reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
//===- Writer.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Writer.h"
#include "Object.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/ErrorHandling.h"
#include <cstddef>
#include <cstdint>

namespace llvm {
namespace objcopy {
namespace coff {

using namespace object;
using namespace COFF;

Error COFFWriter::finalizeRelocTargets() {
  for (Section &Sec : Obj.getMutableSections()) {
    for (Relocation &R : Sec.Relocs) {
      const Symbol *Sym = Obj.findSymbol(R.Target);
      if (Sym == nullptr)
        return createStringError(object_error::invalid_symbol_index,
                                 "relocation target '%s' (%zu) not found",
                                 R.TargetName.str().c_str(), R.Target);
      R.Reloc.SymbolTableIndex = Sym->RawIndex;
    }
  }
  return Error::success();
}

Error COFFWriter::finalizeSymbolContents() {
  for (Symbol &Sym : Obj.getMutableSymbols()) {
    if (Sym.TargetSectionId <= 0) {
      // Undefined, or a special kind of symbol. These negative values
      // are stored in the SectionNumber field which is unsigned.
      Sym.Sym.SectionNumber = static_cast<uint32_t>(Sym.TargetSectionId);
    } else {
      const Section *Sec = Obj.findSection(Sym.TargetSectionId);
      if (Sec == nullptr)
        return createStringError(object_error::invalid_symbol_index,
                                 "symbol '%s' points to a removed section",
                                 Sym.Name.str().c_str());
      Sym.Sym.SectionNumber = Sec->Index;

      if (Sym.Sym.NumberOfAuxSymbols == 1 &&
          Sym.Sym.StorageClass == IMAGE_SYM_CLASS_STATIC) {
        coff_aux_section_definition *SD =
            reinterpret_cast<coff_aux_section_definition *>(
                Sym.AuxData[0].Opaque);
        uint32_t SDSectionNumber;
        if (Sym.AssociativeComdatTargetSectionId == 0) {
          // Not a comdat associative section; just set the Number field to
          // the number of the section itself.
          SDSectionNumber = Sec->Index;
        } else {
          Sec = Obj.findSection(Sym.AssociativeComdatTargetSectionId);
          if (Sec == nullptr)
            return createStringError(
                object_error::invalid_symbol_index,
                "symbol '%s' is associative to a removed section",
                Sym.Name.str().c_str());
          SDSectionNumber = Sec->Index;
        }
        // Update the section definition with the new section number.
        SD->NumberLowPart = static_cast<uint16_t>(SDSectionNumber);
        SD->NumberHighPart = static_cast<uint16_t>(SDSectionNumber >> 16);
      }
    }
    // Check that we actually have got AuxData to match the weak symbol target
    // we want to set. Only >= 1 would be required, but only == 1 makes sense.
    if (Sym.WeakTargetSymbolId && Sym.Sym.NumberOfAuxSymbols == 1) {
      coff_aux_weak_external *WE =
          reinterpret_cast<coff_aux_weak_external *>(Sym.AuxData[0].Opaque);
      const Symbol *Target = Obj.findSymbol(*Sym.WeakTargetSymbolId);
      if (Target == nullptr)
        return createStringError(object_error::invalid_symbol_index,
                                 "symbol '%s' is missing its weak target",
                                 Sym.Name.str().c_str());
      WE->TagIndex = Target->RawIndex;
    }
  }
  return Error::success();
}

void COFFWriter::layoutSections() {
  for (auto &S : Obj.getMutableSections()) {
    if (S.Header.SizeOfRawData > 0)
      S.Header.PointerToRawData = FileSize;
    FileSize += S.Header.SizeOfRawData; // For executables, this is already
                                        // aligned to FileAlignment.
    S.Header.NumberOfRelocations = S.Relocs.size();
    S.Header.PointerToRelocations =
        S.Header.NumberOfRelocations > 0 ? FileSize : 0;
    FileSize += S.Relocs.size() * sizeof(coff_relocation);
    FileSize = alignTo(FileSize, FileAlignment);

    if (S.Header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
      SizeOfInitializedData += S.Header.SizeOfRawData;
  }
}

size_t COFFWriter::finalizeStringTable() {
  for (const auto &S : Obj.getSections())
    if (S.Name.size() > COFF::NameSize)
      StrTabBuilder.add(S.Name);

  for (const auto &S : Obj.getSymbols())
    if (S.Name.size() > COFF::NameSize)
      StrTabBuilder.add(S.Name);

  StrTabBuilder.finalize();

  for (auto &S : Obj.getMutableSections()) {
    memset(S.Header.Name, 0, sizeof(S.Header.Name));
    if (S.Name.size() > COFF::NameSize) {
      snprintf(S.Header.Name, sizeof(S.Header.Name), "/%d",
               (int)StrTabBuilder.getOffset(S.Name));
    } else {
      memcpy(S.Header.Name, S.Name.data(), S.Name.size());
    }
  }
  for (auto &S : Obj.getMutableSymbols()) {
    if (S.Name.size() > COFF::NameSize) {
      S.Sym.Name.Offset.Zeroes = 0;
      S.Sym.Name.Offset.Offset = StrTabBuilder.getOffset(S.Name);
    } else {
      strncpy(S.Sym.Name.ShortName, S.Name.data(), COFF::NameSize);
    }
  }
  return StrTabBuilder.getSize();
}

template <class SymbolTy>
std::pair<size_t, size_t> COFFWriter::finalizeSymbolTable() {
  size_t RawSymIndex = 0;
  for (auto &S : Obj.getMutableSymbols()) {
    // Symbols normally have NumberOfAuxSymbols set correctly all the time.
    // For file symbols, we need to know the output file's symbol size to be
    // able to calculate the number of slots it occupies.
    if (!S.AuxFile.empty())
      S.Sym.NumberOfAuxSymbols =
          alignTo(S.AuxFile.size(), sizeof(SymbolTy)) / sizeof(SymbolTy);
    S.RawIndex = RawSymIndex;
    RawSymIndex += 1 + S.Sym.NumberOfAuxSymbols;
  }
  return std::make_pair(RawSymIndex * sizeof(SymbolTy), sizeof(SymbolTy));
}

Error COFFWriter::finalize(bool IsBigObj) {
  size_t SymTabSize, SymbolSize;
  std::tie(SymTabSize, SymbolSize) = IsBigObj
                                         ? finalizeSymbolTable<coff_symbol32>()
                                         : finalizeSymbolTable<coff_symbol16>();

  if (Error E = finalizeRelocTargets())
    return E;
  if (Error E = finalizeSymbolContents())
    return E;

  size_t SizeOfHeaders = 0;
  FileAlignment = 1;
  size_t PeHeaderSize = 0;
  if (Obj.IsPE) {
    Obj.DosHeader.AddressOfNewExeHeader =
        sizeof(Obj.DosHeader) + Obj.DosStub.size();
    SizeOfHeaders += Obj.DosHeader.AddressOfNewExeHeader + sizeof(PEMagic);

    FileAlignment = Obj.PeHeader.FileAlignment;
    Obj.PeHeader.NumberOfRvaAndSize = Obj.DataDirectories.size();

    PeHeaderSize = Obj.Is64 ? sizeof(pe32plus_header) : sizeof(pe32_header);
    SizeOfHeaders +=
        PeHeaderSize + sizeof(data_directory) * Obj.DataDirectories.size();
  }
  Obj.CoffFileHeader.NumberOfSections = Obj.getSections().size();
  SizeOfHeaders +=
      IsBigObj ? sizeof(coff_bigobj_file_header) : sizeof(coff_file_header);
  SizeOfHeaders += sizeof(coff_section) * Obj.getSections().size();
  SizeOfHeaders = alignTo(SizeOfHeaders, FileAlignment);

  Obj.CoffFileHeader.SizeOfOptionalHeader =
      PeHeaderSize + sizeof(data_directory) * Obj.DataDirectories.size();

  FileSize = SizeOfHeaders;
  SizeOfInitializedData = 0;

  layoutSections();

  if (Obj.IsPE) {
    Obj.PeHeader.SizeOfHeaders = SizeOfHeaders;
    Obj.PeHeader.SizeOfInitializedData = SizeOfInitializedData;

    if (!Obj.getSections().empty()) {
      const Section &S = Obj.getSections().back();
      Obj.PeHeader.SizeOfImage =
          alignTo(S.Header.VirtualAddress + S.Header.VirtualSize,
                  Obj.PeHeader.SectionAlignment);
    }

    // If the PE header had a checksum, clear it, since it isn't valid
    // any longer. (We don't calculate a new one.)
    Obj.PeHeader.CheckSum = 0;
  }

  size_t StrTabSize = finalizeStringTable();

  size_t PointerToSymbolTable = FileSize;
  // StrTabSize <= 4 is the size of an empty string table, only consisting
  // of the length field.
  if (SymTabSize == 0 && StrTabSize <= 4 && Obj.IsPE) {
    // For executables, don't point to the symbol table and skip writing
    // the length field, if both the symbol and string tables are empty.
    PointerToSymbolTable = 0;
    StrTabSize = 0;
  }

  size_t NumRawSymbols = SymTabSize / SymbolSize;
  Obj.CoffFileHeader.PointerToSymbolTable = PointerToSymbolTable;
  Obj.CoffFileHeader.NumberOfSymbols = NumRawSymbols;
  FileSize += SymTabSize + StrTabSize;
  FileSize = alignTo(FileSize, FileAlignment);

  return Error::success();
}

void COFFWriter::writeHeaders(bool IsBigObj) {
  uint8_t *Ptr = Buf.getBufferStart();
  if (Obj.IsPE) {
    memcpy(Ptr, &Obj.DosHeader, sizeof(Obj.DosHeader));
    Ptr += sizeof(Obj.DosHeader);
    memcpy(Ptr, Obj.DosStub.data(), Obj.DosStub.size());
    Ptr += Obj.DosStub.size();
    memcpy(Ptr, PEMagic, sizeof(PEMagic));
    Ptr += sizeof(PEMagic);
  }
  if (!IsBigObj) {
    memcpy(Ptr, &Obj.CoffFileHeader, sizeof(Obj.CoffFileHeader));
    Ptr += sizeof(Obj.CoffFileHeader);
  } else {
    // Generate a coff_bigobj_file_header, filling it in with the values
    // from Obj.CoffFileHeader. All extra fields that don't exist in
    // coff_file_header can be set to hardcoded values.
    coff_bigobj_file_header BigObjHeader;
    BigObjHeader.Sig1 = IMAGE_FILE_MACHINE_UNKNOWN;
    BigObjHeader.Sig2 = 0xffff;
    BigObjHeader.Version = BigObjHeader::MinBigObjectVersion;
    BigObjHeader.Machine = Obj.CoffFileHeader.Machine;
    BigObjHeader.TimeDateStamp = Obj.CoffFileHeader.TimeDateStamp;
    memcpy(BigObjHeader.UUID, BigObjMagic, sizeof(BigObjMagic));
    BigObjHeader.unused1 = 0;
    BigObjHeader.unused2 = 0;
    BigObjHeader.unused3 = 0;
    BigObjHeader.unused4 = 0;
    // The value in Obj.CoffFileHeader.NumberOfSections is truncated, thus
    // get the original one instead.
    BigObjHeader.NumberOfSections = Obj.getSections().size();
    BigObjHeader.PointerToSymbolTable = Obj.CoffFileHeader.PointerToSymbolTable;
    BigObjHeader.NumberOfSymbols = Obj.CoffFileHeader.NumberOfSymbols;

    memcpy(Ptr, &BigObjHeader, sizeof(BigObjHeader));
    Ptr += sizeof(BigObjHeader);
  }
  if (Obj.IsPE) {
    if (Obj.Is64) {
      memcpy(Ptr, &Obj.PeHeader, sizeof(Obj.PeHeader));
      Ptr += sizeof(Obj.PeHeader);
    } else {
      pe32_header PeHeader;
      copyPeHeader(PeHeader, Obj.PeHeader);
      // The pe32plus_header (stored in Object) lacks the BaseOfData field.
      PeHeader.BaseOfData = Obj.BaseOfData;

      memcpy(Ptr, &PeHeader, sizeof(PeHeader));
      Ptr += sizeof(PeHeader);
    }
    for (const auto &DD : Obj.DataDirectories) {
      memcpy(Ptr, &DD, sizeof(DD));
      Ptr += sizeof(DD);
    }
  }
  for (const auto &S : Obj.getSections()) {
    memcpy(Ptr, &S.Header, sizeof(S.Header));
    Ptr += sizeof(S.Header);
  }
}

void COFFWriter::writeSections() {
  for (const auto &S : Obj.getSections()) {
    uint8_t *Ptr = Buf.getBufferStart() + S.Header.PointerToRawData;
    ArrayRef<uint8_t> Contents = S.getContents();
    std::copy(Contents.begin(), Contents.end(), Ptr);

    // For executable sections, pad the remainder of the raw data size with
    // 0xcc, which is int3 on x86.
    if ((S.Header.Characteristics & IMAGE_SCN_CNT_CODE) &&
        S.Header.SizeOfRawData > Contents.size())
      memset(Ptr + Contents.size(), 0xcc,
             S.Header.SizeOfRawData - Contents.size());

    Ptr += S.Header.SizeOfRawData;
    for (const auto &R : S.Relocs) {
      memcpy(Ptr, &R.Reloc, sizeof(R.Reloc));
      Ptr += sizeof(R.Reloc);
    }
  }
}

template <class SymbolTy> void COFFWriter::writeSymbolStringTables() {
  uint8_t *Ptr = Buf.getBufferStart() + Obj.CoffFileHeader.PointerToSymbolTable;
  for (const auto &S : Obj.getSymbols()) {
    // Convert symbols back to the right size, from coff_symbol32.
    copySymbol<SymbolTy, coff_symbol32>(*reinterpret_cast<SymbolTy *>(Ptr),
                                        S.Sym);
    Ptr += sizeof(SymbolTy);
    if (!S.AuxFile.empty()) {
      // For file symbols, just write the string into the aux symbol slots,
      // assuming that the unwritten parts are initialized to zero in the memory
      // mapped file.
      std::copy(S.AuxFile.begin(), S.AuxFile.end(), Ptr);
      Ptr += S.Sym.NumberOfAuxSymbols * sizeof(SymbolTy);
    } else {
      // For other auxillary symbols, write their opaque payload into one symbol
      // table slot each. For big object files, the symbols are larger than the
      // opaque auxillary symbol struct and we leave padding at the end of each
      // entry.
      for (const AuxSymbol &AuxSym : S.AuxData) {
        ArrayRef<uint8_t> Ref = AuxSym.getRef();
        std::copy(Ref.begin(), Ref.end(), Ptr);
        Ptr += sizeof(SymbolTy);
      }
    }
  }
  if (StrTabBuilder.getSize() > 4 || !Obj.IsPE) {
    // Always write a string table in object files, even an empty one.
    StrTabBuilder.write(Ptr);
    Ptr += StrTabBuilder.getSize();
  }
}

Error COFFWriter::write(bool IsBigObj) {
  if (Error E = finalize(IsBigObj))
    return E;

  if (Error E = Buf.allocate(FileSize))
    return E;

  writeHeaders(IsBigObj);
  writeSections();
  if (IsBigObj)
    writeSymbolStringTables<coff_symbol32>();
  else
    writeSymbolStringTables<coff_symbol16>();

  if (Obj.IsPE)
    if (Error E = patchDebugDirectory())
      return E;

  return Buf.commit();
}

// Locate which sections contain the debug directories, iterate over all
// the debug_directory structs in there, and set the PointerToRawData field
// in all of them, according to their new physical location in the file.
Error COFFWriter::patchDebugDirectory() {
  if (Obj.DataDirectories.size() < DEBUG_DIRECTORY)
    return Error::success();
  const data_directory *Dir = &Obj.DataDirectories[DEBUG_DIRECTORY];
  if (Dir->Size <= 0)
    return Error::success();
  for (const auto &S : Obj.getSections()) {
    if (Dir->RelativeVirtualAddress >= S.Header.VirtualAddress &&
        Dir->RelativeVirtualAddress <
            S.Header.VirtualAddress + S.Header.SizeOfRawData) {
      if (Dir->RelativeVirtualAddress + Dir->Size >
          S.Header.VirtualAddress + S.Header.SizeOfRawData)
        return createStringError(object_error::parse_failed,
                                 "debug directory extends past end of section");

      size_t Offset = Dir->RelativeVirtualAddress - S.Header.VirtualAddress;
      uint8_t *Ptr = Buf.getBufferStart() + S.Header.PointerToRawData + Offset;
      uint8_t *End = Ptr + Dir->Size;
      while (Ptr < End) {
        debug_directory *Debug = reinterpret_cast<debug_directory *>(Ptr);
        Debug->PointerToRawData =
            S.Header.PointerToRawData + Offset + sizeof(debug_directory);
        Ptr += sizeof(debug_directory) + Debug->SizeOfData;
        Offset += sizeof(debug_directory) + Debug->SizeOfData;
      }
      // Debug directory found and patched, all done.
      return Error::success();
    }
  }
  return createStringError(object_error::parse_failed,
                           "debug directory not found");
}

Error COFFWriter::write() {
  bool IsBigObj = Obj.getSections().size() > MaxNumberOfSections16;
  if (IsBigObj && Obj.IsPE)
    return createStringError(object_error::parse_failed,
                             "too many sections for executable");
  return write(IsBigObj);
}

} // end namespace coff
} // end namespace objcopy
} // end namespace llvm