reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file contains both code to deal with invoking "external" functions, but
//  also contains code that implements "exported" external functions.
//
//  There are currently two mechanisms for handling external functions in the
//  Interpreter.  The first is to implement lle_* wrapper functions that are
//  specific to well-known library functions which manually translate the
//  arguments from GenericValues and make the call.  If such a wrapper does
//  not exist, and libffi is available, then the Interpreter will attempt to
//  invoke the function using libffi, after finding its address.
//
//===----------------------------------------------------------------------===//

#include "Interpreter.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Config/config.h" // Detect libffi
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cmath>
#include <csignal>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <map>
#include <mutex>
#include <string>
#include <utility>
#include <vector>

#ifdef HAVE_FFI_CALL
#ifdef HAVE_FFI_H
#include <ffi.h>
#define USE_LIBFFI
#elif HAVE_FFI_FFI_H
#include <ffi/ffi.h>
#define USE_LIBFFI
#endif
#endif

using namespace llvm;

static ManagedStatic<sys::Mutex> FunctionsLock;

typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>);
static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
static ManagedStatic<std::map<std::string, ExFunc> > FuncNames;

#ifdef USE_LIBFFI
typedef void (*RawFunc)();
static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
#endif

static Interpreter *TheInterpreter;

static char getTypeID(Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::VoidTyID:    return 'V';
  case Type::IntegerTyID:
    switch (cast<IntegerType>(Ty)->getBitWidth()) {
      case 1:  return 'o';
      case 8:  return 'B';
      case 16: return 'S';
      case 32: return 'I';
      case 64: return 'L';
      default: return 'N';
    }
  case Type::FloatTyID:   return 'F';
  case Type::DoubleTyID:  return 'D';
  case Type::PointerTyID: return 'P';
  case Type::FunctionTyID:return 'M';
  case Type::StructTyID:  return 'T';
  case Type::ArrayTyID:   return 'A';
  default: return 'U';
  }
}

// Try to find address of external function given a Function object.
// Please note, that interpreter doesn't know how to assemble a
// real call in general case (this is JIT job), that's why it assumes,
// that all external functions has the same (and pretty "general") signature.
// The typical example of such functions are "lle_X_" ones.
static ExFunc lookupFunction(const Function *F) {
  // Function not found, look it up... start by figuring out what the
  // composite function name should be.
  std::string ExtName = "lle_";
  FunctionType *FT = F->getFunctionType();
  ExtName += getTypeID(FT->getReturnType());
  for (Type *T : FT->params())
    ExtName += getTypeID(T);
  ExtName += ("_" + F->getName()).str();

  sys::ScopedLock Writer(*FunctionsLock);
  ExFunc FnPtr = (*FuncNames)[ExtName];
  if (!FnPtr)
    FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()];
  if (!FnPtr)  // Try calling a generic function... if it exists...
    FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
        ("lle_X_" + F->getName()).str());
  if (FnPtr)
    ExportedFunctions->insert(std::make_pair(F, FnPtr));  // Cache for later
  return FnPtr;
}

#ifdef USE_LIBFFI
static ffi_type *ffiTypeFor(Type *Ty) {
  switch (Ty->getTypeID()) {
    case Type::VoidTyID: return &ffi_type_void;
    case Type::IntegerTyID:
      switch (cast<IntegerType>(Ty)->getBitWidth()) {
        case 8:  return &ffi_type_sint8;
        case 16: return &ffi_type_sint16;
        case 32: return &ffi_type_sint32;
        case 64: return &ffi_type_sint64;
      }
    case Type::FloatTyID:   return &ffi_type_float;
    case Type::DoubleTyID:  return &ffi_type_double;
    case Type::PointerTyID: return &ffi_type_pointer;
    default: break;
  }
  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
  report_fatal_error("Type could not be mapped for use with libffi.");
  return NULL;
}

static void *ffiValueFor(Type *Ty, const GenericValue &AV,
                         void *ArgDataPtr) {
  switch (Ty->getTypeID()) {
    case Type::IntegerTyID:
      switch (cast<IntegerType>(Ty)->getBitWidth()) {
        case 8: {
          int8_t *I8Ptr = (int8_t *) ArgDataPtr;
          *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
          return ArgDataPtr;
        }
        case 16: {
          int16_t *I16Ptr = (int16_t *) ArgDataPtr;
          *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
          return ArgDataPtr;
        }
        case 32: {
          int32_t *I32Ptr = (int32_t *) ArgDataPtr;
          *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
          return ArgDataPtr;
        }
        case 64: {
          int64_t *I64Ptr = (int64_t *) ArgDataPtr;
          *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
          return ArgDataPtr;
        }
      }
    case Type::FloatTyID: {
      float *FloatPtr = (float *) ArgDataPtr;
      *FloatPtr = AV.FloatVal;
      return ArgDataPtr;
    }
    case Type::DoubleTyID: {
      double *DoublePtr = (double *) ArgDataPtr;
      *DoublePtr = AV.DoubleVal;
      return ArgDataPtr;
    }
    case Type::PointerTyID: {
      void **PtrPtr = (void **) ArgDataPtr;
      *PtrPtr = GVTOP(AV);
      return ArgDataPtr;
    }
    default: break;
  }
  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
  report_fatal_error("Type value could not be mapped for use with libffi.");
  return NULL;
}

static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
                      const DataLayout &TD, GenericValue &Result) {
  ffi_cif cif;
  FunctionType *FTy = F->getFunctionType();
  const unsigned NumArgs = F->arg_size();

  // TODO: We don't have type information about the remaining arguments, because
  // this information is never passed into ExecutionEngine::runFunction().
  if (ArgVals.size() > NumArgs && F->isVarArg()) {
    report_fatal_error("Calling external var arg function '" + F->getName()
                      + "' is not supported by the Interpreter.");
  }

  unsigned ArgBytes = 0;

  std::vector<ffi_type*> args(NumArgs);
  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
       A != E; ++A) {
    const unsigned ArgNo = A->getArgNo();
    Type *ArgTy = FTy->getParamType(ArgNo);
    args[ArgNo] = ffiTypeFor(ArgTy);
    ArgBytes += TD.getTypeStoreSize(ArgTy);
  }

  SmallVector<uint8_t, 128> ArgData;
  ArgData.resize(ArgBytes);
  uint8_t *ArgDataPtr = ArgData.data();
  SmallVector<void*, 16> values(NumArgs);
  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
       A != E; ++A) {
    const unsigned ArgNo = A->getArgNo();
    Type *ArgTy = FTy->getParamType(ArgNo);
    values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
    ArgDataPtr += TD.getTypeStoreSize(ArgTy);
  }

  Type *RetTy = FTy->getReturnType();
  ffi_type *rtype = ffiTypeFor(RetTy);

  if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) ==
      FFI_OK) {
    SmallVector<uint8_t, 128> ret;
    if (RetTy->getTypeID() != Type::VoidTyID)
      ret.resize(TD.getTypeStoreSize(RetTy));
    ffi_call(&cif, Fn, ret.data(), values.data());
    switch (RetTy->getTypeID()) {
      case Type::IntegerTyID:
        switch (cast<IntegerType>(RetTy)->getBitWidth()) {
          case 8:  Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
          case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
          case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
          case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
        }
        break;
      case Type::FloatTyID:   Result.FloatVal   = *(float *) ret.data(); break;
      case Type::DoubleTyID:  Result.DoubleVal  = *(double*) ret.data(); break;
      case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
      default: break;
    }
    return true;
  }

  return false;
}
#endif // USE_LIBFFI

GenericValue Interpreter::callExternalFunction(Function *F,
                                               ArrayRef<GenericValue> ArgVals) {
  TheInterpreter = this;

  std::unique_lock<sys::Mutex> Guard(*FunctionsLock);

  // Do a lookup to see if the function is in our cache... this should just be a
  // deferred annotation!
  std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
  if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
                                                   : FI->second) {
    Guard.unlock();
    return Fn(F->getFunctionType(), ArgVals);
  }

#ifdef USE_LIBFFI
  std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
  RawFunc RawFn;
  if (RF == RawFunctions->end()) {
    RawFn = (RawFunc)(intptr_t)
      sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
    if (!RawFn)
      RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
    if (RawFn != 0)
      RawFunctions->insert(std::make_pair(F, RawFn));  // Cache for later
  } else {
    RawFn = RF->second;
  }

  Guard.unlock();

  GenericValue Result;
  if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
    return Result;
#endif // USE_LIBFFI

  if (F->getName() == "__main")
    errs() << "Tried to execute an unknown external function: "
      << *F->getType() << " __main\n";
  else
    report_fatal_error("Tried to execute an unknown external function: " +
                       F->getName());
#ifndef USE_LIBFFI
  errs() << "Recompiling LLVM with --enable-libffi might help.\n";
#endif
  return GenericValue();
}

//===----------------------------------------------------------------------===//
//  Functions "exported" to the running application...
//

// void atexit(Function*)
static GenericValue lle_X_atexit(FunctionType *FT,
                                 ArrayRef<GenericValue> Args) {
  assert(Args.size() == 1);
  TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
  GenericValue GV;
  GV.IntVal = 0;
  return GV;
}

// void exit(int)
static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) {
  TheInterpreter->exitCalled(Args[0]);
  return GenericValue();
}

// void abort(void)
static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) {
  //FIXME: should we report or raise here?
  //report_fatal_error("Interpreted program raised SIGABRT");
  raise (SIGABRT);
  return GenericValue();
}

// int sprintf(char *, const char *, ...) - a very rough implementation to make
// output useful.
static GenericValue lle_X_sprintf(FunctionType *FT,
                                  ArrayRef<GenericValue> Args) {
  char *OutputBuffer = (char *)GVTOP(Args[0]);
  const char *FmtStr = (const char *)GVTOP(Args[1]);
  unsigned ArgNo = 2;

  // printf should return # chars printed.  This is completely incorrect, but
  // close enough for now.
  GenericValue GV;
  GV.IntVal = APInt(32, strlen(FmtStr));
  while (true) {
    switch (*FmtStr) {
    case 0: return GV;             // Null terminator...
    default:                       // Normal nonspecial character
      sprintf(OutputBuffer++, "%c", *FmtStr++);
      break;
    case '\\': {                   // Handle escape codes
      sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
      FmtStr += 2; OutputBuffer += 2;
      break;
    }
    case '%': {                    // Handle format specifiers
      char FmtBuf[100] = "", Buffer[1000] = "";
      char *FB = FmtBuf;
      *FB++ = *FmtStr++;
      char Last = *FB++ = *FmtStr++;
      unsigned HowLong = 0;
      while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
             Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
             Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
             Last != 'p' && Last != 's' && Last != '%') {
        if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
        Last = *FB++ = *FmtStr++;
      }
      *FB = 0;

      switch (Last) {
      case '%':
        memcpy(Buffer, "%", 2); break;
      case 'c':
        sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
        break;
      case 'd': case 'i':
      case 'u': case 'o':
      case 'x': case 'X':
        if (HowLong >= 1) {
          if (HowLong == 1 &&
              TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 &&
              sizeof(long) < sizeof(int64_t)) {
            // Make sure we use %lld with a 64 bit argument because we might be
            // compiling LLI on a 32 bit compiler.
            unsigned Size = strlen(FmtBuf);
            FmtBuf[Size] = FmtBuf[Size-1];
            FmtBuf[Size+1] = 0;
            FmtBuf[Size-1] = 'l';
          }
          sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
        } else
          sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
        break;
      case 'e': case 'E': case 'g': case 'G': case 'f':
        sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
      case 'p':
        sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
      case 's':
        sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
      default:
        errs() << "<unknown printf code '" << *FmtStr << "'!>";
        ArgNo++; break;
      }
      size_t Len = strlen(Buffer);
      memcpy(OutputBuffer, Buffer, Len + 1);
      OutputBuffer += Len;
      }
      break;
    }
  }
  return GV;
}

// int printf(const char *, ...) - a very rough implementation to make output
// useful.
static GenericValue lle_X_printf(FunctionType *FT,
                                 ArrayRef<GenericValue> Args) {
  char Buffer[10000];
  std::vector<GenericValue> NewArgs;
  NewArgs.push_back(PTOGV((void*)&Buffer[0]));
  NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
  GenericValue GV = lle_X_sprintf(FT, NewArgs);
  outs() << Buffer;
  return GV;
}

// int sscanf(const char *format, ...);
static GenericValue lle_X_sscanf(FunctionType *FT,
                                 ArrayRef<GenericValue> args) {
  assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");

  char *Args[10];
  for (unsigned i = 0; i < args.size(); ++i)
    Args[i] = (char*)GVTOP(args[i]);

  GenericValue GV;
  GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
                    Args[5], Args[6], Args[7], Args[8], Args[9]));
  return GV;
}

// int scanf(const char *format, ...);
static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) {
  assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");

  char *Args[10];
  for (unsigned i = 0; i < args.size(); ++i)
    Args[i] = (char*)GVTOP(args[i]);

  GenericValue GV;
  GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
                    Args[5], Args[6], Args[7], Args[8], Args[9]));
  return GV;
}

// int fprintf(FILE *, const char *, ...) - a very rough implementation to make
// output useful.
static GenericValue lle_X_fprintf(FunctionType *FT,
                                  ArrayRef<GenericValue> Args) {
  assert(Args.size() >= 2);
  char Buffer[10000];
  std::vector<GenericValue> NewArgs;
  NewArgs.push_back(PTOGV(Buffer));
  NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
  GenericValue GV = lle_X_sprintf(FT, NewArgs);

  fputs(Buffer, (FILE *) GVTOP(Args[0]));
  return GV;
}

static GenericValue lle_X_memset(FunctionType *FT,
                                 ArrayRef<GenericValue> Args) {
  int val = (int)Args[1].IntVal.getSExtValue();
  size_t len = (size_t)Args[2].IntVal.getZExtValue();
  memset((void *)GVTOP(Args[0]), val, len);
  // llvm.memset.* returns void, lle_X_* returns GenericValue,
  // so here we return GenericValue with IntVal set to zero
  GenericValue GV;
  GV.IntVal = 0;
  return GV;
}

static GenericValue lle_X_memcpy(FunctionType *FT,
                                 ArrayRef<GenericValue> Args) {
  memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
         (size_t)(Args[2].IntVal.getLimitedValue()));

  // llvm.memcpy* returns void, lle_X_* returns GenericValue,
  // so here we return GenericValue with IntVal set to zero
  GenericValue GV;
  GV.IntVal = 0;
  return GV;
}

void Interpreter::initializeExternalFunctions() {
  sys::ScopedLock Writer(*FunctionsLock);
  (*FuncNames)["lle_X_atexit"]       = lle_X_atexit;
  (*FuncNames)["lle_X_exit"]         = lle_X_exit;
  (*FuncNames)["lle_X_abort"]        = lle_X_abort;

  (*FuncNames)["lle_X_printf"]       = lle_X_printf;
  (*FuncNames)["lle_X_sprintf"]      = lle_X_sprintf;
  (*FuncNames)["lle_X_sscanf"]       = lle_X_sscanf;
  (*FuncNames)["lle_X_scanf"]        = lle_X_scanf;
  (*FuncNames)["lle_X_fprintf"]      = lle_X_fprintf;
  (*FuncNames)["lle_X_memset"]       = lle_X_memset;
  (*FuncNames)["lle_X_memcpy"]       = lle_X_memcpy;
}