reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "internal_macros.h"

#ifdef BENCHMARK_OS_WINDOWS
#include <shlwapi.h>
#undef StrCat  // Don't let StrCat in string_util.h be renamed to lstrcatA
#include <versionhelpers.h>
#include <windows.h>
#else
#include <fcntl.h>
#ifndef BENCHMARK_OS_FUCHSIA
#include <sys/resource.h>
#endif
#include <sys/time.h>
#include <sys/types.h>  // this header must be included before 'sys/sysctl.h' to avoid compilation error on FreeBSD
#include <unistd.h>
#if defined BENCHMARK_OS_FREEBSD || defined BENCHMARK_OS_MACOSX || \
    defined BENCHMARK_OS_NETBSD || defined BENCHMARK_OS_OPENBSD
#define BENCHMARK_HAS_SYSCTL
#include <sys/sysctl.h>
#endif
#endif
#if defined(BENCHMARK_OS_SOLARIS)
#include <kstat.h>
#endif

#include <algorithm>
#include <array>
#include <bitset>
#include <cerrno>
#include <climits>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iostream>
#include <iterator>
#include <limits>
#include <memory>
#include <sstream>

#include "check.h"
#include "cycleclock.h"
#include "internal_macros.h"
#include "log.h"
#include "sleep.h"
#include "string_util.h"

namespace benchmark {
namespace {

void PrintImp(std::ostream& out) { out << std::endl; }

template <class First, class... Rest>
void PrintImp(std::ostream& out, First&& f, Rest&&... rest) {
  out << std::forward<First>(f);
  PrintImp(out, std::forward<Rest>(rest)...);
}

template <class... Args>
BENCHMARK_NORETURN void PrintErrorAndDie(Args&&... args) {
  PrintImp(std::cerr, std::forward<Args>(args)...);
  std::exit(EXIT_FAILURE);
}

#ifdef BENCHMARK_HAS_SYSCTL

/// ValueUnion - A type used to correctly alias the byte-for-byte output of
/// `sysctl` with the result type it's to be interpreted as.
struct ValueUnion {
  union DataT {
    uint32_t uint32_value;
    uint64_t uint64_value;
    // For correct aliasing of union members from bytes.
    char bytes[8];
  };
  using DataPtr = std::unique_ptr<DataT, decltype(&std::free)>;

  // The size of the data union member + its trailing array size.
  size_t Size;
  DataPtr Buff;

 public:
  ValueUnion() : Size(0), Buff(nullptr, &std::free) {}

  explicit ValueUnion(size_t BuffSize)
      : Size(sizeof(DataT) + BuffSize),
        Buff(::new (std::malloc(Size)) DataT(), &std::free) {}

  ValueUnion(ValueUnion&& other) = default;

  explicit operator bool() const { return bool(Buff); }

  char* data() const { return Buff->bytes; }

  std::string GetAsString() const { return std::string(data()); }

  int64_t GetAsInteger() const {
    if (Size == sizeof(Buff->uint32_value))
      return static_cast<int32_t>(Buff->uint32_value);
    else if (Size == sizeof(Buff->uint64_value))
      return static_cast<int64_t>(Buff->uint64_value);
    BENCHMARK_UNREACHABLE();
  }

  uint64_t GetAsUnsigned() const {
    if (Size == sizeof(Buff->uint32_value))
      return Buff->uint32_value;
    else if (Size == sizeof(Buff->uint64_value))
      return Buff->uint64_value;
    BENCHMARK_UNREACHABLE();
  }

  template <class T, int N>
  std::array<T, N> GetAsArray() {
    const int ArrSize = sizeof(T) * N;
    CHECK_LE(ArrSize, Size);
    std::array<T, N> Arr;
    std::memcpy(Arr.data(), data(), ArrSize);
    return Arr;
  }
};

ValueUnion GetSysctlImp(std::string const& Name) {
#if defined BENCHMARK_OS_OPENBSD
  int mib[2];

  mib[0] = CTL_HW;
  if ((Name == "hw.ncpu") || (Name == "hw.cpuspeed")){
    ValueUnion buff(sizeof(int));

    if (Name == "hw.ncpu") {
      mib[1] = HW_NCPU;
    } else {
      mib[1] = HW_CPUSPEED;
    }

    if (sysctl(mib, 2, buff.data(), &buff.Size, nullptr, 0) == -1) {
      return ValueUnion();
    }
    return buff;
  }
  return ValueUnion();
#else
  size_t CurBuffSize = 0;
  if (sysctlbyname(Name.c_str(), nullptr, &CurBuffSize, nullptr, 0) == -1)
    return ValueUnion();

  ValueUnion buff(CurBuffSize);
  if (sysctlbyname(Name.c_str(), buff.data(), &buff.Size, nullptr, 0) == 0)
    return buff;
  return ValueUnion();
#endif
}

BENCHMARK_MAYBE_UNUSED
bool GetSysctl(std::string const& Name, std::string* Out) {
  Out->clear();
  auto Buff = GetSysctlImp(Name);
  if (!Buff) return false;
  Out->assign(Buff.data());
  return true;
}

template <class Tp,
          class = typename std::enable_if<std::is_integral<Tp>::value>::type>
bool GetSysctl(std::string const& Name, Tp* Out) {
  *Out = 0;
  auto Buff = GetSysctlImp(Name);
  if (!Buff) return false;
  *Out = static_cast<Tp>(Buff.GetAsUnsigned());
  return true;
}

template <class Tp, size_t N>
bool GetSysctl(std::string const& Name, std::array<Tp, N>* Out) {
  auto Buff = GetSysctlImp(Name);
  if (!Buff) return false;
  *Out = Buff.GetAsArray<Tp, N>();
  return true;
}
#endif

template <class ArgT>
bool ReadFromFile(std::string const& fname, ArgT* arg) {
  *arg = ArgT();
  std::ifstream f(fname.c_str());
  if (!f.is_open()) return false;
  f >> *arg;
  return f.good();
}

bool CpuScalingEnabled(int num_cpus) {
  // We don't have a valid CPU count, so don't even bother.
  if (num_cpus <= 0) return false;
#ifndef BENCHMARK_OS_WINDOWS
  // On Linux, the CPUfreq subsystem exposes CPU information as files on the
  // local file system. If reading the exported files fails, then we may not be
  // running on Linux, so we silently ignore all the read errors.
  std::string res;
  for (int cpu = 0; cpu < num_cpus; ++cpu) {
    std::string governor_file =
        StrCat("/sys/devices/system/cpu/cpu", cpu, "/cpufreq/scaling_governor");
    if (ReadFromFile(governor_file, &res) && res != "performance") return true;
  }
#endif
  return false;
}

int CountSetBitsInCPUMap(std::string Val) {
  auto CountBits = [](std::string Part) {
    using CPUMask = std::bitset<sizeof(std::uintptr_t) * CHAR_BIT>;
    Part = "0x" + Part;
    CPUMask Mask(std::stoul(Part, nullptr, 16));
    return static_cast<int>(Mask.count());
  };
  size_t Pos;
  int total = 0;
  while ((Pos = Val.find(',')) != std::string::npos) {
    total += CountBits(Val.substr(0, Pos));
    Val = Val.substr(Pos + 1);
  }
  if (!Val.empty()) {
    total += CountBits(Val);
  }
  return total;
}

BENCHMARK_MAYBE_UNUSED
std::vector<CPUInfo::CacheInfo> GetCacheSizesFromKVFS() {
  std::vector<CPUInfo::CacheInfo> res;
  std::string dir = "/sys/devices/system/cpu/cpu0/cache/";
  int Idx = 0;
  while (true) {
    CPUInfo::CacheInfo info;
    std::string FPath = StrCat(dir, "index", Idx++, "/");
    std::ifstream f(StrCat(FPath, "size").c_str());
    if (!f.is_open()) break;
    std::string suffix;
    f >> info.size;
    if (f.fail())
      PrintErrorAndDie("Failed while reading file '", FPath, "size'");
    if (f.good()) {
      f >> suffix;
      if (f.bad())
        PrintErrorAndDie(
            "Invalid cache size format: failed to read size suffix");
      else if (f && suffix != "K")
        PrintErrorAndDie("Invalid cache size format: Expected bytes ", suffix);
      else if (suffix == "K")
        info.size *= 1000;
    }
    if (!ReadFromFile(StrCat(FPath, "type"), &info.type))
      PrintErrorAndDie("Failed to read from file ", FPath, "type");
    if (!ReadFromFile(StrCat(FPath, "level"), &info.level))
      PrintErrorAndDie("Failed to read from file ", FPath, "level");
    std::string map_str;
    if (!ReadFromFile(StrCat(FPath, "shared_cpu_map"), &map_str))
      PrintErrorAndDie("Failed to read from file ", FPath, "shared_cpu_map");
    info.num_sharing = CountSetBitsInCPUMap(map_str);
    res.push_back(info);
  }

  return res;
}

#ifdef BENCHMARK_OS_MACOSX
std::vector<CPUInfo::CacheInfo> GetCacheSizesMacOSX() {
  std::vector<CPUInfo::CacheInfo> res;
  std::array<uint64_t, 4> CacheCounts{{0, 0, 0, 0}};
  GetSysctl("hw.cacheconfig", &CacheCounts);

  struct {
    std::string name;
    std::string type;
    int level;
    uint64_t num_sharing;
  } Cases[] = {{"hw.l1dcachesize", "Data", 1, CacheCounts[1]},
               {"hw.l1icachesize", "Instruction", 1, CacheCounts[1]},
               {"hw.l2cachesize", "Unified", 2, CacheCounts[2]},
               {"hw.l3cachesize", "Unified", 3, CacheCounts[3]}};
  for (auto& C : Cases) {
    int val;
    if (!GetSysctl(C.name, &val)) continue;
    CPUInfo::CacheInfo info;
    info.type = C.type;
    info.level = C.level;
    info.size = val;
    info.num_sharing = static_cast<int>(C.num_sharing);
    res.push_back(std::move(info));
  }
  return res;
}
#elif defined(BENCHMARK_OS_WINDOWS)
std::vector<CPUInfo::CacheInfo> GetCacheSizesWindows() {
  std::vector<CPUInfo::CacheInfo> res;
  DWORD buffer_size = 0;
  using PInfo = SYSTEM_LOGICAL_PROCESSOR_INFORMATION;
  using CInfo = CACHE_DESCRIPTOR;

  using UPtr = std::unique_ptr<PInfo, decltype(&std::free)>;
  GetLogicalProcessorInformation(nullptr, &buffer_size);
  UPtr buff((PInfo*)malloc(buffer_size), &std::free);
  if (!GetLogicalProcessorInformation(buff.get(), &buffer_size))
    PrintErrorAndDie("Failed during call to GetLogicalProcessorInformation: ",
                     GetLastError());

  PInfo* it = buff.get();
  PInfo* end = buff.get() + (buffer_size / sizeof(PInfo));

  for (; it != end; ++it) {
    if (it->Relationship != RelationCache) continue;
    using BitSet = std::bitset<sizeof(ULONG_PTR) * CHAR_BIT>;
    BitSet B(it->ProcessorMask);
    // To prevent duplicates, only consider caches where CPU 0 is specified
    if (!B.test(0)) continue;
    CInfo* Cache = &it->Cache;
    CPUInfo::CacheInfo C;
    C.num_sharing = static_cast<int>(B.count());
    C.level = Cache->Level;
    C.size = Cache->Size;
    C.type = "Unknown";
    switch (Cache->Type) {
      case CacheUnified:
        C.type = "Unified";
        break;
      case CacheInstruction:
        C.type = "Instruction";
        break;
      case CacheData:
        C.type = "Data";
        break;
      case CacheTrace:
        C.type = "Trace";
        break;
    }
    res.push_back(C);
  }
  return res;
}
#endif

std::vector<CPUInfo::CacheInfo> GetCacheSizes() {
#ifdef BENCHMARK_OS_MACOSX
  return GetCacheSizesMacOSX();
#elif defined(BENCHMARK_OS_WINDOWS)
  return GetCacheSizesWindows();
#else
  return GetCacheSizesFromKVFS();
#endif
}

int GetNumCPUs() {
#ifdef BENCHMARK_HAS_SYSCTL
  int NumCPU = -1;
  if (GetSysctl("hw.ncpu", &NumCPU)) return NumCPU;
  fprintf(stderr, "Err: %s\n", strerror(errno));
  std::exit(EXIT_FAILURE);
#elif defined(BENCHMARK_OS_WINDOWS)
  SYSTEM_INFO sysinfo;
  // Use memset as opposed to = {} to avoid GCC missing initializer false
  // positives.
  std::memset(&sysinfo, 0, sizeof(SYSTEM_INFO));
  GetSystemInfo(&sysinfo);
  return sysinfo.dwNumberOfProcessors;  // number of logical
                                        // processors in the current
                                        // group
#elif defined(BENCHMARK_OS_SOLARIS)
  // Returns -1 in case of a failure.
  int NumCPU = sysconf(_SC_NPROCESSORS_ONLN);
  if (NumCPU < 0) {
    fprintf(stderr,
            "sysconf(_SC_NPROCESSORS_ONLN) failed with error: %s\n",
            strerror(errno));
  }
  return NumCPU;
#else
  int NumCPUs = 0;
  int MaxID = -1;
  std::ifstream f("/proc/cpuinfo");
  if (!f.is_open()) {
    std::cerr << "failed to open /proc/cpuinfo\n";
    return -1;
  }
  const std::string Key = "processor";
  std::string ln;
  while (std::getline(f, ln)) {
    if (ln.empty()) continue;
    size_t SplitIdx = ln.find(':');
    std::string value;
    if (SplitIdx != std::string::npos) value = ln.substr(SplitIdx + 1);
    if (ln.size() >= Key.size() && ln.compare(0, Key.size(), Key) == 0) {
      NumCPUs++;
      if (!value.empty()) {
        int CurID = std::stoi(value);
        MaxID = std::max(CurID, MaxID);
      }
    }
  }
  if (f.bad()) {
    std::cerr << "Failure reading /proc/cpuinfo\n";
    return -1;
  }
  if (!f.eof()) {
    std::cerr << "Failed to read to end of /proc/cpuinfo\n";
    return -1;
  }
  f.close();

  if ((MaxID + 1) != NumCPUs) {
    fprintf(stderr,
            "CPU ID assignments in /proc/cpuinfo seem messed up."
            " This is usually caused by a bad BIOS.\n");
  }
  return NumCPUs;
#endif
  BENCHMARK_UNREACHABLE();
}

double GetCPUCyclesPerSecond() {
#if defined BENCHMARK_OS_LINUX || defined BENCHMARK_OS_CYGWIN
  long freq;

  // If the kernel is exporting the tsc frequency use that. There are issues
  // where cpuinfo_max_freq cannot be relied on because the BIOS may be
  // exporintg an invalid p-state (on x86) or p-states may be used to put the
  // processor in a new mode (turbo mode). Essentially, those frequencies
  // cannot always be relied upon. The same reasons apply to /proc/cpuinfo as
  // well.
  if (ReadFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)
      // If CPU scaling is in effect, we want to use the *maximum* frequency,
      // not whatever CPU speed some random processor happens to be using now.
      || ReadFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
                      &freq)) {
    // The value is in kHz (as the file name suggests).  For example, on a
    // 2GHz warpstation, the file contains the value "2000000".
    return freq * 1000.0;
  }

  const double error_value = -1;
  double bogo_clock = error_value;

  std::ifstream f("/proc/cpuinfo");
  if (!f.is_open()) {
    std::cerr << "failed to open /proc/cpuinfo\n";
    return error_value;
  }

  auto startsWithKey = [](std::string const& Value, std::string const& Key) {
    if (Key.size() > Value.size()) return false;
    auto Cmp = [&](char X, char Y) {
      return std::tolower(X) == std::tolower(Y);
    };
    return std::equal(Key.begin(), Key.end(), Value.begin(), Cmp);
  };

  std::string ln;
  while (std::getline(f, ln)) {
    if (ln.empty()) continue;
    size_t SplitIdx = ln.find(':');
    std::string value;
    if (SplitIdx != std::string::npos) value = ln.substr(SplitIdx + 1);
    // When parsing the "cpu MHz" and "bogomips" (fallback) entries, we only
    // accept positive values. Some environments (virtual machines) report zero,
    // which would cause infinite looping in WallTime_Init.
    if (startsWithKey(ln, "cpu MHz")) {
      if (!value.empty()) {
        double cycles_per_second = std::stod(value) * 1000000.0;
        if (cycles_per_second > 0) return cycles_per_second;
      }
    } else if (startsWithKey(ln, "bogomips")) {
      if (!value.empty()) {
        bogo_clock = std::stod(value) * 1000000.0;
        if (bogo_clock < 0.0) bogo_clock = error_value;
      }
    }
  }
  if (f.bad()) {
    std::cerr << "Failure reading /proc/cpuinfo\n";
    return error_value;
  }
  if (!f.eof()) {
    std::cerr << "Failed to read to end of /proc/cpuinfo\n";
    return error_value;
  }
  f.close();
  // If we found the bogomips clock, but nothing better, we'll use it (but
  // we're not happy about it); otherwise, fallback to the rough estimation
  // below.
  if (bogo_clock >= 0.0) return bogo_clock;

#elif defined BENCHMARK_HAS_SYSCTL
  constexpr auto* FreqStr =
#if defined(BENCHMARK_OS_FREEBSD) || defined(BENCHMARK_OS_NETBSD)
      "machdep.tsc_freq";
#elif defined BENCHMARK_OS_OPENBSD
      "hw.cpuspeed";
#else
      "hw.cpufrequency";
#endif
  unsigned long long hz = 0;
#if defined BENCHMARK_OS_OPENBSD
  if (GetSysctl(FreqStr, &hz)) return hz * 1000000;
#else
  if (GetSysctl(FreqStr, &hz)) return hz;
#endif
  fprintf(stderr, "Unable to determine clock rate from sysctl: %s: %s\n",
          FreqStr, strerror(errno));

#elif defined BENCHMARK_OS_WINDOWS
  // In NT, read MHz from the registry. If we fail to do so or we're in win9x
  // then make a crude estimate.
  DWORD data, data_size = sizeof(data);
  if (IsWindowsXPOrGreater() &&
      SUCCEEDED(
          SHGetValueA(HKEY_LOCAL_MACHINE,
                      "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0",
                      "~MHz", nullptr, &data, &data_size)))
    return static_cast<double>((int64_t)data *
                               (int64_t)(1000 * 1000));  // was mhz
#elif defined (BENCHMARK_OS_SOLARIS)
  kstat_ctl_t *kc = kstat_open();
  if (!kc) {
    std::cerr << "failed to open /dev/kstat\n";
    return -1;
  }
  kstat_t *ksp = kstat_lookup(kc, (char*)"cpu_info", -1, (char*)"cpu_info0");
  if (!ksp) {
    std::cerr << "failed to lookup in /dev/kstat\n";
    return -1;
  }
  if (kstat_read(kc, ksp, NULL) < 0) {
    std::cerr << "failed to read from /dev/kstat\n";
    return -1;
  }
  kstat_named_t *knp =
      (kstat_named_t*)kstat_data_lookup(ksp, (char*)"current_clock_Hz");
  if (!knp) {
    std::cerr << "failed to lookup data in /dev/kstat\n";
    return -1;
  }
  if (knp->data_type != KSTAT_DATA_UINT64) {
    std::cerr << "current_clock_Hz is of unexpected data type: "
              << knp->data_type << "\n";
    return -1;
  }
  double clock_hz = knp->value.ui64;
  kstat_close(kc);
  return clock_hz;
#endif
  // If we've fallen through, attempt to roughly estimate the CPU clock rate.
  const int estimate_time_ms = 1000;
  const auto start_ticks = cycleclock::Now();
  SleepForMilliseconds(estimate_time_ms);
  return static_cast<double>(cycleclock::Now() - start_ticks);
}

}  // end namespace

const CPUInfo& CPUInfo::Get() {
  static const CPUInfo* info = new CPUInfo();
  return *info;
}

CPUInfo::CPUInfo()
    : num_cpus(GetNumCPUs()),
      cycles_per_second(GetCPUCyclesPerSecond()),
      caches(GetCacheSizes()),
      scaling_enabled(CpuScalingEnabled(num_cpus)) {}

}  // end namespace benchmark