reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
//===------ FlattenAlgo.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Main algorithm of the FlattenSchedulePass. This is a separate file to avoid
// the unittest for this requiring linking against LLVM.
//
//===----------------------------------------------------------------------===//

#include "polly/FlattenAlgo.h"
#include "polly/Support/ISLOStream.h"
#include "polly/Support/ISLTools.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "polly-flatten-algo"

using namespace polly;
using namespace llvm;

namespace {

/// Whether a dimension of a set is bounded (lower and upper) by a constant,
/// i.e. there are two constants Min and Max, such that every value x of the
/// chosen dimensions is Min <= x <= Max.
bool isDimBoundedByConstant(isl::set Set, unsigned dim) {
  auto ParamDims = Set.dim(isl::dim::param);
  Set = Set.project_out(isl::dim::param, 0, ParamDims);
  Set = Set.project_out(isl::dim::set, 0, dim);
  auto SetDims = Set.dim(isl::dim::set);
  Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
  return bool(Set.is_bounded());
}

/// Whether a dimension of a set is (lower and upper) bounded by a constant or
/// parameters, i.e. there are two expressions Min_p and Max_p of the parameters
/// p, such that every value x of the chosen dimensions is
/// Min_p <= x <= Max_p.
bool isDimBoundedByParameter(isl::set Set, unsigned dim) {
  Set = Set.project_out(isl::dim::set, 0, dim);
  auto SetDims = Set.dim(isl::dim::set);
  Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
  return bool(Set.is_bounded());
}

/// Whether BMap's first out-dimension is not a constant.
bool isVariableDim(const isl::basic_map &BMap) {
  auto FixedVal = BMap.plain_get_val_if_fixed(isl::dim::out, 0);
  return !FixedVal || FixedVal.is_nan();
}

/// Whether Map's first out dimension is no constant nor piecewise constant.
bool isVariableDim(const isl::map &Map) {
  for (isl::basic_map BMap : Map.get_basic_map_list())
    if (isVariableDim(BMap))
      return false;

  return true;
}

/// Whether UMap's first out dimension is no (piecewise) constant.
bool isVariableDim(const isl::union_map &UMap) {
  for (isl::map Map : UMap.get_map_list())
    if (isVariableDim(Map))
      return false;
  return true;
}

/// Compute @p UPwAff - @p Val.
isl::union_pw_aff subtract(isl::union_pw_aff UPwAff, isl::val Val) {
  if (Val.is_zero())
    return UPwAff;

  auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
  isl::stat Stat =
      UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
        auto ValAff =
            isl::pw_aff(isl::set::universe(PwAff.get_space().domain()), Val);
        auto Subtracted = PwAff.sub(ValAff);
        Result = Result.union_add(isl::union_pw_aff(Subtracted));
        return isl::stat::ok();
      });
  if (Stat.is_error())
    return {};
  return Result;
}

/// Compute @UPwAff * @p Val.
isl::union_pw_aff multiply(isl::union_pw_aff UPwAff, isl::val Val) {
  if (Val.is_one())
    return UPwAff;

  auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
  isl::stat Stat =
      UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
        auto ValAff =
            isl::pw_aff(isl::set::universe(PwAff.get_space().domain()), Val);
        auto Multiplied = PwAff.mul(ValAff);
        Result = Result.union_add(Multiplied);
        return isl::stat::ok();
      });
  if (Stat.is_error())
    return {};
  return Result;
}

/// Remove @p n dimensions from @p UMap's range, starting at @p first.
///
/// It is assumed that all maps in the maps have at least the necessary number
/// of out dimensions.
isl::union_map scheduleProjectOut(const isl::union_map &UMap, unsigned first,
                                  unsigned n) {
  if (n == 0)
    return UMap; /* isl_map_project_out would also reset the tuple, which should
                    have no effect on schedule ranges */

  auto Result = isl::union_map::empty(UMap.get_space());
  for (isl::map Map : UMap.get_map_list()) {
    auto Outprojected = Map.project_out(isl::dim::out, first, n);
    Result = Result.add_map(Outprojected);
  }
  return Result;
}

/// Return the number of dimensions in the input map's range.
///
/// Because this function takes an isl_union_map, the out dimensions could be
/// different. We return the maximum number in this case. However, a different
/// number of dimensions is not supported by the other code in this file.
size_t scheduleScatterDims(const isl::union_map &Schedule) {
  unsigned Dims = 0;
  for (isl::map Map : Schedule.get_map_list())
    Dims = std::max(Dims, Map.dim(isl::dim::out));
  return Dims;
}

/// Return the @p pos' range dimension, converted to an isl_union_pw_aff.
isl::union_pw_aff scheduleExtractDimAff(isl::union_map UMap, unsigned pos) {
  auto SingleUMap = isl::union_map::empty(UMap.get_space());
  for (isl::map Map : UMap.get_map_list()) {
    unsigned MapDims = Map.dim(isl::dim::out);
    isl::map SingleMap = Map.project_out(isl::dim::out, 0, pos);
    SingleMap = SingleMap.project_out(isl::dim::out, 1, MapDims - pos - 1);
    SingleUMap = SingleUMap.add_map(SingleMap);
  };

  auto UAff = isl::union_pw_multi_aff(SingleUMap);
  auto FirstMAff = isl::multi_union_pw_aff(UAff);
  return FirstMAff.get_union_pw_aff(0);
}

/// Flatten a sequence-like first dimension.
///
/// A sequence-like scatter dimension is constant, or at least only small
/// variation, typically the result of ordering a sequence of different
/// statements. An example would be:
///   { Stmt_A[] -> [0, X, ...]; Stmt_B[] -> [1, Y, ...] }
/// to schedule all instances of Stmt_A before any instance of Stmt_B.
///
/// To flatten, first begin with an offset of zero. Then determine the lowest
/// possible value of the dimension, call it "i" [In the example we start at 0].
/// Considering only schedules with that value, consider only instances with
/// that value and determine the extent of the next dimension. Let l_X(i) and
/// u_X(i) its minimum (lower bound) and maximum (upper bound) value. Add them
/// as "Offset + X - l_X(i)" to the new schedule, then add "u_X(i) - l_X(i) + 1"
/// to Offset and remove all i-instances from the old schedule. Repeat with the
/// remaining lowest value i' until there are no instances in the old schedule
/// left.
/// The example schedule would be transformed to:
///   { Stmt_X[] -> [X - l_X, ...]; Stmt_B -> [l_X - u_X + 1 + Y - l_Y, ...] }
isl::union_map tryFlattenSequence(isl::union_map Schedule) {
  auto IslCtx = Schedule.get_ctx();
  auto ScatterSet = isl::set(Schedule.range());

  auto ParamSpace = Schedule.get_space().params();
  auto Dims = ScatterSet.dim(isl::dim::set);
  assert(Dims >= 2);

  // Would cause an infinite loop.
  if (!isDimBoundedByConstant(ScatterSet, 0)) {
    LLVM_DEBUG(dbgs() << "Abort; dimension is not of fixed size\n");
    return nullptr;
  }

  auto AllDomains = Schedule.domain();
  auto AllDomainsToNull = isl::union_pw_multi_aff(AllDomains);

  auto NewSchedule = isl::union_map::empty(ParamSpace);
  auto Counter = isl::pw_aff(isl::local_space(ParamSpace.set_from_params()));

  while (!ScatterSet.is_empty()) {
    LLVM_DEBUG(dbgs() << "Next counter:\n  " << Counter << "\n");
    LLVM_DEBUG(dbgs() << "Remaining scatter set:\n  " << ScatterSet << "\n");
    auto ThisSet = ScatterSet.project_out(isl::dim::set, 1, Dims - 1);
    auto ThisFirst = ThisSet.lexmin();
    auto ScatterFirst = ThisFirst.add_dims(isl::dim::set, Dims - 1);

    auto SubSchedule = Schedule.intersect_range(ScatterFirst);
    SubSchedule = scheduleProjectOut(SubSchedule, 0, 1);
    SubSchedule = flattenSchedule(SubSchedule);

    auto SubDims = scheduleScatterDims(SubSchedule);
    auto FirstSubSchedule = scheduleProjectOut(SubSchedule, 1, SubDims - 1);
    auto FirstScheduleAff = scheduleExtractDimAff(FirstSubSchedule, 0);
    auto RemainingSubSchedule = scheduleProjectOut(SubSchedule, 0, 1);

    auto FirstSubScatter = isl::set(FirstSubSchedule.range());
    LLVM_DEBUG(dbgs() << "Next step in sequence is:\n  " << FirstSubScatter
                      << "\n");

    if (!isDimBoundedByParameter(FirstSubScatter, 0)) {
      LLVM_DEBUG(dbgs() << "Abort; sequence step is not bounded\n");
      return nullptr;
    }

    auto FirstSubScatterMap = isl::map::from_range(FirstSubScatter);

    // isl_set_dim_max returns a strange isl_pw_aff with domain tuple_id of
    // 'none'. It doesn't match with any space including a 0-dimensional
    // anonymous tuple.
    // Interesting, one can create such a set using
    // isl_set_universe(ParamSpace). Bug?
    auto PartMin = FirstSubScatterMap.dim_min(0);
    auto PartMax = FirstSubScatterMap.dim_max(0);
    auto One = isl::pw_aff(isl::set::universe(ParamSpace.set_from_params()),
                           isl::val::one(IslCtx));
    auto PartLen = PartMax.add(PartMin.neg()).add(One);

    auto AllPartMin = isl::union_pw_aff(PartMin).pullback(AllDomainsToNull);
    auto FirstScheduleAffNormalized = FirstScheduleAff.sub(AllPartMin);
    auto AllCounter = isl::union_pw_aff(Counter).pullback(AllDomainsToNull);
    auto FirstScheduleAffWithOffset =
        FirstScheduleAffNormalized.add(AllCounter);

    auto ScheduleWithOffset = isl::union_map(FirstScheduleAffWithOffset)
                                  .flat_range_product(RemainingSubSchedule);
    NewSchedule = NewSchedule.unite(ScheduleWithOffset);

    ScatterSet = ScatterSet.subtract(ScatterFirst);
    Counter = Counter.add(PartLen);
  }

  LLVM_DEBUG(dbgs() << "Sequence-flatten result is:\n  " << NewSchedule
                    << "\n");
  return NewSchedule;
}

/// Flatten a loop-like first dimension.
///
/// A loop-like dimension is one that depends on a variable (usually a loop's
/// induction variable). Let the input schedule look like this:
///   { Stmt[i] -> [i, X, ...] }
///
/// To flatten, we determine the largest extent of X which may not depend on the
/// actual value of i. Let l_X() the smallest possible value of X and u_X() its
/// largest value. Then, construct a new schedule
///   { Stmt[i] -> [i * (u_X() - l_X() + 1), ...] }
isl::union_map tryFlattenLoop(isl::union_map Schedule) {
  assert(scheduleScatterDims(Schedule) >= 2);

  auto Remaining = scheduleProjectOut(Schedule, 0, 1);
  auto SubSchedule = flattenSchedule(Remaining);
  auto SubDims = scheduleScatterDims(SubSchedule);

  auto SubExtent = isl::set(SubSchedule.range());
  auto SubExtentDims = SubExtent.dim(isl::dim::param);
  SubExtent = SubExtent.project_out(isl::dim::param, 0, SubExtentDims);
  SubExtent = SubExtent.project_out(isl::dim::set, 1, SubDims - 1);

  if (!isDimBoundedByConstant(SubExtent, 0)) {
    LLVM_DEBUG(dbgs() << "Abort; dimension not bounded by constant\n");
    return nullptr;
  }

  auto Min = SubExtent.dim_min(0);
  LLVM_DEBUG(dbgs() << "Min bound:\n  " << Min << "\n");
  auto MinVal = getConstant(Min, false, true);
  auto Max = SubExtent.dim_max(0);
  LLVM_DEBUG(dbgs() << "Max bound:\n  " << Max << "\n");
  auto MaxVal = getConstant(Max, true, false);

  if (!MinVal || !MaxVal || MinVal.is_nan() || MaxVal.is_nan()) {
    LLVM_DEBUG(dbgs() << "Abort; dimension bounds could not be determined\n");
    return nullptr;
  }

  auto FirstSubScheduleAff = scheduleExtractDimAff(SubSchedule, 0);
  auto RemainingSubSchedule = scheduleProjectOut(std::move(SubSchedule), 0, 1);

  auto LenVal = MaxVal.sub(MinVal).add_ui(1);
  auto FirstSubScheduleNormalized = subtract(FirstSubScheduleAff, MinVal);

  // TODO: Normalize FirstAff to zero (convert to isl_map, determine minimum,
  // subtract it)
  auto FirstAff = scheduleExtractDimAff(Schedule, 0);
  auto Offset = multiply(FirstAff, LenVal);
  auto Index = FirstSubScheduleNormalized.add(Offset);
  auto IndexMap = isl::union_map(Index);

  auto Result = IndexMap.flat_range_product(RemainingSubSchedule);
  LLVM_DEBUG(dbgs() << "Loop-flatten result is:\n  " << Result << "\n");
  return Result;
}
} // anonymous namespace

isl::union_map polly::flattenSchedule(isl::union_map Schedule) {
  auto Dims = scheduleScatterDims(Schedule);
  LLVM_DEBUG(dbgs() << "Recursive schedule to process:\n  " << Schedule
                    << "\n");

  // Base case; no dimensions left
  if (Dims == 0) {
    // TODO: Add one dimension?
    return Schedule;
  }

  // Base case; already one-dimensional
  if (Dims == 1)
    return Schedule;

  // Fixed dimension; no need to preserve variabledness.
  if (!isVariableDim(Schedule)) {
    LLVM_DEBUG(dbgs() << "Fixed dimension; try sequence flattening\n");
    auto NewScheduleSequence = tryFlattenSequence(Schedule);
    if (NewScheduleSequence)
      return NewScheduleSequence;
  }

  // Constant stride
  LLVM_DEBUG(dbgs() << "Try loop flattening\n");
  auto NewScheduleLoop = tryFlattenLoop(Schedule);
  if (NewScheduleLoop)
    return NewScheduleLoop;

  // Try again without loop condition (may blow up the number of pieces!!)
  LLVM_DEBUG(dbgs() << "Try sequence flattening again\n");
  auto NewScheduleSequence = tryFlattenSequence(Schedule);
  if (NewScheduleSequence)
    return NewScheduleSequence;

  // Cannot flatten
  return Schedule;
}