reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
//===-- PerfectShuffle.cpp - Perfect Shuffle Generator --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file computes an optimal sequence of instructions for doing all shuffles
// of two 4-element vectors.  With a release build and when configured to emit
// an altivec instruction table, this takes about 30s to run on a 2.7Ghz
// PowerPC G5.
//
//===----------------------------------------------------------------------===//

#include <cassert>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <vector>
struct Operator;

// Masks are 4-nibble hex numbers.  Values 0-7 in any nibble means that it takes
// an element from that value of the input vectors.  A value of 8 means the
// entry is undefined.

// Mask manipulation functions.
static inline unsigned short MakeMask(unsigned V0, unsigned V1,
                                      unsigned V2, unsigned V3) {
  return (V0 << (3*4)) | (V1 << (2*4)) | (V2 << (1*4)) | (V3 << (0*4));
}

/// getMaskElt - Return element N of the specified mask.
static unsigned getMaskElt(unsigned Mask, unsigned Elt) {
  return (Mask >> ((3-Elt)*4)) & 0xF;
}

static unsigned setMaskElt(unsigned Mask, unsigned Elt, unsigned NewVal) {
  unsigned FieldShift = ((3-Elt)*4);
  return (Mask & ~(0xF << FieldShift)) | (NewVal << FieldShift);
}

// Reject elements where the values are 9-15.
static bool isValidMask(unsigned short Mask) {
  unsigned short UndefBits = Mask & 0x8888;
  return (Mask & ((UndefBits >> 1)|(UndefBits>>2)|(UndefBits>>3))) == 0;
}

/// hasUndefElements - Return true if any of the elements in the mask are undefs
///
static bool hasUndefElements(unsigned short Mask) {
  return (Mask & 0x8888) != 0;
}

/// isOnlyLHSMask - Return true if this mask only refers to its LHS, not
/// including undef values..
static bool isOnlyLHSMask(unsigned short Mask) {
  return (Mask & 0x4444) == 0;
}

/// getLHSOnlyMask - Given a mask that refers to its LHS and RHS, modify it to
/// refer to the LHS only (for when one argument value is passed into the same
/// function twice).
#if 0
static unsigned short getLHSOnlyMask(unsigned short Mask) {
  return Mask & 0xBBBB;  // Keep only LHS and Undefs.
}
#endif

/// getCompressedMask - Turn a 16-bit uncompressed mask (where each elt uses 4
/// bits) into a compressed 13-bit mask, where each elt is multiplied by 9.
static unsigned getCompressedMask(unsigned short Mask) {
  return getMaskElt(Mask, 0)*9*9*9 + getMaskElt(Mask, 1)*9*9 +
         getMaskElt(Mask, 2)*9     + getMaskElt(Mask, 3);
}

static void PrintMask(unsigned i, std::ostream &OS) {
  OS << "<" << (char)(getMaskElt(i, 0) == 8 ? 'u' : ('0'+getMaskElt(i, 0)))
     << "," << (char)(getMaskElt(i, 1) == 8 ? 'u' : ('0'+getMaskElt(i, 1)))
     << "," << (char)(getMaskElt(i, 2) == 8 ? 'u' : ('0'+getMaskElt(i, 2)))
     << "," << (char)(getMaskElt(i, 3) == 8 ? 'u' : ('0'+getMaskElt(i, 3)))
     << ">";
}

/// ShuffleVal - This represents a shufflevector operation.
struct ShuffleVal {
  Operator *Op;   // The Operation used to generate this value.
  unsigned Cost;  // Number of instrs used to generate this value.
  unsigned short Arg0, Arg1;  // Input operands for this value.

  ShuffleVal() : Cost(1000000) {}
};


/// ShufTab - This is the actual shuffle table that we are trying to generate.
///
static ShuffleVal ShufTab[65536];

/// TheOperators - All of the operators that this target supports.
static std::vector<Operator*> TheOperators;

/// Operator - This is a vector operation that is available for use.
struct Operator {
  const char *Name;
  unsigned short ShuffleMask;
  unsigned short OpNum;
  unsigned Cost;

  Operator(unsigned short shufflemask, const char *name, unsigned opnum,
           unsigned cost = 1)
    :  Name(name), ShuffleMask(shufflemask), OpNum(opnum),Cost(cost) {
    TheOperators.push_back(this);
  }
  ~Operator() {
    assert(TheOperators.back() == this);
    TheOperators.pop_back();
  }

  bool isOnlyLHSOperator() const {
    return isOnlyLHSMask(ShuffleMask);
  }

  const char *getName() const { return Name; }
  unsigned getCost() const { return Cost; }

  unsigned short getTransformedMask(unsigned short LHSMask, unsigned RHSMask) {
    // Extract the elements from LHSMask and RHSMask, as appropriate.
    unsigned Result = 0;
    for (unsigned i = 0; i != 4; ++i) {
      unsigned SrcElt = (ShuffleMask >> (4*i)) & 0xF;
      unsigned ResElt;
      if (SrcElt < 4)
        ResElt = getMaskElt(LHSMask, SrcElt);
      else if (SrcElt < 8)
        ResElt = getMaskElt(RHSMask, SrcElt-4);
      else {
        assert(SrcElt == 8 && "Bad src elt!");
        ResElt = 8;
      }
      Result |= ResElt << (4*i);
    }
    return Result;
  }
};

static const char *getZeroCostOpName(unsigned short Op) {
  if (ShufTab[Op].Arg0 == 0x0123)
    return "LHS";
  else if (ShufTab[Op].Arg0 == 0x4567)
    return "RHS";
  else {
    assert(0 && "bad zero cost operation");
    abort();
  }
}

static void PrintOperation(unsigned ValNo, unsigned short Vals[]) {
  unsigned short ThisOp = Vals[ValNo];
  std::cerr << "t" << ValNo;
  PrintMask(ThisOp, std::cerr);
  std::cerr << " = " << ShufTab[ThisOp].Op->getName() << "(";

  if (ShufTab[ShufTab[ThisOp].Arg0].Cost == 0) {
    std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg0);
    PrintMask(ShufTab[ThisOp].Arg0, std::cerr);
  } else {
    // Figure out what tmp # it is.
    for (unsigned i = 0; ; ++i)
      if (Vals[i] == ShufTab[ThisOp].Arg0) {
        std::cerr << "t" << i;
        break;
      }
  }

  if (!ShufTab[Vals[ValNo]].Op->isOnlyLHSOperator()) {
    std::cerr << ", ";
    if (ShufTab[ShufTab[ThisOp].Arg1].Cost == 0) {
      std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg1);
      PrintMask(ShufTab[ThisOp].Arg1, std::cerr);
    } else {
      // Figure out what tmp # it is.
      for (unsigned i = 0; ; ++i)
        if (Vals[i] == ShufTab[ThisOp].Arg1) {
          std::cerr << "t" << i;
          break;
        }
    }
  }
  std::cerr << ")  ";
}

static unsigned getNumEntered() {
  unsigned Count = 0;
  for (unsigned i = 0; i != 65536; ++i)
    Count += ShufTab[i].Cost < 100;
  return Count;
}

static void EvaluateOps(unsigned short Elt, unsigned short Vals[],
                        unsigned &NumVals) {
  if (ShufTab[Elt].Cost == 0) return;

  // If this value has already been evaluated, it is free.  FIXME: match undefs.
  for (unsigned i = 0, e = NumVals; i != e; ++i)
    if (Vals[i] == Elt) return;

  // Otherwise, get the operands of the value, then add it.
  unsigned Arg0 = ShufTab[Elt].Arg0, Arg1 = ShufTab[Elt].Arg1;
  if (ShufTab[Arg0].Cost)
    EvaluateOps(Arg0, Vals, NumVals);
  if (Arg0 != Arg1 && ShufTab[Arg1].Cost)
    EvaluateOps(Arg1, Vals, NumVals);

  Vals[NumVals++] = Elt;
}


int main() {
  // Seed the table with accesses to the LHS and RHS.
  ShufTab[0x0123].Cost = 0;
  ShufTab[0x0123].Op = nullptr;
  ShufTab[0x0123].Arg0 = 0x0123;
  ShufTab[0x4567].Cost = 0;
  ShufTab[0x4567].Op = nullptr;
  ShufTab[0x4567].Arg0 = 0x4567;

  // Seed the first-level of shuffles, shuffles whose inputs are the input to
  // the vectorshuffle operation.
  bool MadeChange = true;
  unsigned OpCount = 0;
  while (MadeChange) {
    MadeChange = false;
    ++OpCount;
    std::cerr << "Starting iteration #" << OpCount << " with "
              << getNumEntered() << " entries established.\n";

    // Scan the table for two reasons: First, compute the maximum cost of any
    // operation left in the table.  Second, make sure that values with undefs
    // have the cheapest alternative that they match.
    unsigned MaxCost = ShufTab[0].Cost;
    for (unsigned i = 1; i != 0x8889; ++i) {
      if (!isValidMask(i)) continue;
      if (ShufTab[i].Cost > MaxCost)
        MaxCost = ShufTab[i].Cost;

      // If this value has an undef, make it be computed the cheapest possible
      // way of any of the things that it matches.
      if (hasUndefElements(i)) {
        // This code is a little bit tricky, so here's the idea: consider some
        // permutation, like 7u4u.  To compute the lowest cost for 7u4u, we
        // need to take the minimum cost of all of 7[0-8]4[0-8], 81 entries.  If
        // there are 3 undefs, the number rises to 729 entries we have to scan,
        // and for the 4 undef case, we have to scan the whole table.
        //
        // Instead of doing this huge amount of scanning, we process the table
        // entries *in order*, and use the fact that 'u' is 8, larger than any
        // valid index.  Given an entry like 7u4u then, we only need to scan
        // 7[0-7]4u - 8 entries.  We can get away with this, because we already
        // know that each of 704u, 714u, 724u, etc contain the minimum value of
        // all of the 704[0-8], 714[0-8] and 724[0-8] entries respectively.
        unsigned UndefIdx;
        if (i & 0x8000)
          UndefIdx = 0;
        else if (i & 0x0800)
          UndefIdx = 1;
        else if (i & 0x0080)
          UndefIdx = 2;
        else if (i & 0x0008)
          UndefIdx = 3;
        else
          abort();

        unsigned MinVal  = i;
        unsigned MinCost = ShufTab[i].Cost;

        // Scan the 8 entries.
        for (unsigned j = 0; j != 8; ++j) {
          unsigned NewElt = setMaskElt(i, UndefIdx, j);
          if (ShufTab[NewElt].Cost < MinCost) {
            MinCost = ShufTab[NewElt].Cost;
            MinVal = NewElt;
          }
        }

        // If we found something cheaper than what was here before, use it.
        if (i != MinVal) {
          MadeChange = true;
          ShufTab[i] = ShufTab[MinVal];
        }
      }
    }

    for (unsigned LHS = 0; LHS != 0x8889; ++LHS) {
      if (!isValidMask(LHS)) continue;
      if (ShufTab[LHS].Cost > 1000) continue;

      // If nothing involving this operand could possibly be cheaper than what
      // we already have, don't consider it.
      if (ShufTab[LHS].Cost + 1 >= MaxCost)
        continue;

      for (unsigned opnum = 0, e = TheOperators.size(); opnum != e; ++opnum) {
        Operator *Op = TheOperators[opnum];

        // Evaluate op(LHS,LHS)
        unsigned ResultMask = Op->getTransformedMask(LHS, LHS);

        unsigned Cost = ShufTab[LHS].Cost + Op->getCost();
        if (Cost < ShufTab[ResultMask].Cost) {
          ShufTab[ResultMask].Cost = Cost;
          ShufTab[ResultMask].Op = Op;
          ShufTab[ResultMask].Arg0 = LHS;
          ShufTab[ResultMask].Arg1 = LHS;
          MadeChange = true;
        }

        // If this is a two input instruction, include the op(x,y) cases.  If
        // this is a one input instruction, skip this.
        if (Op->isOnlyLHSOperator()) continue;

        for (unsigned RHS = 0; RHS != 0x8889; ++RHS) {
          if (!isValidMask(RHS)) continue;
          if (ShufTab[RHS].Cost > 1000) continue;

          // If nothing involving this operand could possibly be cheaper than
          // what we already have, don't consider it.
          if (ShufTab[RHS].Cost + 1 >= MaxCost)
            continue;


          // Evaluate op(LHS,RHS)
          unsigned ResultMask = Op->getTransformedMask(LHS, RHS);

          if (ShufTab[ResultMask].Cost <= OpCount ||
              ShufTab[ResultMask].Cost <= ShufTab[LHS].Cost ||
              ShufTab[ResultMask].Cost <= ShufTab[RHS].Cost)
            continue;

          // Figure out the cost to evaluate this, knowing that CSE's only need
          // to be evaluated once.
          unsigned short Vals[30];
          unsigned NumVals = 0;
          EvaluateOps(LHS, Vals, NumVals);
          EvaluateOps(RHS, Vals, NumVals);

          unsigned Cost = NumVals + Op->getCost();
          if (Cost < ShufTab[ResultMask].Cost) {
            ShufTab[ResultMask].Cost = Cost;
            ShufTab[ResultMask].Op = Op;
            ShufTab[ResultMask].Arg0 = LHS;
            ShufTab[ResultMask].Arg1 = RHS;
            MadeChange = true;
          }
        }
      }
    }
  }

  std::cerr << "Finished Table has " << getNumEntered()
            << " entries established.\n";

  unsigned CostArray[10] = { 0 };

  // Compute a cost histogram.
  for (unsigned i = 0; i != 65536; ++i) {
    if (!isValidMask(i)) continue;
    if (ShufTab[i].Cost > 9)
      ++CostArray[9];
    else
      ++CostArray[ShufTab[i].Cost];
  }

  for (unsigned i = 0; i != 9; ++i)
    if (CostArray[i])
      std::cout << "// " << CostArray[i] << " entries have cost " << i << "\n";
  if (CostArray[9])
    std::cout << "// " << CostArray[9] << " entries have higher cost!\n";


  // Build up the table to emit.
  std::cout << "\n// This table is 6561*4 = 26244 bytes in size.\n";
  std::cout << "static const unsigned PerfectShuffleTable[6561+1] = {\n";

  for (unsigned i = 0; i != 0x8889; ++i) {
    if (!isValidMask(i)) continue;

    // CostSat - The cost of this operation saturated to two bits.
    unsigned CostSat = ShufTab[i].Cost;
    if (CostSat > 4) CostSat = 4;
    if (CostSat == 0) CostSat = 1;
    --CostSat;  // Cost is now between 0-3.

    unsigned OpNum = ShufTab[i].Op ? ShufTab[i].Op->OpNum : 0;
    assert(OpNum < 16 && "Too few bits to encode operation!");

    unsigned LHS = getCompressedMask(ShufTab[i].Arg0);
    unsigned RHS = getCompressedMask(ShufTab[i].Arg1);

    // Encode this as 2 bits of saturated cost, 4 bits of opcodes, 13 bits of
    // LHS, and 13 bits of RHS = 32 bits.
    unsigned Val = (CostSat << 30) | (OpNum << 26) | (LHS << 13) | RHS;

    std::cout << "  " << std::setw(10) << Val << "U, // ";
    PrintMask(i, std::cout);
    std::cout << ": Cost " << ShufTab[i].Cost;
    std::cout << " " << (ShufTab[i].Op ? ShufTab[i].Op->getName() : "copy");
    std::cout << " ";
    if (ShufTab[ShufTab[i].Arg0].Cost == 0) {
      std::cout << getZeroCostOpName(ShufTab[i].Arg0);
    } else {
      PrintMask(ShufTab[i].Arg0, std::cout);
    }

    if (ShufTab[i].Op && !ShufTab[i].Op->isOnlyLHSOperator()) {
      std::cout << ", ";
      if (ShufTab[ShufTab[i].Arg1].Cost == 0) {
        std::cout << getZeroCostOpName(ShufTab[i].Arg1);
      } else {
        PrintMask(ShufTab[i].Arg1, std::cout);
      }
    }
    std::cout << "\n";
  }
  std::cout << "  0\n};\n";

  if (0) {
    // Print out the table.
    for (unsigned i = 0; i != 0x8889; ++i) {
      if (!isValidMask(i)) continue;
      if (ShufTab[i].Cost < 1000) {
        PrintMask(i, std::cerr);
        std::cerr << " - Cost " << ShufTab[i].Cost << " - ";

        unsigned short Vals[30];
        unsigned NumVals = 0;
        EvaluateOps(i, Vals, NumVals);

        for (unsigned j = 0, e = NumVals; j != e; ++j)
          PrintOperation(j, Vals);
        std::cerr << "\n";
      }
    }
  }
}


#ifdef GENERATE_ALTIVEC

///===---------------------------------------------------------------------===//
/// The altivec instruction definitions.  This is the altivec-specific part of
/// this file.
///===---------------------------------------------------------------------===//

// Note that the opcode numbers here must match those in the PPC backend.
enum {
  OP_COPY = 0,   // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
  OP_VMRGHW,
  OP_VMRGLW,
  OP_VSPLTISW0,
  OP_VSPLTISW1,
  OP_VSPLTISW2,
  OP_VSPLTISW3,
  OP_VSLDOI4,
  OP_VSLDOI8,
  OP_VSLDOI12
};

struct vmrghw : public Operator {
  vmrghw() : Operator(0x0415, "vmrghw", OP_VMRGHW) {}
} the_vmrghw;

struct vmrglw : public Operator {
  vmrglw() : Operator(0x2637, "vmrglw", OP_VMRGLW) {}
} the_vmrglw;

template<unsigned Elt>
struct vspltisw : public Operator {
  vspltisw(const char *N, unsigned Opc)
    : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {}
};

vspltisw<0> the_vspltisw0("vspltisw0", OP_VSPLTISW0);
vspltisw<1> the_vspltisw1("vspltisw1", OP_VSPLTISW1);
vspltisw<2> the_vspltisw2("vspltisw2", OP_VSPLTISW2);
vspltisw<3> the_vspltisw3("vspltisw3", OP_VSPLTISW3);

template<unsigned N>
struct vsldoi : public Operator {
  vsldoi(const char *Name, unsigned Opc)
    : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) {
  }
};

vsldoi<1> the_vsldoi1("vsldoi4" , OP_VSLDOI4);
vsldoi<2> the_vsldoi2("vsldoi8" , OP_VSLDOI8);
vsldoi<3> the_vsldoi3("vsldoi12", OP_VSLDOI12);

#endif

#define GENERATE_NEON

#ifdef GENERATE_NEON
enum {
  OP_COPY = 0,   // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
  OP_VREV,
  OP_VDUP0,
  OP_VDUP1,
  OP_VDUP2,
  OP_VDUP3,
  OP_VEXT1,
  OP_VEXT2,
  OP_VEXT3,
  OP_VUZPL, // VUZP, left result
  OP_VUZPR, // VUZP, right result
  OP_VZIPL, // VZIP, left result
  OP_VZIPR, // VZIP, right result
  OP_VTRNL, // VTRN, left result
  OP_VTRNR  // VTRN, right result
};

struct vrev : public Operator {
  vrev() : Operator(0x1032, "vrev", OP_VREV) {}
} the_vrev;

template<unsigned Elt>
struct vdup : public Operator {
  vdup(const char *N, unsigned Opc)
    : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {}
};

vdup<0> the_vdup0("vdup0", OP_VDUP0);
vdup<1> the_vdup1("vdup1", OP_VDUP1);
vdup<2> the_vdup2("vdup2", OP_VDUP2);
vdup<3> the_vdup3("vdup3", OP_VDUP3);

template<unsigned N>
struct vext : public Operator {
  vext(const char *Name, unsigned Opc)
    : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) {
  }
};

vext<1> the_vext1("vext1", OP_VEXT1);
vext<2> the_vext2("vext2", OP_VEXT2);
vext<3> the_vext3("vext3", OP_VEXT3);

struct vuzpl : public Operator {
  vuzpl() : Operator(0x0246, "vuzpl", OP_VUZPL, 2) {}
} the_vuzpl;

struct vuzpr : public Operator {
  vuzpr() : Operator(0x1357, "vuzpr", OP_VUZPR, 2) {}
} the_vuzpr;

struct vzipl : public Operator {
  vzipl() : Operator(0x0415, "vzipl", OP_VZIPL, 2) {}
} the_vzipl;

struct vzipr : public Operator {
  vzipr() : Operator(0x2637, "vzipr", OP_VZIPR, 2) {}
} the_vzipr;

struct vtrnl : public Operator {
  vtrnl() : Operator(0x0426, "vtrnl", OP_VTRNL, 2) {}
} the_vtrnl;

struct vtrnr : public Operator {
  vtrnr() : Operator(0x1537, "vtrnr", OP_VTRNR, 2) {}
} the_vtrnr;

#endif