reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
//===- polly/ScheduleOptimizer.h - The Schedule Optimizer -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef POLLY_SCHEDULEOPTIMIZER_H
#define POLLY_SCHEDULEOPTIMIZER_H

#include "llvm/ADT/ArrayRef.h"
#include "isl/isl-noexceptions.h"

namespace llvm {

class TargetTransformInfo;
} // namespace llvm

struct isl_schedule_node;

/// Parameters of the micro kernel.
///
/// Parameters, which determine sizes of rank-1 (i.e., outer product) update
/// used in the optimized matrix multiplication.
struct MicroKernelParamsTy {
  int Mr;
  int Nr;
};

/// Parameters of the macro kernel.
///
/// Parameters, which determine sizes of blocks of partitioned matrices
/// used in the optimized matrix multiplication.
struct MacroKernelParamsTy {
  int Mc;
  int Nc;
  int Kc;
};

namespace polly {

struct Dependences;
class MemoryAccess;
class Scop;

/// Additional parameters of the schedule optimizer.
///
/// Target Transform Info and the SCoP dependencies used by the schedule
/// optimizer.
struct OptimizerAdditionalInfoTy {
  const llvm::TargetTransformInfo *TTI;
  const Dependences *D;
};

/// Parameters of the matrix multiplication operands.
///
/// Parameters, which describe access relations that represent operands of the
/// matrix multiplication.
struct MatMulInfoTy {
  MemoryAccess *A = nullptr;
  MemoryAccess *B = nullptr;
  MemoryAccess *ReadFromC = nullptr;
  MemoryAccess *WriteToC = nullptr;
  int i = -1;
  int j = -1;
  int k = -1;
};

extern bool DisablePollyTiling;
} // namespace polly

class ScheduleTreeOptimizer {
public:
  /// Apply schedule tree transformations.
  ///
  /// This function takes an (possibly already optimized) schedule tree and
  /// applies a set of additional optimizations on the schedule tree. The
  /// transformations applied include:
  ///
  ///   - Tiling
  ///   - Prevectorization
  ///
  /// @param Schedule The schedule object the transformations will be applied
  ///                 to.
  /// @param OAI      Target Transform Info and the SCoP dependencies.
  /// @returns        The transformed schedule.
  static isl::schedule
  optimizeSchedule(isl::schedule Schedule,
                   const polly::OptimizerAdditionalInfoTy *OAI = nullptr);

  /// Apply schedule tree transformations.
  ///
  /// This function takes a node in an (possibly already optimized) schedule
  /// tree and applies a set of additional optimizations on this schedule tree
  /// node and its descendants. The transformations applied include:
  ///
  ///   - Tiling
  ///   - Prevectorization
  ///
  /// @param Node The schedule object post-transformations will be applied to.
  /// @param OAI  Target Transform Info and the SCoP dependencies.
  /// @returns    The transformed schedule.
  static isl::schedule_node
  optimizeScheduleNode(isl::schedule_node Node,
                       const polly::OptimizerAdditionalInfoTy *OAI = nullptr);

  /// Decide if the @p NewSchedule is profitable for @p S.
  ///
  /// @param S           The SCoP we optimize.
  /// @param NewSchedule The new schedule we computed.
  ///
  /// @return True, if we believe @p NewSchedule is an improvement for @p S.
  static bool isProfitableSchedule(polly::Scop &S, isl::schedule NewSchedule);

  /// Isolate a set of partial tile prefixes.
  ///
  /// This set should ensure that it contains only partial tile prefixes that
  /// have exactly VectorWidth iterations.
  ///
  /// @param Node A schedule node band, which is a parent of a band node,
  ///             that contains a vector loop.
  /// @return Modified isl_schedule_node.
  static isl::schedule_node isolateFullPartialTiles(isl::schedule_node Node,
                                                    int VectorWidth);

private:
  /// Tile a schedule node.
  ///
  /// @param Node            The node to tile.
  /// @param Identifier      An name that identifies this kind of tiling and
  ///                        that is used to mark the tiled loops in the
  ///                        generated AST.
  /// @param TileSizes       A vector of tile sizes that should be used for
  ///                        tiling.
  /// @param DefaultTileSize A default tile size that is used for dimensions
  ///                        that are not covered by the TileSizes vector.
  static isl::schedule_node tileNode(isl::schedule_node Node,
                                     const char *Identifier,
                                     llvm::ArrayRef<int> TileSizes,
                                     int DefaultTileSize);

  /// Tile a schedule node and unroll point loops.
  ///
  /// @param Node            The node to register tile.
  /// @param TileSizes       A vector of tile sizes that should be used for
  ///                        tiling.
  /// @param DefaultTileSize A default tile size that is used for dimensions
  static isl::schedule_node applyRegisterTiling(isl::schedule_node Node,
                                                llvm::ArrayRef<int> TileSizes,
                                                int DefaultTileSize);

  /// Apply the BLIS matmul optimization pattern.
  ///
  /// Make the loops containing the matrix multiplication be the innermost
  /// loops and apply the BLIS matmul optimization pattern. BLIS implements
  /// gemm as three nested loops around a macro-kernel, plus two packing
  /// routines. The macro-kernel is implemented in terms of two additional
  /// loops around a micro-kernel. The micro-kernel is a loop around a rank-1
  /// (i.e., outer product) update.
  ///
  /// For a detailed description please see [1].
  ///
  /// The order of the loops defines the data reused in the BLIS implementation
  /// of gemm ([1]). In particular, elements of the matrix B, the second
  /// operand of matrix multiplication, are reused between iterations of the
  /// innermost loop. To keep the reused data in cache, only elements of matrix
  /// A, the first operand of matrix multiplication, should be evicted during
  /// an iteration of the innermost loop. To provide such a cache replacement
  /// policy, elements of the matrix A can, in particular, be loaded first and,
  /// consequently, be least-recently-used.
  ///
  /// In our case matrices are stored in row-major order instead of
  /// column-major order used in the BLIS implementation ([1]). It affects only
  /// on the form of the BLIS micro kernel and the computation of its
  /// parameters. In particular, reused elements of the matrix B are
  /// successively multiplied by specific elements of the matrix A.
  ///
  /// Refs.:
  /// [1] - Analytical Modeling is Enough for High Performance BLIS
  /// Tze Meng Low, Francisco D Igual, Tyler M Smith, Enrique S Quintana-Orti
  /// Technical Report, 2014
  /// http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf
  ///
  /// @see ScheduleTreeOptimizer::createMicroKernel
  /// @see ScheduleTreeOptimizer::createMacroKernel
  /// @see getMicroKernelParams
  /// @see getMacroKernelParams
  ///
  /// TODO: Implement the packing transformation.
  ///
  /// @param Node The node that contains a band to be optimized. The node
  ///             is required to successfully pass
  ///             ScheduleTreeOptimizer::isMatrMultPattern.
  /// @param TTI  Target Transform Info.
  /// @param MMI  Parameters of the matrix multiplication operands.
  /// @returns    The transformed schedule.
  static isl::schedule_node
  optimizeMatMulPattern(isl::schedule_node Node,
                        const llvm::TargetTransformInfo *TTI,
                        polly::MatMulInfoTy &MMI);

  /// Check if this node is a band node we want to tile.
  ///
  /// We look for innermost band nodes where individual dimensions are marked as
  /// permutable.
  ///
  /// @param Node The node to check.
  static bool isTileableBandNode(isl::schedule_node Node);

  /// Pre-vectorizes one scheduling dimension of a schedule band.
  ///
  /// prevectSchedBand splits out the dimension DimToVectorize, tiles it and
  /// sinks the resulting point loop.
  ///
  /// Example (DimToVectorize=0, VectorWidth=4):
  ///
  /// | Before transformation:
  /// |
  /// | A[i,j] -> [i,j]
  /// |
  /// | for (i = 0; i < 128; i++)
  /// |    for (j = 0; j < 128; j++)
  /// |      A(i,j);
  ///
  /// | After transformation:
  /// |
  /// | for (it = 0; it < 32; it+=1)
  /// |    for (j = 0; j < 128; j++)
  /// |      for (ip = 0; ip <= 3; ip++)
  /// |        A(4 * it + ip,j);
  ///
  /// The goal of this transformation is to create a trivially vectorizable
  /// loop.  This means a parallel loop at the innermost level that has a
  /// constant number of iterations corresponding to the target vector width.
  ///
  /// This transformation creates a loop at the innermost level. The loop has
  /// a constant number of iterations, if the number of loop iterations at
  /// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
  /// currently constant and not yet target specific. This function does not
  /// reason about parallelism.
  static isl::schedule_node prevectSchedBand(isl::schedule_node Node,
                                             unsigned DimToVectorize,
                                             int VectorWidth);

  /// Apply additional optimizations on the bands in the schedule tree.
  ///
  /// We are looking for an innermost band node and apply the following
  /// transformations:
  ///
  ///  - Tile the band
  ///      - if the band is tileable
  ///      - if the band has more than one loop dimension
  ///
  ///  - Prevectorize the schedule of the band (or the point loop in case of
  ///    tiling).
  ///      - if vectorization is enabled
  ///
  /// @param Node The schedule node to (possibly) optimize.
  /// @param User A pointer to forward some use information
  ///        (currently unused).
  static isl_schedule_node *optimizeBand(isl_schedule_node *Node, void *User);

  /// Apply additional optimizations on the bands in the schedule tree.
  ///
  /// We apply the following
  /// transformations:
  ///
  ///  - Tile the band
  ///  - Prevectorize the schedule of the band (or the point loop in case of
  ///    tiling).
  ///      - if vectorization is enabled
  ///
  /// @param Node The schedule node to (possibly) optimize.
  /// @param User A pointer to forward some use information
  ///        (currently unused).
  static isl::schedule_node standardBandOpts(isl::schedule_node Node,
                                             void *User);

  /// Check if this node contains a partial schedule that could
  ///        probably be optimized with analytical modeling.
  ///
  /// isMatrMultPattern tries to determine whether the following conditions
  /// are true:
  /// 1. the partial schedule contains only one statement.
  /// 2. there are exactly three input dimensions.
  /// 3. all memory accesses of the statement will have stride 0 or 1, if we
  ///    interchange loops (switch the variable used in the inner loop to
  ///    the outer loop).
  /// 4. all memory accesses of the statement except from the last one, are
  ///    read memory access and the last one is write memory access.
  /// 5. all subscripts of the last memory access of the statement don't
  ///    contain the variable used in the inner loop.
  /// If this is the case, we could try to use an approach that is similar to
  /// the one used to get close-to-peak performance of matrix multiplications.
  ///
  /// @param Node The node to check.
  /// @param D    The SCoP dependencies.
  /// @param MMI  Parameters of the matrix multiplication operands.
  static bool isMatrMultPattern(isl::schedule_node Node,
                                const polly::Dependences *D,
                                polly::MatMulInfoTy &MMI);

  /// Create the BLIS macro-kernel.
  ///
  /// We create the BLIS macro-kernel by applying a combination of tiling
  /// of dimensions of the band node and interchanging of two innermost
  /// modified dimensions. The values of of MacroKernelParams's fields are used
  /// as tile sizes.
  ///
  /// @param Node The schedule node to be modified.
  /// @param MacroKernelParams Parameters of the macro kernel
  ///                          to be used as tile sizes.
  static isl::schedule_node
  createMacroKernel(isl::schedule_node Node,
                    MacroKernelParamsTy MacroKernelParams);

  /// Create the BLIS macro-kernel.
  ///
  /// We create the BLIS macro-kernel by applying a combination of tiling
  /// of dimensions of the band node and interchanging of two innermost
  /// modified dimensions. The values passed in MicroKernelParam are used
  /// as tile sizes.
  ///
  /// @param Node The schedule node to be modified.
  /// @param MicroKernelParams Parameters of the micro kernel
  ///                          to be used as tile sizes.
  /// @see MicroKernelParamsTy
  static isl::schedule_node
  createMicroKernel(isl::schedule_node Node,
                    MicroKernelParamsTy MicroKernelParams);
};

/// Build the desired set of partial tile prefixes.
///
/// We build a set of partial tile prefixes, which are prefixes of the vector
/// loop that have exactly VectorWidth iterations.
///
/// 1. Drop all constraints involving the dimension that represents the
///    vector loop.
/// 2. Constrain the last dimension to get a set, which has exactly VectorWidth
///    iterations.
/// 3. Subtract loop domain from it, project out the vector loop dimension and
///    get a set that contains prefixes, which do not have exactly VectorWidth
///    iterations.
/// 4. Project out the vector loop dimension of the set that was build on the
///    first step and subtract the set built on the previous step to get the
///    desired set of prefixes.
///
/// @param ScheduleRange A range of a map, which describes a prefix schedule
///                      relation.
isl::set getPartialTilePrefixes(isl::set ScheduleRange, int VectorWidth);
#endif // POLLY_SCHEDULEOPTIMIZER_H