reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
//===- CodeGenMapTable.cpp - Instruction Mapping Table Generator ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// CodeGenMapTable provides functionality for the TabelGen to create
// relation mapping between instructions. Relation models are defined using
// InstrMapping as a base class. This file implements the functionality which
// parses these definitions and generates relation maps using the information
// specified there. These maps are emitted as tables in the XXXGenInstrInfo.inc
// file along with the functions to query them.
//
// A relationship model to relate non-predicate instructions with their
// predicated true/false forms can be defined as follows:
//
// def getPredOpcode : InstrMapping {
//  let FilterClass = "PredRel";
//  let RowFields = ["BaseOpcode"];
//  let ColFields = ["PredSense"];
//  let KeyCol = ["none"];
//  let ValueCols = [["true"], ["false"]]; }
//
// CodeGenMapTable parses this map and generates a table in XXXGenInstrInfo.inc
// file that contains the instructions modeling this relationship. This table
// is defined in the function
// "int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense)"
// that can be used to retrieve the predicated form of the instruction by
// passing its opcode value and the predicate sense (true/false) of the desired
// instruction as arguments.
//
// Short description of the algorithm:
//
// 1) Iterate through all the records that derive from "InstrMapping" class.
// 2) For each record, filter out instructions based on the FilterClass value.
// 3) Iterate through this set of instructions and insert them into
// RowInstrMap map based on their RowFields values. RowInstrMap is keyed by the
// vector of RowFields values and contains vectors of Records (instructions) as
// values. RowFields is a list of fields that are required to have the same
// values for all the instructions appearing in the same row of the relation
// table. All the instructions in a given row of the relation table have some
// sort of relationship with the key instruction defined by the corresponding
// relationship model.
//
// Ex: RowInstrMap(RowVal1, RowVal2, ...) -> [Instr1, Instr2, Instr3, ... ]
// Here Instr1, Instr2, Instr3 have same values (RowVal1, RowVal2) for
// RowFields. These groups of instructions are later matched against ValueCols
// to determine the column they belong to, if any.
//
// While building the RowInstrMap map, collect all the key instructions in
// KeyInstrVec. These are the instructions having the same values as KeyCol
// for all the fields listed in ColFields.
//
// For Example:
//
// Relate non-predicate instructions with their predicated true/false forms.
//
// def getPredOpcode : InstrMapping {
//  let FilterClass = "PredRel";
//  let RowFields = ["BaseOpcode"];
//  let ColFields = ["PredSense"];
//  let KeyCol = ["none"];
//  let ValueCols = [["true"], ["false"]]; }
//
// Here, only instructions that have "none" as PredSense will be selected as key
// instructions.
//
// 4) For each key instruction, get the group of instructions that share the
// same key-value as the key instruction from RowInstrMap. Iterate over the list
// of columns in ValueCols (it is defined as a list<list<string> >. Therefore,
// it can specify multi-column relationships). For each column, find the
// instruction from the group that matches all the values for the column.
// Multiple matches are not allowed.
//
//===----------------------------------------------------------------------===//

#include "CodeGenTarget.h"
#include "llvm/Support/Format.h"
#include "llvm/TableGen/Error.h"
using namespace llvm;
typedef std::map<std::string, std::vector<Record*> > InstrRelMapTy;

typedef std::map<std::vector<Init*>, std::vector<Record*> > RowInstrMapTy;

namespace {

//===----------------------------------------------------------------------===//
// This class is used to represent InstrMapping class defined in Target.td file.
class InstrMap {
private:
  std::string Name;
  std::string FilterClass;
  ListInit *RowFields;
  ListInit *ColFields;
  ListInit *KeyCol;
  std::vector<ListInit*> ValueCols;

public:
  InstrMap(Record* MapRec) {
    Name = MapRec->getName();

    // FilterClass - It's used to reduce the search space only to the
    // instructions that define the kind of relationship modeled by
    // this InstrMapping object/record.
    const RecordVal *Filter = MapRec->getValue("FilterClass");
    FilterClass = Filter->getValue()->getAsUnquotedString();

    // List of fields/attributes that need to be same across all the
    // instructions in a row of the relation table.
    RowFields = MapRec->getValueAsListInit("RowFields");

    // List of fields/attributes that are constant across all the instruction
    // in a column of the relation table. Ex: ColFields = 'predSense'
    ColFields = MapRec->getValueAsListInit("ColFields");

    // Values for the fields/attributes listed in 'ColFields'.
    // Ex: KeyCol = 'noPred' -- key instruction is non-predicated
    KeyCol = MapRec->getValueAsListInit("KeyCol");

    // List of values for the fields/attributes listed in 'ColFields', one for
    // each column in the relation table.
    //
    // Ex: ValueCols = [['true'],['false']] -- it results two columns in the
    // table. First column requires all the instructions to have predSense
    // set to 'true' and second column requires it to be 'false'.
    ListInit *ColValList = MapRec->getValueAsListInit("ValueCols");

    // Each instruction map must specify at least one column for it to be valid.
    if (ColValList->empty())
      PrintFatalError(MapRec->getLoc(), "InstrMapping record `" +
        MapRec->getName() + "' has empty " + "`ValueCols' field!");

    for (Init *I : ColValList->getValues()) {
      auto *ColI = cast<ListInit>(I);

      // Make sure that all the sub-lists in 'ValueCols' have same number of
      // elements as the fields in 'ColFields'.
      if (ColI->size() != ColFields->size())
        PrintFatalError(MapRec->getLoc(), "Record `" + MapRec->getName() +
          "', field `ValueCols' entries don't match with " +
          " the entries in 'ColFields'!");
      ValueCols.push_back(ColI);
    }
  }

  std::string getName() const {
    return Name;
  }

  std::string getFilterClass() {
    return FilterClass;
  }

  ListInit *getRowFields() const {
    return RowFields;
  }

  ListInit *getColFields() const {
    return ColFields;
  }

  ListInit *getKeyCol() const {
    return KeyCol;
  }

  const std::vector<ListInit*> &getValueCols() const {
    return ValueCols;
  }
};
} // end anonymous namespace


//===----------------------------------------------------------------------===//
// class MapTableEmitter : It builds the instruction relation maps using
// the information provided in InstrMapping records. It outputs these
// relationship maps as tables into XXXGenInstrInfo.inc file along with the
// functions to query them.

namespace {
class MapTableEmitter {
private:
//  std::string TargetName;
  const CodeGenTarget &Target;
  // InstrMapDesc - InstrMapping record to be processed.
  InstrMap InstrMapDesc;

  // InstrDefs - list of instructions filtered using FilterClass defined
  // in InstrMapDesc.
  std::vector<Record*> InstrDefs;

  // RowInstrMap - maps RowFields values to the instructions. It's keyed by the
  // values of the row fields and contains vector of records as values.
  RowInstrMapTy RowInstrMap;

  // KeyInstrVec - list of key instructions.
  std::vector<Record*> KeyInstrVec;
  DenseMap<Record*, std::vector<Record*> > MapTable;

public:
  MapTableEmitter(CodeGenTarget &Target, RecordKeeper &Records, Record *IMRec):
                  Target(Target), InstrMapDesc(IMRec) {
    const std::string FilterClass = InstrMapDesc.getFilterClass();
    InstrDefs = Records.getAllDerivedDefinitions(FilterClass);
  }

  void buildRowInstrMap();

  // Returns true if an instruction is a key instruction, i.e., its ColFields
  // have same values as KeyCol.
  bool isKeyColInstr(Record* CurInstr);

  // Find column instruction corresponding to a key instruction based on the
  // constraints for that column.
  Record *getInstrForColumn(Record *KeyInstr, ListInit *CurValueCol);

  // Find column instructions for each key instruction based
  // on ValueCols and store them into MapTable.
  void buildMapTable();

  void emitBinSearch(raw_ostream &OS, unsigned TableSize);
  void emitTablesWithFunc(raw_ostream &OS);
  unsigned emitBinSearchTable(raw_ostream &OS);

  // Lookup functions to query binary search tables.
  void emitMapFuncBody(raw_ostream &OS, unsigned TableSize);

};
} // end anonymous namespace


//===----------------------------------------------------------------------===//
// Process all the instructions that model this relation (alreday present in
// InstrDefs) and insert them into RowInstrMap which is keyed by the values of
// the fields listed as RowFields. It stores vectors of records as values.
// All the related instructions have the same values for the RowFields thus are
// part of the same key-value pair.
//===----------------------------------------------------------------------===//

void MapTableEmitter::buildRowInstrMap() {
  for (Record *CurInstr : InstrDefs) {
    std::vector<Init*> KeyValue;
    ListInit *RowFields = InstrMapDesc.getRowFields();
    for (Init *RowField : RowFields->getValues()) {
      RecordVal *RecVal = CurInstr->getValue(RowField);
      if (RecVal == nullptr)
        PrintFatalError(CurInstr->getLoc(), "No value " +
                        RowField->getAsString() + " found in \"" +
                        CurInstr->getName() + "\" instruction description.");
      Init *CurInstrVal = RecVal->getValue();
      KeyValue.push_back(CurInstrVal);
    }

    // Collect key instructions into KeyInstrVec. Later, these instructions are
    // processed to assign column position to the instructions sharing
    // their KeyValue in RowInstrMap.
    if (isKeyColInstr(CurInstr))
      KeyInstrVec.push_back(CurInstr);

    RowInstrMap[KeyValue].push_back(CurInstr);
  }
}

//===----------------------------------------------------------------------===//
// Return true if an instruction is a KeyCol instruction.
//===----------------------------------------------------------------------===//

bool MapTableEmitter::isKeyColInstr(Record* CurInstr) {
  ListInit *ColFields = InstrMapDesc.getColFields();
  ListInit *KeyCol = InstrMapDesc.getKeyCol();

  // Check if the instruction is a KeyCol instruction.
  bool MatchFound = true;
  for (unsigned j = 0, endCF = ColFields->size();
      (j < endCF) && MatchFound; j++) {
    RecordVal *ColFieldName = CurInstr->getValue(ColFields->getElement(j));
    std::string CurInstrVal = ColFieldName->getValue()->getAsUnquotedString();
    std::string KeyColValue = KeyCol->getElement(j)->getAsUnquotedString();
    MatchFound = (CurInstrVal == KeyColValue);
  }
  return MatchFound;
}

//===----------------------------------------------------------------------===//
// Build a map to link key instructions with the column instructions arranged
// according to their column positions.
//===----------------------------------------------------------------------===//

void MapTableEmitter::buildMapTable() {
  // Find column instructions for a given key based on the ColField
  // constraints.
  const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
  unsigned NumOfCols = ValueCols.size();
  for (Record *CurKeyInstr : KeyInstrVec) {
    std::vector<Record*> ColInstrVec(NumOfCols);

    // Find the column instruction based on the constraints for the column.
    for (unsigned ColIdx = 0; ColIdx < NumOfCols; ColIdx++) {
      ListInit *CurValueCol = ValueCols[ColIdx];
      Record *ColInstr = getInstrForColumn(CurKeyInstr, CurValueCol);
      ColInstrVec[ColIdx] = ColInstr;
    }
    MapTable[CurKeyInstr] = ColInstrVec;
  }
}

//===----------------------------------------------------------------------===//
// Find column instruction based on the constraints for that column.
//===----------------------------------------------------------------------===//

Record *MapTableEmitter::getInstrForColumn(Record *KeyInstr,
                                           ListInit *CurValueCol) {
  ListInit *RowFields = InstrMapDesc.getRowFields();
  std::vector<Init*> KeyValue;

  // Construct KeyValue using KeyInstr's values for RowFields.
  for (Init *RowField : RowFields->getValues()) {
    Init *KeyInstrVal = KeyInstr->getValue(RowField)->getValue();
    KeyValue.push_back(KeyInstrVal);
  }

  // Get all the instructions that share the same KeyValue as the KeyInstr
  // in RowInstrMap. We search through these instructions to find a match
  // for the current column, i.e., the instruction which has the same values
  // as CurValueCol for all the fields in ColFields.
  const std::vector<Record*> &RelatedInstrVec = RowInstrMap[KeyValue];

  ListInit *ColFields = InstrMapDesc.getColFields();
  Record *MatchInstr = nullptr;

  for (unsigned i = 0, e = RelatedInstrVec.size(); i < e; i++) {
    bool MatchFound = true;
    Record *CurInstr = RelatedInstrVec[i];
    for (unsigned j = 0, endCF = ColFields->size();
        (j < endCF) && MatchFound; j++) {
      Init *ColFieldJ = ColFields->getElement(j);
      Init *CurInstrInit = CurInstr->getValue(ColFieldJ)->getValue();
      std::string CurInstrVal = CurInstrInit->getAsUnquotedString();
      Init *ColFieldJVallue = CurValueCol->getElement(j);
      MatchFound = (CurInstrVal == ColFieldJVallue->getAsUnquotedString());
    }

    if (MatchFound) {
      if (MatchInstr) {
        // Already had a match
        // Error if multiple matches are found for a column.
        std::string KeyValueStr;
        for (Init *Value : KeyValue) {
          if (!KeyValueStr.empty())
            KeyValueStr += ", ";
          KeyValueStr += Value->getAsString();
        }

        PrintFatalError("Multiple matches found for `" + KeyInstr->getName() +
              "', for the relation `" + InstrMapDesc.getName() + "', row fields [" +
              KeyValueStr + "], column `" + CurValueCol->getAsString() + "'");
      }
      MatchInstr = CurInstr;
    }
  }
  return MatchInstr;
}

//===----------------------------------------------------------------------===//
// Emit one table per relation. Only instructions with a valid relation of a
// given type are included in the table sorted by their enum values (opcodes).
// Binary search is used for locating instructions in the table.
//===----------------------------------------------------------------------===//

unsigned MapTableEmitter::emitBinSearchTable(raw_ostream &OS) {

  ArrayRef<const CodeGenInstruction*> NumberedInstructions =
                                            Target.getInstructionsByEnumValue();
  StringRef Namespace = Target.getInstNamespace();
  const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
  unsigned NumCol = ValueCols.size();
  unsigned TotalNumInstr = NumberedInstructions.size();
  unsigned TableSize = 0;

  OS << "static const uint16_t "<<InstrMapDesc.getName();
  // Number of columns in the table are NumCol+1 because key instructions are
  // emitted as first column.
  OS << "Table[]["<< NumCol+1 << "] = {\n";
  for (unsigned i = 0; i < TotalNumInstr; i++) {
    Record *CurInstr = NumberedInstructions[i]->TheDef;
    std::vector<Record*> ColInstrs = MapTable[CurInstr];
    std::string OutStr("");
    unsigned RelExists = 0;
    if (!ColInstrs.empty()) {
      for (unsigned j = 0; j < NumCol; j++) {
        if (ColInstrs[j] != nullptr) {
          RelExists = 1;
          OutStr += ", ";
          OutStr += Namespace;
          OutStr += "::";
          OutStr += ColInstrs[j]->getName();
        } else { OutStr += ", (uint16_t)-1U";}
      }

      if (RelExists) {
        OS << "  { " << Namespace << "::" << CurInstr->getName();
        OS << OutStr <<" },\n";
        TableSize++;
      }
    }
  }
  if (!TableSize) {
    OS << "  { " << Namespace << "::" << "INSTRUCTION_LIST_END, ";
    OS << Namespace << "::" << "INSTRUCTION_LIST_END }";
  }
  OS << "}; // End of " << InstrMapDesc.getName() << "Table\n\n";
  return TableSize;
}

//===----------------------------------------------------------------------===//
// Emit binary search algorithm as part of the functions used to query
// relation tables.
//===----------------------------------------------------------------------===//

void MapTableEmitter::emitBinSearch(raw_ostream &OS, unsigned TableSize) {
  OS << "  unsigned mid;\n";
  OS << "  unsigned start = 0;\n";
  OS << "  unsigned end = " << TableSize << ";\n";
  OS << "  while (start < end) {\n";
  OS << "    mid = start + (end - start)/2;\n";
  OS << "    if (Opcode == " << InstrMapDesc.getName() << "Table[mid][0]) {\n";
  OS << "      break;\n";
  OS << "    }\n";
  OS << "    if (Opcode < " << InstrMapDesc.getName() << "Table[mid][0])\n";
  OS << "      end = mid;\n";
  OS << "    else\n";
  OS << "      start = mid + 1;\n";
  OS << "  }\n";
  OS << "  if (start == end)\n";
  OS << "    return -1; // Instruction doesn't exist in this table.\n\n";
}

//===----------------------------------------------------------------------===//
// Emit functions to query relation tables.
//===----------------------------------------------------------------------===//

void MapTableEmitter::emitMapFuncBody(raw_ostream &OS,
                                           unsigned TableSize) {

  ListInit *ColFields = InstrMapDesc.getColFields();
  const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();

  // Emit binary search algorithm to locate instructions in the
  // relation table. If found, return opcode value from the appropriate column
  // of the table.
  emitBinSearch(OS, TableSize);

  if (ValueCols.size() > 1) {
    for (unsigned i = 0, e = ValueCols.size(); i < e; i++) {
      ListInit *ColumnI = ValueCols[i];
      for (unsigned j = 0, ColSize = ColumnI->size(); j < ColSize; ++j) {
        std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
        OS << "  if (in" << ColName;
        OS << " == ";
        OS << ColName << "_" << ColumnI->getElement(j)->getAsUnquotedString();
        if (j < ColumnI->size() - 1) OS << " && ";
        else OS << ")\n";
      }
      OS << "    return " << InstrMapDesc.getName();
      OS << "Table[mid]["<<i+1<<"];\n";
    }
    OS << "  return -1;";
  }
  else
    OS << "  return " << InstrMapDesc.getName() << "Table[mid][1];\n";

  OS <<"}\n\n";
}

//===----------------------------------------------------------------------===//
// Emit relation tables and the functions to query them.
//===----------------------------------------------------------------------===//

void MapTableEmitter::emitTablesWithFunc(raw_ostream &OS) {

  // Emit function name and the input parameters : mostly opcode value of the
  // current instruction. However, if a table has multiple columns (more than 2
  // since first column is used for the key instructions), then we also need
  // to pass another input to indicate the column to be selected.

  ListInit *ColFields = InstrMapDesc.getColFields();
  const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
  OS << "// "<< InstrMapDesc.getName() << "\nLLVM_READONLY\n";
  OS << "int "<< InstrMapDesc.getName() << "(uint16_t Opcode";
  if (ValueCols.size() > 1) {
    for (Init *CF : ColFields->getValues()) {
      std::string ColName = CF->getAsUnquotedString();
      OS << ", enum " << ColName << " in" << ColName << ") {\n";
    }
  } else { OS << ") {\n"; }

  // Emit map table.
  unsigned TableSize = emitBinSearchTable(OS);

  // Emit rest of the function body.
  emitMapFuncBody(OS, TableSize);
}

//===----------------------------------------------------------------------===//
// Emit enums for the column fields across all the instruction maps.
//===----------------------------------------------------------------------===//

static void emitEnums(raw_ostream &OS, RecordKeeper &Records) {

  std::vector<Record*> InstrMapVec;
  InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");
  std::map<std::string, std::vector<Init*> > ColFieldValueMap;

  // Iterate over all InstrMapping records and create a map between column
  // fields and their possible values across all records.
  for (Record *CurMap : InstrMapVec) {
    ListInit *ColFields;
    ColFields = CurMap->getValueAsListInit("ColFields");
    ListInit *List = CurMap->getValueAsListInit("ValueCols");
    std::vector<ListInit*> ValueCols;
    unsigned ListSize = List->size();

    for (unsigned j = 0; j < ListSize; j++) {
      auto *ListJ = cast<ListInit>(List->getElement(j));

      if (ListJ->size() != ColFields->size())
        PrintFatalError("Record `" + CurMap->getName() + "', field "
          "`ValueCols' entries don't match with the entries in 'ColFields' !");
      ValueCols.push_back(ListJ);
    }

    for (unsigned j = 0, endCF = ColFields->size(); j < endCF; j++) {
      for (unsigned k = 0; k < ListSize; k++){
        std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
        ColFieldValueMap[ColName].push_back((ValueCols[k])->getElement(j));
      }
    }
  }

  for (auto &Entry : ColFieldValueMap) {
    std::vector<Init*> FieldValues = Entry.second;

    // Delete duplicate entries from ColFieldValueMap
    for (unsigned i = 0; i < FieldValues.size() - 1; i++) {
      Init *CurVal = FieldValues[i];
      for (unsigned j = i+1; j < FieldValues.size(); j++) {
        if (CurVal == FieldValues[j]) {
          FieldValues.erase(FieldValues.begin()+j);
          --j;
        }
      }
    }

    // Emit enumerated values for the column fields.
    OS << "enum " << Entry.first << " {\n";
    for (unsigned i = 0, endFV = FieldValues.size(); i < endFV; i++) {
      OS << "\t" << Entry.first << "_" << FieldValues[i]->getAsUnquotedString();
      if (i != endFV - 1)
        OS << ",\n";
      else
        OS << "\n};\n\n";
    }
  }
}

namespace llvm {
//===----------------------------------------------------------------------===//
// Parse 'InstrMapping' records and use the information to form relationship
// between instructions. These relations are emitted as a tables along with the
// functions to query them.
//===----------------------------------------------------------------------===//
void EmitMapTable(RecordKeeper &Records, raw_ostream &OS) {
  CodeGenTarget Target(Records);
  StringRef NameSpace = Target.getInstNamespace();
  std::vector<Record*> InstrMapVec;
  InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");

  if (InstrMapVec.empty())
    return;

  OS << "#ifdef GET_INSTRMAP_INFO\n";
  OS << "#undef GET_INSTRMAP_INFO\n";
  OS << "namespace llvm {\n\n";
  OS << "namespace " << NameSpace << " {\n\n";

  // Emit coulumn field names and their values as enums.
  emitEnums(OS, Records);

  // Iterate over all instruction mapping records and construct relationship
  // maps based on the information specified there.
  //
  for (Record *CurMap : InstrMapVec) {
    MapTableEmitter IMap(Target, Records, CurMap);

    // Build RowInstrMap to group instructions based on their values for
    // RowFields. In the process, also collect key instructions into
    // KeyInstrVec.
    IMap.buildRowInstrMap();

    // Build MapTable to map key instructions with the corresponding column
    // instructions.
    IMap.buildMapTable();

    // Emit map tables and the functions to query them.
    IMap.emitTablesWithFunc(OS);
  }
  OS << "} // end namespace " << NameSpace << "\n";
  OS << "} // end namespace llvm\n";
  OS << "#endif // GET_INSTRMAP_INFO\n\n";
}

} // End llvm namespace