reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)

// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used actions.

// IWYU pragma: private, include "gmock/gmock.h"

#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_

#ifndef _WIN32_WCE
# include <errno.h>
#endif

#include <algorithm>
#include <string>

#include "gmock/internal/gmock-internal-utils.h"
#include "gmock/internal/gmock-port.h"

#if GTEST_HAS_STD_TYPE_TRAITS_  // Defined by gtest-port.h via gmock-port.h.
#include <type_traits>
#endif

namespace testing {

// To implement an action Foo, define:
//   1. a class FooAction that implements the ActionInterface interface, and
//   2. a factory function that creates an Action object from a
//      const FooAction*.
//
// The two-level delegation design follows that of Matcher, providing
// consistency for extension developers.  It also eases ownership
// management as Action objects can now be copied like plain values.

namespace internal {

template <typename F1, typename F2>
class ActionAdaptor;

// BuiltInDefaultValueGetter<T, true>::Get() returns a
// default-constructed T value.  BuiltInDefaultValueGetter<T,
// false>::Get() crashes with an error.
//
// This primary template is used when kDefaultConstructible is true.
template <typename T, bool kDefaultConstructible>
struct BuiltInDefaultValueGetter {
  static T Get() { return T(); }
};
template <typename T>
struct BuiltInDefaultValueGetter<T, false> {
  static T Get() {
    Assert(false, __FILE__, __LINE__,
           "Default action undefined for the function return type.");
    return internal::Invalid<T>();
    // The above statement will never be reached, but is required in
    // order for this function to compile.
  }
};

// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
// for type T, which is NULL when T is a raw pointer type, 0 when T is
// a numeric type, false when T is bool, or "" when T is string or
// std::string.  In addition, in C++11 and above, it turns a
// default-constructed T value if T is default constructible.  For any
// other type T, the built-in default T value is undefined, and the
// function will abort the process.
template <typename T>
class BuiltInDefaultValue {
 public:
#if GTEST_HAS_STD_TYPE_TRAITS_
  // This function returns true iff type T has a built-in default value.
  static bool Exists() {
    return ::std::is_default_constructible<T>::value;
  }

  static T Get() {
    return BuiltInDefaultValueGetter<
        T, ::std::is_default_constructible<T>::value>::Get();
  }

#else  // GTEST_HAS_STD_TYPE_TRAITS_
  // This function returns true iff type T has a built-in default value.
  static bool Exists() {
    return false;
  }

  static T Get() {
    return BuiltInDefaultValueGetter<T, false>::Get();
  }

#endif  // GTEST_HAS_STD_TYPE_TRAITS_
};

// This partial specialization says that we use the same built-in
// default value for T and const T.
template <typename T>
class BuiltInDefaultValue<const T> {
 public:
  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
  static T Get() { return BuiltInDefaultValue<T>::Get(); }
};

// This partial specialization defines the default values for pointer
// types.
template <typename T>
class BuiltInDefaultValue<T*> {
 public:
  static bool Exists() { return true; }
  static T* Get() { return NULL; }
};

// The following specializations define the default values for
// specific types we care about.
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
  template <> \
  class BuiltInDefaultValue<type> { \
   public: \
    static bool Exists() { return true; } \
    static type Get() { return value; } \
  }

GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
#if GTEST_HAS_GLOBAL_STRING
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
#endif  // GTEST_HAS_GLOBAL_STRING
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');

// There's no need for a default action for signed wchar_t, as that
// type is the same as wchar_t for gcc, and invalid for MSVC.
//
// There's also no need for a default action for unsigned wchar_t, as
// that type is the same as unsigned int for gcc, and invalid for
// MSVC.
#if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
#endif

GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);

#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_

}  // namespace internal

// When an unexpected function call is encountered, Google Mock will
// let it return a default value if the user has specified one for its
// return type, or if the return type has a built-in default value;
// otherwise Google Mock won't know what value to return and will have
// to abort the process.
//
// The DefaultValue<T> class allows a user to specify the
// default value for a type T that is both copyable and publicly
// destructible (i.e. anything that can be used as a function return
// type).  The usage is:
//
//   // Sets the default value for type T to be foo.
//   DefaultValue<T>::Set(foo);
template <typename T>
class DefaultValue {
 public:
  // Sets the default value for type T; requires T to be
  // copy-constructable and have a public destructor.
  static void Set(T x) {
    delete producer_;
    producer_ = new FixedValueProducer(x);
  }

  // Provides a factory function to be called to generate the default value.
  // This method can be used even if T is only move-constructible, but it is not
  // limited to that case.
  typedef T (*FactoryFunction)();
  static void SetFactory(FactoryFunction factory) {
    delete producer_;
    producer_ = new FactoryValueProducer(factory);
  }

  // Unsets the default value for type T.
  static void Clear() {
    delete producer_;
    producer_ = NULL;
  }

  // Returns true iff the user has set the default value for type T.
  static bool IsSet() { return producer_ != NULL; }

  // Returns true if T has a default return value set by the user or there
  // exists a built-in default value.
  static bool Exists() {
    return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
  }

  // Returns the default value for type T if the user has set one;
  // otherwise returns the built-in default value. Requires that Exists()
  // is true, which ensures that the return value is well-defined.
  static T Get() {
    return producer_ == NULL ?
        internal::BuiltInDefaultValue<T>::Get() : producer_->Produce();
  }

 private:
  class ValueProducer {
   public:
    virtual ~ValueProducer() {}
    virtual T Produce() = 0;
  };

  class FixedValueProducer : public ValueProducer {
   public:
    explicit FixedValueProducer(T value) : value_(value) {}
    virtual T Produce() { return value_; }

   private:
    const T value_;
    GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
  };

  class FactoryValueProducer : public ValueProducer {
   public:
    explicit FactoryValueProducer(FactoryFunction factory)
        : factory_(factory) {}
    virtual T Produce() { return factory_(); }

   private:
    const FactoryFunction factory_;
    GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
  };

  static ValueProducer* producer_;
};

// This partial specialization allows a user to set default values for
// reference types.
template <typename T>
class DefaultValue<T&> {
 public:
  // Sets the default value for type T&.
  static void Set(T& x) {  // NOLINT
    address_ = &x;
  }

  // Unsets the default value for type T&.
  static void Clear() {
    address_ = NULL;
  }

  // Returns true iff the user has set the default value for type T&.
  static bool IsSet() { return address_ != NULL; }

  // Returns true if T has a default return value set by the user or there
  // exists a built-in default value.
  static bool Exists() {
    return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
  }

  // Returns the default value for type T& if the user has set one;
  // otherwise returns the built-in default value if there is one;
  // otherwise aborts the process.
  static T& Get() {
    return address_ == NULL ?
        internal::BuiltInDefaultValue<T&>::Get() : *address_;
  }

 private:
  static T* address_;
};

// This specialization allows DefaultValue<void>::Get() to
// compile.
template <>
class DefaultValue<void> {
 public:
  static bool Exists() { return true; }
  static void Get() {}
};

// Points to the user-set default value for type T.
template <typename T>
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = NULL;

// Points to the user-set default value for type T&.
template <typename T>
T* DefaultValue<T&>::address_ = NULL;

// Implement this interface to define an action for function type F.
template <typename F>
class ActionInterface {
 public:
  typedef typename internal::Function<F>::Result Result;
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

  ActionInterface() {}
  virtual ~ActionInterface() {}

  // Performs the action.  This method is not const, as in general an
  // action can have side effects and be stateful.  For example, a
  // get-the-next-element-from-the-collection action will need to
  // remember the current element.
  virtual Result Perform(const ArgumentTuple& args) = 0;

 private:
  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
};

// An Action<F> is a copyable and IMMUTABLE (except by assignment)
// object that represents an action to be taken when a mock function
// of type F is called.  The implementation of Action<T> is just a
// linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
// Don't inherit from Action!
//
// You can view an object implementing ActionInterface<F> as a
// concrete action (including its current state), and an Action<F>
// object as a handle to it.
template <typename F>
class Action {
 public:
  typedef typename internal::Function<F>::Result Result;
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

  // Constructs a null Action.  Needed for storing Action objects in
  // STL containers.
  Action() : impl_(NULL) {}

  // Constructs an Action from its implementation.  A NULL impl is
  // used to represent the "do-default" action.
  explicit Action(ActionInterface<F>* impl) : impl_(impl) {}

  // Copy constructor.
  Action(const Action& action) : impl_(action.impl_) {}

  // This constructor allows us to turn an Action<Func> object into an
  // Action<F>, as long as F's arguments can be implicitly converted
  // to Func's and Func's return type can be implicitly converted to
  // F's.
  template <typename Func>
  explicit Action(const Action<Func>& action);

  // Returns true iff this is the DoDefault() action.
  bool IsDoDefault() const { return impl_.get() == NULL; }

  // Performs the action.  Note that this method is const even though
  // the corresponding method in ActionInterface is not.  The reason
  // is that a const Action<F> means that it cannot be re-bound to
  // another concrete action, not that the concrete action it binds to
  // cannot change state.  (Think of the difference between a const
  // pointer and a pointer to const.)
  Result Perform(const ArgumentTuple& args) const {
    internal::Assert(
        !IsDoDefault(), __FILE__, __LINE__,
        "You are using DoDefault() inside a composite action like "
        "DoAll() or WithArgs().  This is not supported for technical "
        "reasons.  Please instead spell out the default action, or "
        "assign the default action to an Action variable and use "
        "the variable in various places.");
    return impl_->Perform(args);
  }

 private:
  template <typename F1, typename F2>
  friend class internal::ActionAdaptor;

  internal::linked_ptr<ActionInterface<F> > impl_;
};

// The PolymorphicAction class template makes it easy to implement a
// polymorphic action (i.e. an action that can be used in mock
// functions of than one type, e.g. Return()).
//
// To define a polymorphic action, a user first provides a COPYABLE
// implementation class that has a Perform() method template:
//
//   class FooAction {
//    public:
//     template <typename Result, typename ArgumentTuple>
//     Result Perform(const ArgumentTuple& args) const {
//       // Processes the arguments and returns a result, using
//       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
//     }
//     ...
//   };
//
// Then the user creates the polymorphic action using
// MakePolymorphicAction(object) where object has type FooAction.  See
// the definition of Return(void) and SetArgumentPointee<N>(value) for
// complete examples.
template <typename Impl>
class PolymorphicAction {
 public:
  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}

  template <typename F>
  operator Action<F>() const {
    return Action<F>(new MonomorphicImpl<F>(impl_));
  }

 private:
  template <typename F>
  class MonomorphicImpl : public ActionInterface<F> {
   public:
    typedef typename internal::Function<F>::Result Result;
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}

    virtual Result Perform(const ArgumentTuple& args) {
      return impl_.template Perform<Result>(args);
    }

   private:
    Impl impl_;

    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
  };

  Impl impl_;

  GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
};

// Creates an Action from its implementation and returns it.  The
// created Action object owns the implementation.
template <typename F>
Action<F> MakeAction(ActionInterface<F>* impl) {
  return Action<F>(impl);
}

// Creates a polymorphic action from its implementation.  This is
// easier to use than the PolymorphicAction<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
//   MakePolymorphicAction(foo);
// vs
//   PolymorphicAction<TypeOfFoo>(foo);
template <typename Impl>
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
  return PolymorphicAction<Impl>(impl);
}

namespace internal {

// Allows an Action<F2> object to pose as an Action<F1>, as long as F2
// and F1 are compatible.
template <typename F1, typename F2>
class ActionAdaptor : public ActionInterface<F1> {
 public:
  typedef typename internal::Function<F1>::Result Result;
  typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;

  explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}

  virtual Result Perform(const ArgumentTuple& args) {
    return impl_->Perform(args);
  }

 private:
  const internal::linked_ptr<ActionInterface<F2> > impl_;

  GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
};

// Helper struct to specialize ReturnAction to execute a move instead of a copy
// on return. Useful for move-only types, but could be used on any type.
template <typename T>
struct ByMoveWrapper {
  explicit ByMoveWrapper(T value) : payload(internal::move(value)) {}
  T payload;
};

// Implements the polymorphic Return(x) action, which can be used in
// any function that returns the type of x, regardless of the argument
// types.
//
// Note: The value passed into Return must be converted into
// Function<F>::Result when this action is cast to Action<F> rather than
// when that action is performed. This is important in scenarios like
//
// MOCK_METHOD1(Method, T(U));
// ...
// {
//   Foo foo;
//   X x(&foo);
//   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
// }
//
// In the example above the variable x holds reference to foo which leaves
// scope and gets destroyed.  If copying X just copies a reference to foo,
// that copy will be left with a hanging reference.  If conversion to T
// makes a copy of foo, the above code is safe. To support that scenario, we
// need to make sure that the type conversion happens inside the EXPECT_CALL
// statement, and conversion of the result of Return to Action<T(U)> is a
// good place for that.
//
template <typename R>
class ReturnAction {
 public:
  // Constructs a ReturnAction object from the value to be returned.
  // 'value' is passed by value instead of by const reference in order
  // to allow Return("string literal") to compile.
  explicit ReturnAction(R value) : value_(new R(internal::move(value))) {}

  // This template type conversion operator allows Return(x) to be
  // used in ANY function that returns x's type.
  template <typename F>
  operator Action<F>() const {
    // Assert statement belongs here because this is the best place to verify
    // conditions on F. It produces the clearest error messages
    // in most compilers.
    // Impl really belongs in this scope as a local class but can't
    // because MSVC produces duplicate symbols in different translation units
    // in this case. Until MS fixes that bug we put Impl into the class scope
    // and put the typedef both here (for use in assert statement) and
    // in the Impl class. But both definitions must be the same.
    typedef typename Function<F>::Result Result;
    GTEST_COMPILE_ASSERT_(
        !is_reference<Result>::value,
        use_ReturnRef_instead_of_Return_to_return_a_reference);
    return Action<F>(new Impl<R, F>(value_));
  }

 private:
  // Implements the Return(x) action for a particular function type F.
  template <typename R_, typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    // The implicit cast is necessary when Result has more than one
    // single-argument constructor (e.g. Result is std::vector<int>) and R
    // has a type conversion operator template.  In that case, value_(value)
    // won't compile as the compiler doesn't known which constructor of
    // Result to call.  ImplicitCast_ forces the compiler to convert R to
    // Result without considering explicit constructors, thus resolving the
    // ambiguity. value_ is then initialized using its copy constructor.
    explicit Impl(const linked_ptr<R>& value)
        : value_before_cast_(*value),
          value_(ImplicitCast_<Result>(value_before_cast_)) {}

    virtual Result Perform(const ArgumentTuple&) { return value_; }

   private:
    GTEST_COMPILE_ASSERT_(!is_reference<Result>::value,
                          Result_cannot_be_a_reference_type);
    // We save the value before casting just in case it is being cast to a
    // wrapper type.
    R value_before_cast_;
    Result value_;

    GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
  };

  // Partially specialize for ByMoveWrapper. This version of ReturnAction will
  // move its contents instead.
  template <typename R_, typename F>
  class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(const linked_ptr<R>& wrapper)
        : performed_(false), wrapper_(wrapper) {}

    virtual Result Perform(const ArgumentTuple&) {
      GTEST_CHECK_(!performed_)
          << "A ByMove() action should only be performed once.";
      performed_ = true;
      return internal::move(wrapper_->payload);
    }

   private:
    bool performed_;
    const linked_ptr<R> wrapper_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  const linked_ptr<R> value_;

  GTEST_DISALLOW_ASSIGN_(ReturnAction);
};

// Implements the ReturnNull() action.
class ReturnNullAction {
 public:
  // Allows ReturnNull() to be used in any pointer-returning function. In C++11
  // this is enforced by returning nullptr, and in non-C++11 by asserting a
  // pointer type on compile time.
  template <typename Result, typename ArgumentTuple>
  static Result Perform(const ArgumentTuple&) {
#if GTEST_LANG_CXX11
    return nullptr;
#else
    GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
                          ReturnNull_can_be_used_to_return_a_pointer_only);
    return NULL;
#endif  // GTEST_LANG_CXX11
  }
};

// Implements the Return() action.
class ReturnVoidAction {
 public:
  // Allows Return() to be used in any void-returning function.
  template <typename Result, typename ArgumentTuple>
  static void Perform(const ArgumentTuple&) {
    CompileAssertTypesEqual<void, Result>();
  }
};

// Implements the polymorphic ReturnRef(x) action, which can be used
// in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefAction {
 public:
  // Constructs a ReturnRefAction object from the reference to be returned.
  explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT

  // This template type conversion operator allows ReturnRef(x) to be
  // used in ANY function that returns a reference to x's type.
  template <typename F>
  operator Action<F>() const {
    typedef typename Function<F>::Result Result;
    // Asserts that the function return type is a reference.  This
    // catches the user error of using ReturnRef(x) when Return(x)
    // should be used, and generates some helpful error message.
    GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
                          use_Return_instead_of_ReturnRef_to_return_a_value);
    return Action<F>(new Impl<F>(ref_));
  }

 private:
  // Implements the ReturnRef(x) action for a particular function type F.
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(T& ref) : ref_(ref) {}  // NOLINT

    virtual Result Perform(const ArgumentTuple&) {
      return ref_;
    }

   private:
    T& ref_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  T& ref_;

  GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
};

// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
// used in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefOfCopyAction {
 public:
  // Constructs a ReturnRefOfCopyAction object from the reference to
  // be returned.
  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT

  // This template type conversion operator allows ReturnRefOfCopy(x) to be
  // used in ANY function that returns a reference to x's type.
  template <typename F>
  operator Action<F>() const {
    typedef typename Function<F>::Result Result;
    // Asserts that the function return type is a reference.  This
    // catches the user error of using ReturnRefOfCopy(x) when Return(x)
    // should be used, and generates some helpful error message.
    GTEST_COMPILE_ASSERT_(
        internal::is_reference<Result>::value,
        use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
    return Action<F>(new Impl<F>(value_));
  }

 private:
  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(const T& value) : value_(value) {}  // NOLINT

    virtual Result Perform(const ArgumentTuple&) {
      return value_;
    }

   private:
    T value_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  const T value_;

  GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
};

// Implements the polymorphic DoDefault() action.
class DoDefaultAction {
 public:
  // This template type conversion operator allows DoDefault() to be
  // used in any function.
  template <typename F>
  operator Action<F>() const { return Action<F>(NULL); }
};

// Implements the Assign action to set a given pointer referent to a
// particular value.
template <typename T1, typename T2>
class AssignAction {
 public:
  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}

  template <typename Result, typename ArgumentTuple>
  void Perform(const ArgumentTuple& /* args */) const {
    *ptr_ = value_;
  }

 private:
  T1* const ptr_;
  const T2 value_;

  GTEST_DISALLOW_ASSIGN_(AssignAction);
};

#if !GTEST_OS_WINDOWS_MOBILE

// Implements the SetErrnoAndReturn action to simulate return from
// various system calls and libc functions.
template <typename T>
class SetErrnoAndReturnAction {
 public:
  SetErrnoAndReturnAction(int errno_value, T result)
      : errno_(errno_value),
        result_(result) {}
  template <typename Result, typename ArgumentTuple>
  Result Perform(const ArgumentTuple& /* args */) const {
    errno = errno_;
    return result_;
  }

 private:
  const int errno_;
  const T result_;

  GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
};

#endif  // !GTEST_OS_WINDOWS_MOBILE

// Implements the SetArgumentPointee<N>(x) action for any function
// whose N-th argument (0-based) is a pointer to x's type.  The
// template parameter kIsProto is true iff type A is ProtocolMessage,
// proto2::Message, or a sub-class of those.
template <size_t N, typename A, bool kIsProto>
class SetArgumentPointeeAction {
 public:
  // Constructs an action that sets the variable pointed to by the
  // N-th function argument to 'value'.
  explicit SetArgumentPointeeAction(const A& value) : value_(value) {}

  template <typename Result, typename ArgumentTuple>
  void Perform(const ArgumentTuple& args) const {
    CompileAssertTypesEqual<void, Result>();
    *::testing::get<N>(args) = value_;
  }

 private:
  const A value_;

  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
};

template <size_t N, typename Proto>
class SetArgumentPointeeAction<N, Proto, true> {
 public:
  // Constructs an action that sets the variable pointed to by the
  // N-th function argument to 'proto'.  Both ProtocolMessage and
  // proto2::Message have the CopyFrom() method, so the same
  // implementation works for both.
  explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
    proto_->CopyFrom(proto);
  }

  template <typename Result, typename ArgumentTuple>
  void Perform(const ArgumentTuple& args) const {
    CompileAssertTypesEqual<void, Result>();
    ::testing::get<N>(args)->CopyFrom(*proto_);
  }

 private:
  const internal::linked_ptr<Proto> proto_;

  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
};

// Implements the InvokeWithoutArgs(f) action.  The template argument
// FunctionImpl is the implementation type of f, which can be either a
// function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
// Action<F> as long as f's type is compatible with F (i.e. f can be
// assigned to a tr1::function<F>).
template <typename FunctionImpl>
class InvokeWithoutArgsAction {
 public:
  // The c'tor makes a copy of function_impl (either a function
  // pointer or a functor).
  explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
      : function_impl_(function_impl) {}

  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
  // compatible with f.
  template <typename Result, typename ArgumentTuple>
  Result Perform(const ArgumentTuple&) { return function_impl_(); }

 private:
  FunctionImpl function_impl_;

  GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
};

// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
class InvokeMethodWithoutArgsAction {
 public:
  InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
      : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}

  template <typename Result, typename ArgumentTuple>
  Result Perform(const ArgumentTuple&) const {
    return (obj_ptr_->*method_ptr_)();
  }

 private:
  Class* const obj_ptr_;
  const MethodPtr method_ptr_;

  GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
};

// Implements the IgnoreResult(action) action.
template <typename A>
class IgnoreResultAction {
 public:
  explicit IgnoreResultAction(const A& action) : action_(action) {}

  template <typename F>
  operator Action<F>() const {
    // Assert statement belongs here because this is the best place to verify
    // conditions on F. It produces the clearest error messages
    // in most compilers.
    // Impl really belongs in this scope as a local class but can't
    // because MSVC produces duplicate symbols in different translation units
    // in this case. Until MS fixes that bug we put Impl into the class scope
    // and put the typedef both here (for use in assert statement) and
    // in the Impl class. But both definitions must be the same.
    typedef typename internal::Function<F>::Result Result;

    // Asserts at compile time that F returns void.
    CompileAssertTypesEqual<void, Result>();

    return Action<F>(new Impl<F>(action_));
  }

 private:
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename internal::Function<F>::Result Result;
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(const A& action) : action_(action) {}

    virtual void Perform(const ArgumentTuple& args) {
      // Performs the action and ignores its result.
      action_.Perform(args);
    }

   private:
    // Type OriginalFunction is the same as F except that its return
    // type is IgnoredValue.
    typedef typename internal::Function<F>::MakeResultIgnoredValue
        OriginalFunction;

    const Action<OriginalFunction> action_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  const A action_;

  GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
};

// A ReferenceWrapper<T> object represents a reference to type T,
// which can be either const or not.  It can be explicitly converted
// from, and implicitly converted to, a T&.  Unlike a reference,
// ReferenceWrapper<T> can be copied and can survive template type
// inference.  This is used to support by-reference arguments in the
// InvokeArgument<N>(...) action.  The idea was from "reference
// wrappers" in tr1, which we don't have in our source tree yet.
template <typename T>
class ReferenceWrapper {
 public:
  // Constructs a ReferenceWrapper<T> object from a T&.
  explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT

  // Allows a ReferenceWrapper<T> object to be implicitly converted to
  // a T&.
  operator T&() const { return *pointer_; }
 private:
  T* pointer_;
};

// Allows the expression ByRef(x) to be printed as a reference to x.
template <typename T>
void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
  T& value = ref;
  UniversalPrinter<T&>::Print(value, os);
}

// Does two actions sequentially.  Used for implementing the DoAll(a1,
// a2, ...) action.
template <typename Action1, typename Action2>
class DoBothAction {
 public:
  DoBothAction(Action1 action1, Action2 action2)
      : action1_(action1), action2_(action2) {}

  // This template type conversion operator allows DoAll(a1, ..., a_n)
  // to be used in ANY function of compatible type.
  template <typename F>
  operator Action<F>() const {
    return Action<F>(new Impl<F>(action1_, action2_));
  }

 private:
  // Implements the DoAll(...) action for a particular function type F.
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    typedef typename Function<F>::MakeResultVoid VoidResult;

    Impl(const Action<VoidResult>& action1, const Action<F>& action2)
        : action1_(action1), action2_(action2) {}

    virtual Result Perform(const ArgumentTuple& args) {
      action1_.Perform(args);
      return action2_.Perform(args);
    }

   private:
    const Action<VoidResult> action1_;
    const Action<F> action2_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  Action1 action1_;
  Action2 action2_;

  GTEST_DISALLOW_ASSIGN_(DoBothAction);
};

}  // namespace internal

// An Unused object can be implicitly constructed from ANY value.
// This is handy when defining actions that ignore some or all of the
// mock function arguments.  For example, given
//
//   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
//   MOCK_METHOD3(Bar, double(int index, double x, double y));
//
// instead of
//
//   double DistanceToOriginWithLabel(const string& label, double x, double y) {
//     return sqrt(x*x + y*y);
//   }
//   double DistanceToOriginWithIndex(int index, double x, double y) {
//     return sqrt(x*x + y*y);
//   }
//   ...
//   EXEPCT_CALL(mock, Foo("abc", _, _))
//       .WillOnce(Invoke(DistanceToOriginWithLabel));
//   EXEPCT_CALL(mock, Bar(5, _, _))
//       .WillOnce(Invoke(DistanceToOriginWithIndex));
//
// you could write
//
//   // We can declare any uninteresting argument as Unused.
//   double DistanceToOrigin(Unused, double x, double y) {
//     return sqrt(x*x + y*y);
//   }
//   ...
//   EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
//   EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
typedef internal::IgnoredValue Unused;

// This constructor allows us to turn an Action<From> object into an
// Action<To>, as long as To's arguments can be implicitly converted
// to From's and From's return type cann be implicitly converted to
// To's.
template <typename To>
template <typename From>
Action<To>::Action(const Action<From>& from)
    : impl_(new internal::ActionAdaptor<To, From>(from)) {}

// Creates an action that returns 'value'.  'value' is passed by value
// instead of const reference - otherwise Return("string literal")
// will trigger a compiler error about using array as initializer.
template <typename R>
internal::ReturnAction<R> Return(R value) {
  return internal::ReturnAction<R>(internal::move(value));
}

// Creates an action that returns NULL.
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
  return MakePolymorphicAction(internal::ReturnNullAction());
}

// Creates an action that returns from a void function.
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
  return MakePolymorphicAction(internal::ReturnVoidAction());
}

// Creates an action that returns the reference to a variable.
template <typename R>
inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
  return internal::ReturnRefAction<R>(x);
}

// Creates an action that returns the reference to a copy of the
// argument.  The copy is created when the action is constructed and
// lives as long as the action.
template <typename R>
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
  return internal::ReturnRefOfCopyAction<R>(x);
}

// Modifies the parent action (a Return() action) to perform a move of the
// argument instead of a copy.
// Return(ByMove()) actions can only be executed once and will assert this
// invariant.
template <typename R>
internal::ByMoveWrapper<R> ByMove(R x) {
  return internal::ByMoveWrapper<R>(internal::move(x));
}

// Creates an action that does the default action for the give mock function.
inline internal::DoDefaultAction DoDefault() {
  return internal::DoDefaultAction();
}

// Creates an action that sets the variable pointed by the N-th
// (0-based) function argument to 'value'.
template <size_t N, typename T>
PolymorphicAction<
  internal::SetArgumentPointeeAction<
    N, T, internal::IsAProtocolMessage<T>::value> >
SetArgPointee(const T& x) {
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
      N, T, internal::IsAProtocolMessage<T>::value>(x));
}

#if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
// This overload allows SetArgPointee() to accept a string literal.
// GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
// this overload from the templated version and emit a compile error.
template <size_t N>
PolymorphicAction<
  internal::SetArgumentPointeeAction<N, const char*, false> >
SetArgPointee(const char* p) {
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
      N, const char*, false>(p));
}

template <size_t N>
PolymorphicAction<
  internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
SetArgPointee(const wchar_t* p) {
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
      N, const wchar_t*, false>(p));
}
#endif

// The following version is DEPRECATED.
template <size_t N, typename T>
PolymorphicAction<
  internal::SetArgumentPointeeAction<
    N, T, internal::IsAProtocolMessage<T>::value> >
SetArgumentPointee(const T& x) {
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
      N, T, internal::IsAProtocolMessage<T>::value>(x));
}

// Creates an action that sets a pointer referent to a given value.
template <typename T1, typename T2>
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
}

#if !GTEST_OS_WINDOWS_MOBILE

// Creates an action that sets errno and returns the appropriate error.
template <typename T>
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
SetErrnoAndReturn(int errval, T result) {
  return MakePolymorphicAction(
      internal::SetErrnoAndReturnAction<T>(errval, result));
}

#endif  // !GTEST_OS_WINDOWS_MOBILE

// Various overloads for InvokeWithoutArgs().

// Creates an action that invokes 'function_impl' with no argument.
template <typename FunctionImpl>
PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
InvokeWithoutArgs(FunctionImpl function_impl) {
  return MakePolymorphicAction(
      internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
}

// Creates an action that invokes the given method on the given object
// with no argument.
template <class Class, typename MethodPtr>
PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
  return MakePolymorphicAction(
      internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
          obj_ptr, method_ptr));
}

// Creates an action that performs an_action and throws away its
// result.  In other words, it changes the return type of an_action to
// void.  an_action MUST NOT return void, or the code won't compile.
template <typename A>
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
  return internal::IgnoreResultAction<A>(an_action);
}

// Creates a reference wrapper for the given L-value.  If necessary,
// you can explicitly specify the type of the reference.  For example,
// suppose 'derived' is an object of type Derived, ByRef(derived)
// would wrap a Derived&.  If you want to wrap a const Base& instead,
// where Base is a base class of Derived, just write:
//
//   ByRef<const Base>(derived)
template <typename T>
inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
  return internal::ReferenceWrapper<T>(l_value);
}

}  // namespace testing

#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_