reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)

// Google Mock - a framework for writing C++ mock classes.
//
// This file implements Matcher<const string&>, Matcher<string>, and
// utilities for defining matchers.

#include "gmock/gmock-matchers.h"
#include "gmock/gmock-generated-matchers.h"

#include <string.h>
#include <sstream>
#include <string>

namespace testing {

// Constructs a matcher that matches a const string& whose value is
// equal to s.
Matcher<const internal::string&>::Matcher(const internal::string& s) {
  *this = Eq(s);
}

// Constructs a matcher that matches a const string& whose value is
// equal to s.
Matcher<const internal::string&>::Matcher(const char* s) {
  *this = Eq(internal::string(s));
}

// Constructs a matcher that matches a string whose value is equal to s.
Matcher<internal::string>::Matcher(const internal::string& s) { *this = Eq(s); }

// Constructs a matcher that matches a string whose value is equal to s.
Matcher<internal::string>::Matcher(const char* s) {
  *this = Eq(internal::string(s));
}

#if GTEST_HAS_STRING_PIECE_
// Constructs a matcher that matches a const StringPiece& whose value is
// equal to s.
Matcher<const StringPiece&>::Matcher(const internal::string& s) {
  *this = Eq(s);
}

// Constructs a matcher that matches a const StringPiece& whose value is
// equal to s.
Matcher<const StringPiece&>::Matcher(const char* s) {
  *this = Eq(internal::string(s));
}

// Constructs a matcher that matches a const StringPiece& whose value is
// equal to s.
Matcher<const StringPiece&>::Matcher(StringPiece s) {
  *this = Eq(s.ToString());
}

// Constructs a matcher that matches a StringPiece whose value is equal to s.
Matcher<StringPiece>::Matcher(const internal::string& s) {
  *this = Eq(s);
}

// Constructs a matcher that matches a StringPiece whose value is equal to s.
Matcher<StringPiece>::Matcher(const char* s) {
  *this = Eq(internal::string(s));
}

// Constructs a matcher that matches a StringPiece whose value is equal to s.
Matcher<StringPiece>::Matcher(StringPiece s) {
  *this = Eq(s.ToString());
}
#endif  // GTEST_HAS_STRING_PIECE_

namespace internal {

// Joins a vector of strings as if they are fields of a tuple; returns
// the joined string.
GTEST_API_ string JoinAsTuple(const Strings& fields) {
  switch (fields.size()) {
    case 0:
      return "";
    case 1:
      return fields[0];
    default:
      string result = "(" + fields[0];
      for (size_t i = 1; i < fields.size(); i++) {
        result += ", ";
        result += fields[i];
      }
      result += ")";
      return result;
  }
}

// Returns the description for a matcher defined using the MATCHER*()
// macro where the user-supplied description string is "", if
// 'negation' is false; otherwise returns the description of the
// negation of the matcher.  'param_values' contains a list of strings
// that are the print-out of the matcher's parameters.
GTEST_API_ string FormatMatcherDescription(bool negation,
                                           const char* matcher_name,
                                           const Strings& param_values) {
  string result = ConvertIdentifierNameToWords(matcher_name);
  if (param_values.size() >= 1)
    result += " " + JoinAsTuple(param_values);
  return negation ? "not (" + result + ")" : result;
}

// FindMaxBipartiteMatching and its helper class.
//
// Uses the well-known Ford-Fulkerson max flow method to find a maximum
// bipartite matching. Flow is considered to be from left to right.
// There is an implicit source node that is connected to all of the left
// nodes, and an implicit sink node that is connected to all of the
// right nodes. All edges have unit capacity.
//
// Neither the flow graph nor the residual flow graph are represented
// explicitly. Instead, they are implied by the information in 'graph' and
// a vector<int> called 'left_' whose elements are initialized to the
// value kUnused. This represents the initial state of the algorithm,
// where the flow graph is empty, and the residual flow graph has the
// following edges:
//   - An edge from source to each left_ node
//   - An edge from each right_ node to sink
//   - An edge from each left_ node to each right_ node, if the
//     corresponding edge exists in 'graph'.
//
// When the TryAugment() method adds a flow, it sets left_[l] = r for some
// nodes l and r. This induces the following changes:
//   - The edges (source, l), (l, r), and (r, sink) are added to the
//     flow graph.
//   - The same three edges are removed from the residual flow graph.
//   - The reverse edges (l, source), (r, l), and (sink, r) are added
//     to the residual flow graph, which is a directional graph
//     representing unused flow capacity.
//
// When the method augments a flow (moving left_[l] from some r1 to some
// other r2), this can be thought of as "undoing" the above steps with
// respect to r1 and "redoing" them with respect to r2.
//
// It bears repeating that the flow graph and residual flow graph are
// never represented explicitly, but can be derived by looking at the
// information in 'graph' and in left_.
//
// As an optimization, there is a second vector<int> called right_ which
// does not provide any new information. Instead, it enables more
// efficient queries about edges entering or leaving the right-side nodes
// of the flow or residual flow graphs. The following invariants are
// maintained:
//
// left[l] == kUnused or right[left[l]] == l
// right[r] == kUnused or left[right[r]] == r
//
// . [ source ]                                        .
// .   |||                                             .
// .   |||                                             .
// .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
// .   ||                   |                    |     .
// .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
// .   |                                        ||     .
// .   \----> left[2]=2  ------> right[2]=2  --\||     .
// .                                           |||     .
// .         elements           matchers       vvv     .
// .                                         [ sink ]  .
//
// See Also:
//   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
//       "Introduction to Algorithms (Second ed.)", pp. 651-664.
//   [2] "Ford-Fulkerson algorithm", Wikipedia,
//       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
class MaxBipartiteMatchState {
 public:
  explicit MaxBipartiteMatchState(const MatchMatrix& graph)
      : graph_(&graph),
        left_(graph_->LhsSize(), kUnused),
        right_(graph_->RhsSize(), kUnused) {
  }

  // Returns the edges of a maximal match, each in the form {left, right}.
  ElementMatcherPairs Compute() {
    // 'seen' is used for path finding { 0: unseen, 1: seen }.
    ::std::vector<char> seen;
    // Searches the residual flow graph for a path from each left node to
    // the sink in the residual flow graph, and if one is found, add flow
    // to the graph. It's okay to search through the left nodes once. The
    // edge from the implicit source node to each previously-visited left
    // node will have flow if that left node has any path to the sink
    // whatsoever. Subsequent augmentations can only add flow to the
    // network, and cannot take away that previous flow unit from the source.
    // Since the source-to-left edge can only carry one flow unit (or,
    // each element can be matched to only one matcher), there is no need
    // to visit the left nodes more than once looking for augmented paths.
    // The flow is known to be possible or impossible by looking at the
    // node once.
    for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
      // Reset the path-marking vector and try to find a path from
      // source to sink starting at the left_[ilhs] node.
      GTEST_CHECK_(left_[ilhs] == kUnused)
          << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
      // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
      seen.assign(graph_->RhsSize(), 0);
      TryAugment(ilhs, &seen);
    }
    ElementMatcherPairs result;
    for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
      size_t irhs = left_[ilhs];
      if (irhs == kUnused) continue;
      result.push_back(ElementMatcherPair(ilhs, irhs));
    }
    return result;
  }

 private:
  static const size_t kUnused = static_cast<size_t>(-1);

  // Perform a depth-first search from left node ilhs to the sink.  If a
  // path is found, flow is added to the network by linking the left and
  // right vector elements corresponding each segment of the path.
  // Returns true if a path to sink was found, which means that a unit of
  // flow was added to the network. The 'seen' vector elements correspond
  // to right nodes and are marked to eliminate cycles from the search.
  //
  // Left nodes will only be explored at most once because they
  // are accessible from at most one right node in the residual flow
  // graph.
  //
  // Note that left_[ilhs] is the only element of left_ that TryAugment will
  // potentially transition from kUnused to another value. Any other
  // left_ element holding kUnused before TryAugment will be holding it
  // when TryAugment returns.
  //
  bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
    for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
      if ((*seen)[irhs])
        continue;
      if (!graph_->HasEdge(ilhs, irhs))
        continue;
      // There's an available edge from ilhs to irhs.
      (*seen)[irhs] = 1;
      // Next a search is performed to determine whether
      // this edge is a dead end or leads to the sink.
      //
      // right_[irhs] == kUnused means that there is residual flow from
      // right node irhs to the sink, so we can use that to finish this
      // flow path and return success.
      //
      // Otherwise there is residual flow to some ilhs. We push flow
      // along that path and call ourselves recursively to see if this
      // ultimately leads to sink.
      if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
        // Add flow from left_[ilhs] to right_[irhs].
        left_[ilhs] = irhs;
        right_[irhs] = ilhs;
        return true;
      }
    }
    return false;
  }

  const MatchMatrix* graph_;  // not owned
  // Each element of the left_ vector represents a left hand side node
  // (i.e. an element) and each element of right_ is a right hand side
  // node (i.e. a matcher). The values in the left_ vector indicate
  // outflow from that node to a node on the the right_ side. The values
  // in the right_ indicate inflow, and specify which left_ node is
  // feeding that right_ node, if any. For example, left_[3] == 1 means
  // there's a flow from element #3 to matcher #1. Such a flow would also
  // be redundantly represented in the right_ vector as right_[1] == 3.
  // Elements of left_ and right_ are either kUnused or mutually
  // referent. Mutually referent means that left_[right_[i]] = i and
  // right_[left_[i]] = i.
  ::std::vector<size_t> left_;
  ::std::vector<size_t> right_;

  GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState);
};

const size_t MaxBipartiteMatchState::kUnused;

GTEST_API_ ElementMatcherPairs
FindMaxBipartiteMatching(const MatchMatrix& g) {
  return MaxBipartiteMatchState(g).Compute();
}

static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
                                     ::std::ostream* stream) {
  typedef ElementMatcherPairs::const_iterator Iter;
  ::std::ostream& os = *stream;
  os << "{";
  const char *sep = "";
  for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
    os << sep << "\n  ("
       << "element #" << it->first << ", "
       << "matcher #" << it->second << ")";
    sep = ",";
  }
  os << "\n}";
}

// Tries to find a pairing, and explains the result.
GTEST_API_ bool FindPairing(const MatchMatrix& matrix,
                            MatchResultListener* listener) {
  ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);

  size_t max_flow = matches.size();
  bool result = (max_flow == matrix.RhsSize());

  if (!result) {
    if (listener->IsInterested()) {
      *listener << "where no permutation of the elements can "
                   "satisfy all matchers, and the closest match is "
                << max_flow << " of " << matrix.RhsSize()
                << " matchers with the pairings:\n";
      LogElementMatcherPairVec(matches, listener->stream());
    }
    return false;
  }

  if (matches.size() > 1) {
    if (listener->IsInterested()) {
      const char *sep = "where:\n";
      for (size_t mi = 0; mi < matches.size(); ++mi) {
        *listener << sep << " - element #" << matches[mi].first
                  << " is matched by matcher #" << matches[mi].second;
        sep = ",\n";
      }
    }
  }
  return true;
}

bool MatchMatrix::NextGraph() {
  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
      char& b = matched_[SpaceIndex(ilhs, irhs)];
      if (!b) {
        b = 1;
        return true;
      }
      b = 0;
    }
  }
  return false;
}

void MatchMatrix::Randomize() {
  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
      char& b = matched_[SpaceIndex(ilhs, irhs)];
      b = static_cast<char>(rand() & 1);  // NOLINT
    }
  }
}

string MatchMatrix::DebugString() const {
  ::std::stringstream ss;
  const char *sep = "";
  for (size_t i = 0; i < LhsSize(); ++i) {
    ss << sep;
    for (size_t j = 0; j < RhsSize(); ++j) {
      ss << HasEdge(i, j);
    }
    sep = ";";
  }
  return ss.str();
}

void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
    ::std::ostream* os) const {
  if (matcher_describers_.empty()) {
    *os << "is empty";
    return;
  }
  if (matcher_describers_.size() == 1) {
    *os << "has " << Elements(1) << " and that element ";
    matcher_describers_[0]->DescribeTo(os);
    return;
  }
  *os << "has " << Elements(matcher_describers_.size())
      << " and there exists some permutation of elements such that:\n";
  const char* sep = "";
  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
    *os << sep << " - element #" << i << " ";
    matcher_describers_[i]->DescribeTo(os);
    sep = ", and\n";
  }
}

void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
    ::std::ostream* os) const {
  if (matcher_describers_.empty()) {
    *os << "isn't empty";
    return;
  }
  if (matcher_describers_.size() == 1) {
    *os << "doesn't have " << Elements(1)
        << ", or has " << Elements(1) << " that ";
    matcher_describers_[0]->DescribeNegationTo(os);
    return;
  }
  *os << "doesn't have " << Elements(matcher_describers_.size())
      << ", or there exists no permutation of elements such that:\n";
  const char* sep = "";
  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
    *os << sep << " - element #" << i << " ";
    matcher_describers_[i]->DescribeTo(os);
    sep = ", and\n";
  }
}

// Checks that all matchers match at least one element, and that all
// elements match at least one matcher. This enables faster matching
// and better error reporting.
// Returns false, writing an explanation to 'listener', if and only
// if the success criteria are not met.
bool UnorderedElementsAreMatcherImplBase::
VerifyAllElementsAndMatchersAreMatched(
    const ::std::vector<string>& element_printouts,
    const MatchMatrix& matrix,
    MatchResultListener* listener) const {
  bool result = true;
  ::std::vector<char> element_matched(matrix.LhsSize(), 0);
  ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);

  for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
    for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
      char matched = matrix.HasEdge(ilhs, irhs);
      element_matched[ilhs] |= matched;
      matcher_matched[irhs] |= matched;
    }
  }

  {
    const char* sep =
        "where the following matchers don't match any elements:\n";
    for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
      if (matcher_matched[mi])
        continue;
      result = false;
      if (listener->IsInterested()) {
        *listener << sep << "matcher #" << mi << ": ";
        matcher_describers_[mi]->DescribeTo(listener->stream());
        sep = ",\n";
      }
    }
  }

  {
    const char* sep =
        "where the following elements don't match any matchers:\n";
    const char* outer_sep = "";
    if (!result) {
      outer_sep = "\nand ";
    }
    for (size_t ei = 0; ei < element_matched.size(); ++ei) {
      if (element_matched[ei])
        continue;
      result = false;
      if (listener->IsInterested()) {
        *listener << outer_sep << sep << "element #" << ei << ": "
                  << element_printouts[ei];
        sep = ",\n";
        outer_sep = "";
      }
    }
  }
  return result;
}

}  // namespace internal
}  // namespace testing