reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
//=- llvm/CodeGen/ScheduleHazardRecognizer.h - Scheduling Support -*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ScheduleHazardRecognizer class, which implements
// hazard-avoidance heuristics for scheduling.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_SCHEDULEHAZARDRECOGNIZER_H
#define LLVM_CODEGEN_SCHEDULEHAZARDRECOGNIZER_H

namespace llvm {

class MachineInstr;
class SUnit;

/// HazardRecognizer - This determines whether or not an instruction can be
/// issued this cycle, and whether or not a noop needs to be inserted to handle
/// the hazard.
class ScheduleHazardRecognizer {
protected:
  /// MaxLookAhead - Indicate the number of cycles in the scoreboard
  /// state. Important to restore the state after backtracking. Additionally,
  /// MaxLookAhead=0 identifies a fake recognizer, allowing the client to
  /// bypass virtual calls. Currently the PostRA scheduler ignores it.
  unsigned MaxLookAhead = 0;

public:
  ScheduleHazardRecognizer() = default;
  virtual ~ScheduleHazardRecognizer();

  enum HazardType {
    NoHazard,      // This instruction can be emitted at this cycle.
    Hazard,        // This instruction can't be emitted at this cycle.
    NoopHazard     // This instruction can't be emitted, and needs noops.
  };

  unsigned getMaxLookAhead() const { return MaxLookAhead; }

  bool isEnabled() const { return MaxLookAhead != 0; }

  /// atIssueLimit - Return true if no more instructions may be issued in this
  /// cycle.
  ///
  /// FIXME: remove this once MachineScheduler is the only client.
  virtual bool atIssueLimit() const { return false; }

  /// getHazardType - Return the hazard type of emitting this node.  There are
  /// three possible results.  Either:
  ///  * NoHazard: it is legal to issue this instruction on this cycle.
  ///  * Hazard: issuing this instruction would stall the machine.  If some
  ///     other instruction is available, issue it first.
  ///  * NoopHazard: issuing this instruction would break the program.  If
  ///     some other instruction can be issued, do so, otherwise issue a noop.
  virtual HazardType getHazardType(SUnit *m, int Stalls = 0) {
    return NoHazard;
  }

  /// Reset - This callback is invoked when a new block of
  /// instructions is about to be schedule. The hazard state should be
  /// set to an initialized state.
  virtual void Reset() {}

  /// EmitInstruction - This callback is invoked when an instruction is
  /// emitted, to advance the hazard state.
  virtual void EmitInstruction(SUnit *) {}

  /// This overload will be used when the hazard recognizer is being used
  /// by a non-scheduling pass, which does not use SUnits.
  virtual void EmitInstruction(MachineInstr *) {}

  /// PreEmitNoops - This callback is invoked prior to emitting an instruction.
  /// It should return the number of noops to emit prior to the provided
  /// instruction.
  /// Note: This is only used during PostRA scheduling. EmitNoop is not called
  /// for these noops.
  virtual unsigned PreEmitNoops(SUnit *) {
    return 0;
  }

  /// This overload will be used when the hazard recognizer is being used
  /// by a non-scheduling pass, which does not use SUnits.
  virtual unsigned PreEmitNoops(MachineInstr *) {
    return 0;
  }

  /// ShouldPreferAnother - This callback may be invoked if getHazardType
  /// returns NoHazard. If, even though there is no hazard, it would be better to
  /// schedule another available instruction, this callback should return true.
  virtual bool ShouldPreferAnother(SUnit *) {
    return false;
  }

  /// AdvanceCycle - This callback is invoked whenever the next top-down
  /// instruction to be scheduled cannot issue in the current cycle, either
  /// because of latency or resource conflicts.  This should increment the
  /// internal state of the hazard recognizer so that previously "Hazard"
  /// instructions will now not be hazards.
  virtual void AdvanceCycle() {}

  /// RecedeCycle - This callback is invoked whenever the next bottom-up
  /// instruction to be scheduled cannot issue in the current cycle, either
  /// because of latency or resource conflicts.
  virtual void RecedeCycle() {}

  /// EmitNoop - This callback is invoked when a noop was added to the
  /// instruction stream.
  virtual void EmitNoop() {
    // Default implementation: count it as a cycle.
    AdvanceCycle();
  }
};

} // end namespace llvm

#endif // LLVM_CODEGEN_SCHEDULEHAZARDRECOGNIZER_H