadySet.size() << '\n';
  dbgs() << "[SCHEDULER]: IssuedSet size is: " << IssuedSet.size() << '\n';
  Resources->dump();
}
#endif

Scheduler::Status Scheduler::isAvailable(const InstRef &IR) {
  ResourceStateEvent RSE =
      Resources->canBeDispatched(IR.getInstruction()->getUsedBuffers());
  HadTokenStall = RSE != RS_BUFFER_AVAILABLE;

  switch (RSE) {
  case ResourceStateEvent::RS_BUFFER_UNAVAILABLE:
    return Scheduler::SC_BUFFERS_FULL;
  case ResourceStateEvent::RS_RESERVED:
    return Scheduler::SC_DISPATCH_GROUP_STALL;
  case ResourceStateEvent::RS_BUFFER_AVAILABLE:
    break;
  }

  // Give lower priority to LSUnit stall events.
  LSUnit::Status LSS = LSU.isAvailable(IR);
  HadTokenStall = LSS != LSUnit::LSU_AVAILABLE;

  switch (LSS) {
  case LSUnit::LSU_LQUEUE_FULL:
    return Scheduler::SC_LOAD_QUEUE_FULL;
  case LSUnit::LSU_SQUEUE_FULL:
    return Scheduler::SC_STORE_QUEUE_FULL;
  case LSUnit::LSU_AVAILABLE:
    return Scheduler::SC_AVAILABLE;
  }

  llvm_unreachable("Don't know how to process this LSU state result!");
}

void Scheduler::issueInstructionImpl(
    InstRef &IR,
    SmallVectorImpl<std::pair<ResourceRef, ResourceCycles>> &UsedResources) {
  Instruction *IS = IR.getInstruction();
  const InstrDesc &D = IS->getDesc();

  // Issue the instruction and collect all the consumed resources
  // into a vector. That vector is then used to notify the listener.
  Resources->issueInstruction(D, UsedResources);

  // Notify the instruction that it started executing.
  // This updates the internal state of each write.
  IS->execute(IR.getSourceIndex());

  IS->computeCriticalRegDep();

  if (IS->isMemOp()) {
    LSU.onInstructionIssued(IR);
    const MemoryGroup &Group = LSU.getGroup(IS->getLSUTokenID());
    IS->setCriticalMemDep(Group.getCriticalPredecessor());
  }

  if (IS->isExecuting())
    IssuedSet.emplace_back(IR);
  else if (IS->isExecuted())
    LSU.onInstructionExecuted(IR);
}

// Release the buffered resources and issue the instruction.
void Scheduler::issueInstruction(
    InstRef &IR,
    SmallVectorImpl<std::pair<ResourceRef, ResourceCycles>> &UsedResources,
    SmallVectorImpl<InstRef> &PendingInstructions,
    SmallVectorImpl<InstRef> &ReadyInstructions) {
  const Instruction &Inst = *IR.getInstruction();
  bool HasDependentUsers = Inst.hasDependentUsers();
  HasDependentUsers |= Inst.isMemOp() && LSU.hasDependentUsers(IR);

  Resources->releaseBuffers(Inst.getUsedBuffers());
  issueInstructionImpl(IR, UsedResources);
  // Instructions that have been issued during this cycle might have unblocked
  // other dependent instructions. Dependent instructions may be issued during
  // this same cycle if operands have ReadAdvance entries.  Promote those
  // instructions to the ReadySet and notify the caller that those are ready.
  if (HasDependentUsers)
    if (promoteToPendingSet(PendingInstructions))
      promoteToReadySet(ReadyInstructions);
}

bool Scheduler::promoteToReadySet(SmallVectorImpl<InstRef> &Ready) {
  // Scan the set of waiting instructions and promote them to the
  // ready set if operands are all ready.
  unsigned PromotedElements = 0;
  for (auto I = PendingSet.begin(), E = PendingSet.end(); I != E;) {
    InstRef &IR = *I;
    if (!IR)
      break;

    // Check if there are unsolved register dependencies.
    Instruction &IS = *IR.getInstruction();
    if (!IS.isReady() && !IS.updatePending()) {
      ++I;
      continue;
    }
    // Check if there are unsolved memory dependencies.
    if (IS.isMemOp() && !LSU.isReady(IR)) {
      ++I;
      continue;
    }

    LLVM_DEBUG(dbgs() << "[SCHEDULER]: Instruction #" << IR
                      << " promoted to the READY set.\n");

    Ready.emplace_back(IR);
    ReadySet.emplace_back(IR);

    IR.invalidate();
    ++PromotedElements;
    std::iter_swap(I, E - PromotedElements);
  }

  PendingSet.resize(PendingSet.size() - PromotedElements);
  return PromotedElements;
}

bool Scheduler::promoteToPendingSet(SmallVectorImpl<InstRef> &Pending) {
  // Scan the set of waiting instructions and promote them to the
  // pending set if operands are all ready.
  unsigned RemovedElements = 0;
  for (auto I = WaitSet.begin(), E = WaitSet.end(); I != E;) {
    InstRef &IR = *I;
    if (!IR)
      break;

    // Check if this instruction is now ready. In case, force
    // a transition in state using method 'updateDispatched()'.
    Instruction &IS = *IR.getInstruction();
    if (IS.isDispatched() && !IS.updateDispatched()) {
      ++I;
      continue;
    }

    if (IS.isMemOp() && LSU.isWaiting(IR)) {
      ++I;
      continue;
    }

    LLVM_DEBUG(dbgs() << "[SCHEDULER]: Instruction #" << IR
                      << " promoted to the PENDING set.\n");

    Pending.emplace_back(IR);
    PendingSet.emplace_back(IR);

    IR.invalidate();
    ++RemovedElements;
    std::iter_swap(I, E - RemovedElements);
  }

  WaitSet.resize(WaitSet.size() - RemovedElements);
  return RemovedElements;
}

InstRef Scheduler::select() {
  unsigned QueueIndex = ReadySet.size();
  for (unsigned I = 0, E = ReadySet.size(); I != E; ++I) {
    InstRef &IR = ReadySet[I];
    if (QueueIndex == ReadySet.size() ||
        Strategy->compare(IR, ReadySet[QueueIndex])) {
      Instruction &IS = *IR.getInstruction();
      uint64_t BusyResourceMask = Resources->checkAvailability(IS.getDesc());
      if (BusyResourceMask)
        IS.setCriticalResourceMask(BusyResourceMask);
      BusyResourceUnits |= BusyResourceMask;
      if (!BusyResourceMask)
        QueueIndex = I;
    }
  }

  if (QueueIndex == ReadySet.size())
    return InstRef();

  // We found an instruction to issue.
  InstRef IR = ReadySet[QueueIndex];
  std::swap(ReadySet[QueueIndex], ReadySet[ReadySet.size() - 1]);
  ReadySet.pop_back();
  return IR;
}

void Scheduler::updateIssuedSet(SmallVectorImpl<InstRef> &Executed) {
  unsigned RemovedElements = 0;
  for (auto I = IssuedSet.begin(), E = IssuedSet.end(); I != E;) {
    InstRef &IR = *I;
    if (!IR)
      break;
    Instruction &IS = *IR.getInstruction();
    if (!IS.isExecuted()) {
      LLVM_DEBUG(dbgs() << "[SCHEDULER]: Instruction #" << IR
                        << " is still executing.\n");
      ++I;
      continue;
    }

    // Instruction IR has completed execution.
    LSU.onInstructionExecuted(IR);
    Executed.emplace_back(IR);
    ++RemovedElements;
    IR.invalidate();
    std::iter_swap(I, E - RemovedElements);
  }

  IssuedSet.resize(IssuedSet.size() - RemovedElements);
}

uint64_t Scheduler::analyzeResourcePressure(SmallVectorImpl<InstRef> &Insts) {
  Insts.insert(Insts.end(), ReadySet.begin(), ReadySet.end());
  return BusyResourceUnits;
}

void Scheduler::analyzeDataDependencies(SmallVectorImpl<InstRef> &RegDeps,
                                        SmallVectorImpl<InstRef> &MemDeps) {
  const auto EndIt = PendingSet.end() - NumDispatchedToThePendingSet;
  for (const InstRef &IR : make_range(PendingSet.begin(), EndIt)) {
    const Instruction &IS = *IR.getInstruction();
    if (Resources->checkAvailability(IS.getDesc()))
      continue;

    if (IS.isMemOp() && LSU.isPending(IR))
      MemDeps.emplace_back(IR);

    if (IS.isPending())
      RegDeps.emplace_back(IR);
  }
}

void Scheduler::cycleEvent(SmallVectorImpl<ResourceRef> &Freed,
                           SmallVectorImpl<InstRef> &Executed,
                           SmallVectorImpl<InstRef> &Pending,
                           SmallVectorImpl<InstRef> &Ready) {
  LSU.cycleEvent();

  // Release consumed resources.
  Resources->cycleEvent(Freed);

  for (InstRef &IR : IssuedSet)
    IR.getInstruction()->cycleEvent();
  updateIssuedSet(Executed);

  for (InstRef &IR : PendingSet)
    IR.getInstruction()->cycleEvent();

  for (InstRef &IR : WaitSet)
    IR.getInstruction()->cycleEvent();

  promoteToPendingSet(Pending);
  promoteToReadySet(Ready);

  NumDispatchedToThePendingSet = 0;
  BusyResourceUnits = 0;
}

bool Scheduler::mustIssueImmediately(const InstRef &IR) const {
  const InstrDesc &Desc = IR.getInstruction()->getDesc();
  if (Desc.isZeroLatency())
    return true;
  // Instructions that use an in-order dispatch/issue processor resource must be
  // issued immediately to the pipeline(s). Any other in-order buffered
  // resources (i.e. BufferSize=1) is consumed.
  return Desc.MustIssueImmediately;
}

bool Scheduler::dispatch(InstRef &IR) {
  Instruction &IS = *IR.getInstruction();
  Resources->reserveBuffers(IS.getUsedBuffers());

  // If necessary, reserve queue entries in the load-store unit (LSU).
  if (IS.isMemOp())
    IS.setLSUTokenID(LSU.dispatch(IR));

  if (IS.isDispatched() || (IS.isMemOp() && LSU.isWaiting(IR))) {
    LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR << " to the WaitSet\n");
    WaitSet.push_back(IR);
    return false;
  }

  if (IS.isPending() || (IS.isMemOp() && LSU.isPending(IR))) {
    LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR
                      << " to the PendingSet\n");
    PendingSet.push_back(IR);
    ++NumDispatchedToThePendingSet;
    return false;
  }

  assert(IS.isReady() && (!IS.isMemOp() || LSU.isReady(IR)) &&
         "Unexpected internal state found!");
  // Don't add a zero-latency instruction to the Ready queue.
  // A zero-latency instruction doesn't consume any scheduler resources. That is
  // because it doesn't need to be executed, and it is often removed at register
  // renaming stage. For example, register-register moves are often optimized at
  // register renaming stage by simply updating register aliases. On some
  // targets, zero-idiom instructions (for example: a xor that clears the value
  // of a register) are treated specially, and are often eliminated at register
  // renaming stage.
  if (!mustIssueImmediately(IR)) {
    LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR << " to the ReadySet\n");
    ReadySet.push_back(IR);
  }

  return true;
}

} // namespace mca
} // namespace llvm