reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
//===- unittests/Support/EndianTest.cpp - Endian.h tests ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Support/Endian.h"
#include "llvm/Support/DataTypes.h"
#include "gtest/gtest.h"
#include <cstdlib>
#include <ctime>
using namespace llvm;
using namespace support;

#undef max

namespace {

TEST(Endian, Read) {
  // These are 5 bytes so we can be sure at least one of the reads is unaligned.
  unsigned char bigval[] = {0x00, 0x01, 0x02, 0x03, 0x04};
  unsigned char littleval[] = {0x00, 0x04, 0x03, 0x02, 0x01};
  int32_t BigAsHost = 0x00010203;
  EXPECT_EQ(BigAsHost, (endian::read<int32_t, big, unaligned>(bigval)));
  int32_t LittleAsHost = 0x02030400;
  EXPECT_EQ(LittleAsHost,(endian::read<int32_t, little, unaligned>(littleval)));

  EXPECT_EQ((endian::read<int32_t, big, unaligned>(bigval + 1)),
            (endian::read<int32_t, little, unaligned>(littleval + 1)));
}

TEST(Endian, ReadBitAligned) {
  // Simple test to make sure we properly pull out the 0x0 word.
  unsigned char littleval[] = {0x3f, 0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff};
  unsigned char bigval[] = {0x00, 0x00, 0x00, 0x3f, 0xff, 0xff, 0xff, 0xc0};
  EXPECT_EQ(
      (endian::readAtBitAlignment<int, little, unaligned>(&littleval[0], 6)),
      0x0);
  EXPECT_EQ((endian::readAtBitAlignment<int, big, unaligned>(&bigval[0], 6)),
            0x0);
  // Test to make sure that signed right shift of 0xf0000000 is masked
  // properly.
  unsigned char littleval2[] = {0x00, 0x00, 0x00, 0xf0, 0x00, 0x00, 0x00, 0x00};
  unsigned char bigval2[] = {0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
  EXPECT_EQ(
      (endian::readAtBitAlignment<int, little, unaligned>(&littleval2[0], 4)),
      0x0f000000);
  EXPECT_EQ((endian::readAtBitAlignment<int, big, unaligned>(&bigval2[0], 4)),
            0x0f000000);
  // Test to make sure left shift of start bit doesn't overflow.
  EXPECT_EQ(
      (endian::readAtBitAlignment<int, little, unaligned>(&littleval2[0], 1)),
      0x78000000);
  EXPECT_EQ((endian::readAtBitAlignment<int, big, unaligned>(&bigval2[0], 1)),
            0x78000000);
  // Test to make sure 64-bit int doesn't overflow.
  unsigned char littleval3[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf0,
                                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
  unsigned char bigval3[] = {0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
                             0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
  EXPECT_EQ((endian::readAtBitAlignment<int64_t, little, unaligned>(
                &littleval3[0], 4)),
            0x0f00000000000000);
  EXPECT_EQ(
      (endian::readAtBitAlignment<int64_t, big, unaligned>(&bigval3[0], 4)),
      0x0f00000000000000);
}

TEST(Endian, WriteBitAligned) {
  // This test ensures that signed right shift of 0xffffaa is masked
  // properly.
  unsigned char bigval[8] = {0x00};
  endian::writeAtBitAlignment<int32_t, big, unaligned>(bigval, (int)0xffffaaaa,
                                                       4);
  EXPECT_EQ(bigval[0], 0xff);
  EXPECT_EQ(bigval[1], 0xfa);
  EXPECT_EQ(bigval[2], 0xaa);
  EXPECT_EQ(bigval[3], 0xa0);
  EXPECT_EQ(bigval[4], 0x00);
  EXPECT_EQ(bigval[5], 0x00);
  EXPECT_EQ(bigval[6], 0x00);
  EXPECT_EQ(bigval[7], 0x0f);

  unsigned char littleval[8] = {0x00};
  endian::writeAtBitAlignment<int32_t, little, unaligned>(littleval,
                                                          (int)0xffffaaaa, 4);
  EXPECT_EQ(littleval[0], 0xa0);
  EXPECT_EQ(littleval[1], 0xaa);
  EXPECT_EQ(littleval[2], 0xfa);
  EXPECT_EQ(littleval[3], 0xff);
  EXPECT_EQ(littleval[4], 0x0f);
  EXPECT_EQ(littleval[5], 0x00);
  EXPECT_EQ(littleval[6], 0x00);
  EXPECT_EQ(littleval[7], 0x00);

  // This test makes sure 1<<31 doesn't overflow.
  // Test to make sure left shift of start bit doesn't overflow.
  unsigned char bigval2[8] = {0x00};
  endian::writeAtBitAlignment<int32_t, big, unaligned>(bigval2, (int)0xffffffff,
                                                       1);
  EXPECT_EQ(bigval2[0], 0xff);
  EXPECT_EQ(bigval2[1], 0xff);
  EXPECT_EQ(bigval2[2], 0xff);
  EXPECT_EQ(bigval2[3], 0xfe);
  EXPECT_EQ(bigval2[4], 0x00);
  EXPECT_EQ(bigval2[5], 0x00);
  EXPECT_EQ(bigval2[6], 0x00);
  EXPECT_EQ(bigval2[7], 0x01);

  unsigned char littleval2[8] = {0x00};
  endian::writeAtBitAlignment<int32_t, little, unaligned>(littleval2,
                                                          (int)0xffffffff, 1);
  EXPECT_EQ(littleval2[0], 0xfe);
  EXPECT_EQ(littleval2[1], 0xff);
  EXPECT_EQ(littleval2[2], 0xff);
  EXPECT_EQ(littleval2[3], 0xff);
  EXPECT_EQ(littleval2[4], 0x01);
  EXPECT_EQ(littleval2[5], 0x00);
  EXPECT_EQ(littleval2[6], 0x00);
  EXPECT_EQ(littleval2[7], 0x00);

  // Test to make sure 64-bit int doesn't overflow.
  unsigned char bigval64[16] = {0x00};
  endian::writeAtBitAlignment<int64_t, big, unaligned>(
      bigval64, (int64_t)0xffffffffffffffff, 1);
  EXPECT_EQ(bigval64[0], 0xff);
  EXPECT_EQ(bigval64[1], 0xff);
  EXPECT_EQ(bigval64[2], 0xff);
  EXPECT_EQ(bigval64[3], 0xff);
  EXPECT_EQ(bigval64[4], 0xff);
  EXPECT_EQ(bigval64[5], 0xff);
  EXPECT_EQ(bigval64[6], 0xff);
  EXPECT_EQ(bigval64[7], 0xfe);
  EXPECT_EQ(bigval64[8], 0x00);
  EXPECT_EQ(bigval64[9], 0x00);
  EXPECT_EQ(bigval64[10], 0x00);
  EXPECT_EQ(bigval64[11], 0x00);
  EXPECT_EQ(bigval64[12], 0x00);
  EXPECT_EQ(bigval64[13], 0x00);
  EXPECT_EQ(bigval64[14], 0x00);
  EXPECT_EQ(bigval64[15], 0x01);

  unsigned char littleval64[16] = {0x00};
  endian::writeAtBitAlignment<int64_t, little, unaligned>(
      littleval64, (int64_t)0xffffffffffffffff, 1);
  EXPECT_EQ(littleval64[0], 0xfe);
  EXPECT_EQ(littleval64[1], 0xff);
  EXPECT_EQ(littleval64[2], 0xff);
  EXPECT_EQ(littleval64[3], 0xff);
  EXPECT_EQ(littleval64[4], 0xff);
  EXPECT_EQ(littleval64[5], 0xff);
  EXPECT_EQ(littleval64[6], 0xff);
  EXPECT_EQ(littleval64[7], 0xff);
  EXPECT_EQ(littleval64[8], 0x01);
  EXPECT_EQ(littleval64[9], 0x00);
  EXPECT_EQ(littleval64[10], 0x00);
  EXPECT_EQ(littleval64[11], 0x00);
  EXPECT_EQ(littleval64[12], 0x00);
  EXPECT_EQ(littleval64[13], 0x00);
  EXPECT_EQ(littleval64[14], 0x00);
  EXPECT_EQ(littleval64[15], 0x00);
}

TEST(Endian, Write) {
  unsigned char data[5];
  endian::write<int32_t, big, unaligned>(data, -1362446643);
  EXPECT_EQ(data[0], 0xAE);
  EXPECT_EQ(data[1], 0xCA);
  EXPECT_EQ(data[2], 0xB6);
  EXPECT_EQ(data[3], 0xCD);
  endian::write<int32_t, big, unaligned>(data + 1, -1362446643);
  EXPECT_EQ(data[1], 0xAE);
  EXPECT_EQ(data[2], 0xCA);
  EXPECT_EQ(data[3], 0xB6);
  EXPECT_EQ(data[4], 0xCD);

  endian::write<int32_t, little, unaligned>(data, -1362446643);
  EXPECT_EQ(data[0], 0xCD);
  EXPECT_EQ(data[1], 0xB6);
  EXPECT_EQ(data[2], 0xCA);
  EXPECT_EQ(data[3], 0xAE);
  endian::write<int32_t, little, unaligned>(data + 1, -1362446643);
  EXPECT_EQ(data[1], 0xCD);
  EXPECT_EQ(data[2], 0xB6);
  EXPECT_EQ(data[3], 0xCA);
  EXPECT_EQ(data[4], 0xAE);
}

TEST(Endian, PackedEndianSpecificIntegral) {
  // These are 5 bytes so we can be sure at least one of the reads is unaligned.
  unsigned char big[] = {0x00, 0x01, 0x02, 0x03, 0x04};
  unsigned char little[] = {0x00, 0x04, 0x03, 0x02, 0x01};
  big32_t    *big_val    =
    reinterpret_cast<big32_t *>(big + 1);
  little32_t *little_val =
    reinterpret_cast<little32_t *>(little + 1);

  EXPECT_EQ(*big_val, *little_val);
}

TEST(Endian, PacketEndianSpecificIntegralAsEnum) {
  enum class Test : uint16_t { ONETWO = 0x0102, TWOONE = 0x0201 };
  unsigned char bytes[] = {0x01, 0x02};
  using LittleTest = little_t<Test>;
  using BigTest = big_t<Test>;
  EXPECT_EQ(Test::TWOONE, *reinterpret_cast<LittleTest *>(bytes));
  EXPECT_EQ(Test::ONETWO, *reinterpret_cast<BigTest *>(bytes));
}

} // end anon namespace