1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
| //===--------------------- TimelineView.cpp ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \brief
///
/// This file implements the TimelineView interface.
///
//===----------------------------------------------------------------------===//
#include "Views/TimelineView.h"
#include <numeric>
namespace llvm {
namespace mca {
TimelineView::TimelineView(const MCSubtargetInfo &sti, MCInstPrinter &Printer,
llvm::ArrayRef<llvm::MCInst> S, unsigned Iterations,
unsigned Cycles)
: STI(sti), MCIP(Printer), Source(S), CurrentCycle(0),
MaxCycle(Cycles == 0 ? 80 : Cycles), LastCycle(0), WaitTime(S.size()),
UsedBuffer(S.size()) {
unsigned NumInstructions = Source.size();
assert(Iterations && "Invalid number of iterations specified!");
NumInstructions *= Iterations;
Timeline.resize(NumInstructions);
TimelineViewEntry InvalidTVEntry = {-1, 0, 0, 0, 0};
std::fill(Timeline.begin(), Timeline.end(), InvalidTVEntry);
WaitTimeEntry NullWTEntry = {0, 0, 0};
std::fill(WaitTime.begin(), WaitTime.end(), NullWTEntry);
std::pair<unsigned, int> NullUsedBufferEntry = {/* Invalid resource ID*/ 0,
/* unknown buffer size */ -1};
std::fill(UsedBuffer.begin(), UsedBuffer.end(), NullUsedBufferEntry);
}
void TimelineView::onReservedBuffers(const InstRef &IR,
ArrayRef<unsigned> Buffers) {
if (IR.getSourceIndex() >= Source.size())
return;
const MCSchedModel &SM = STI.getSchedModel();
std::pair<unsigned, int> BufferInfo = {0, -1};
for (const unsigned Buffer : Buffers) {
const MCProcResourceDesc &MCDesc = *SM.getProcResource(Buffer);
if (!BufferInfo.first || BufferInfo.second > MCDesc.BufferSize) {
BufferInfo.first = Buffer;
BufferInfo.second = MCDesc.BufferSize;
}
}
UsedBuffer[IR.getSourceIndex()] = BufferInfo;
}
void TimelineView::onEvent(const HWInstructionEvent &Event) {
const unsigned Index = Event.IR.getSourceIndex();
if (Index >= Timeline.size())
return;
switch (Event.Type) {
case HWInstructionEvent::Retired: {
TimelineViewEntry &TVEntry = Timeline[Index];
if (CurrentCycle < MaxCycle)
TVEntry.CycleRetired = CurrentCycle;
// Update the WaitTime entry which corresponds to this Index.
assert(TVEntry.CycleDispatched >= 0 && "Invalid TVEntry found!");
unsigned CycleDispatched = static_cast<unsigned>(TVEntry.CycleDispatched);
WaitTimeEntry &WTEntry = WaitTime[Index % Source.size()];
WTEntry.CyclesSpentInSchedulerQueue +=
TVEntry.CycleIssued - CycleDispatched;
assert(CycleDispatched <= TVEntry.CycleReady &&
"Instruction cannot be ready if it hasn't been dispatched yet!");
WTEntry.CyclesSpentInSQWhileReady +=
TVEntry.CycleIssued - TVEntry.CycleReady;
WTEntry.CyclesSpentAfterWBAndBeforeRetire +=
(CurrentCycle - 1) - TVEntry.CycleExecuted;
break;
}
case HWInstructionEvent::Ready:
Timeline[Index].CycleReady = CurrentCycle;
break;
case HWInstructionEvent::Issued:
Timeline[Index].CycleIssued = CurrentCycle;
break;
case HWInstructionEvent::Executed:
Timeline[Index].CycleExecuted = CurrentCycle;
break;
case HWInstructionEvent::Dispatched:
// There may be multiple dispatch events. Microcoded instructions that are
// expanded into multiple uOps may require multiple dispatch cycles. Here,
// we want to capture the first dispatch cycle.
if (Timeline[Index].CycleDispatched == -1)
Timeline[Index].CycleDispatched = static_cast<int>(CurrentCycle);
break;
default:
return;
}
if (CurrentCycle < MaxCycle)
LastCycle = std::max(LastCycle, CurrentCycle);
}
static raw_ostream::Colors chooseColor(unsigned CumulativeCycles,
unsigned Executions, int BufferSize) {
if (CumulativeCycles && BufferSize < 0)
return raw_ostream::MAGENTA;
unsigned Size = static_cast<unsigned>(BufferSize);
if (CumulativeCycles >= Size * Executions)
return raw_ostream::RED;
if ((CumulativeCycles * 2) >= Size * Executions)
return raw_ostream::YELLOW;
return raw_ostream::SAVEDCOLOR;
}
static void tryChangeColor(raw_ostream &OS, unsigned Cycles,
unsigned Executions, int BufferSize) {
if (!OS.has_colors())
return;
raw_ostream::Colors Color = chooseColor(Cycles, Executions, BufferSize);
if (Color == raw_ostream::SAVEDCOLOR) {
OS.resetColor();
return;
}
OS.changeColor(Color, /* bold */ true, /* BG */ false);
}
void TimelineView::printWaitTimeEntry(formatted_raw_ostream &OS,
const WaitTimeEntry &Entry,
unsigned SourceIndex,
unsigned Executions) const {
bool PrintingTotals = SourceIndex == Source.size();
unsigned CumulativeExecutions = PrintingTotals ? Timeline.size() : Executions;
if (!PrintingTotals)
OS << SourceIndex << '.';
OS.PadToColumn(7);
double AverageTime1, AverageTime2, AverageTime3;
AverageTime1 =
(double)Entry.CyclesSpentInSchedulerQueue / CumulativeExecutions;
AverageTime2 = (double)Entry.CyclesSpentInSQWhileReady / CumulativeExecutions;
AverageTime3 =
(double)Entry.CyclesSpentAfterWBAndBeforeRetire / CumulativeExecutions;
OS << Executions;
OS.PadToColumn(13);
int BufferSize = PrintingTotals ? 0 : UsedBuffer[SourceIndex].second;
if (!PrintingTotals)
tryChangeColor(OS, Entry.CyclesSpentInSchedulerQueue, CumulativeExecutions,
BufferSize);
OS << format("%.1f", floor((AverageTime1 * 10) + 0.5) / 10);
OS.PadToColumn(20);
if (!PrintingTotals)
tryChangeColor(OS, Entry.CyclesSpentInSQWhileReady, CumulativeExecutions,
BufferSize);
OS << format("%.1f", floor((AverageTime2 * 10) + 0.5) / 10);
OS.PadToColumn(27);
if (!PrintingTotals)
tryChangeColor(OS, Entry.CyclesSpentAfterWBAndBeforeRetire,
CumulativeExecutions, STI.getSchedModel().MicroOpBufferSize);
OS << format("%.1f", floor((AverageTime3 * 10) + 0.5) / 10);
if (OS.has_colors())
OS.resetColor();
OS.PadToColumn(34);
}
void TimelineView::printAverageWaitTimes(raw_ostream &OS) const {
std::string Header =
"\n\nAverage Wait times (based on the timeline view):\n"
"[0]: Executions\n"
"[1]: Average time spent waiting in a scheduler's queue\n"
"[2]: Average time spent waiting in a scheduler's queue while ready\n"
"[3]: Average time elapsed from WB until retire stage\n\n"
" [0] [1] [2] [3]\n";
OS << Header;
// Use a different string stream for printing instructions.
std::string Instruction;
raw_string_ostream InstrStream(Instruction);
formatted_raw_ostream FOS(OS);
unsigned Executions = Timeline.size() / Source.size();
unsigned IID = 0;
for (const MCInst &Inst : Source) {
printWaitTimeEntry(FOS, WaitTime[IID], IID, Executions);
// Append the instruction info at the end of the line.
MCIP.printInst(&Inst, InstrStream, "", STI);
InstrStream.flush();
// Consume any tabs or spaces at the beginning of the string.
StringRef Str(Instruction);
Str = Str.ltrim();
FOS << " " << Str << '\n';
FOS.flush();
Instruction = "";
++IID;
}
// If the timeline contains more than one instruction,
// let's also print global averages.
if (Source.size() != 1) {
WaitTimeEntry TotalWaitTime = std::accumulate(
WaitTime.begin(), WaitTime.end(), WaitTimeEntry{0, 0, 0},
[](const WaitTimeEntry &A, const WaitTimeEntry &B) {
return WaitTimeEntry{
A.CyclesSpentInSchedulerQueue + B.CyclesSpentInSchedulerQueue,
A.CyclesSpentInSQWhileReady + B.CyclesSpentInSQWhileReady,
A.CyclesSpentAfterWBAndBeforeRetire +
B.CyclesSpentAfterWBAndBeforeRetire};
});
printWaitTimeEntry(FOS, TotalWaitTime, IID, Executions);
FOS << " "
<< "<total>" << '\n';
InstrStream.flush();
}
}
void TimelineView::printTimelineViewEntry(formatted_raw_ostream &OS,
const TimelineViewEntry &Entry,
unsigned Iteration,
unsigned SourceIndex) const {
if (Iteration == 0 && SourceIndex == 0)
OS << '\n';
OS << '[' << Iteration << ',' << SourceIndex << ']';
OS.PadToColumn(10);
assert(Entry.CycleDispatched >= 0 && "Invalid TimelineViewEntry!");
unsigned CycleDispatched = static_cast<unsigned>(Entry.CycleDispatched);
for (unsigned I = 0, E = CycleDispatched; I < E; ++I)
OS << ((I % 5 == 0) ? '.' : ' ');
OS << TimelineView::DisplayChar::Dispatched;
if (CycleDispatched != Entry.CycleExecuted) {
// Zero latency instructions have the same value for CycleDispatched,
// CycleIssued and CycleExecuted.
for (unsigned I = CycleDispatched + 1, E = Entry.CycleIssued; I < E; ++I)
OS << TimelineView::DisplayChar::Waiting;
if (Entry.CycleIssued == Entry.CycleExecuted)
OS << TimelineView::DisplayChar::DisplayChar::Executed;
else {
if (CycleDispatched != Entry.CycleIssued)
OS << TimelineView::DisplayChar::Executing;
for (unsigned I = Entry.CycleIssued + 1, E = Entry.CycleExecuted; I < E;
++I)
OS << TimelineView::DisplayChar::Executing;
OS << TimelineView::DisplayChar::Executed;
}
}
for (unsigned I = Entry.CycleExecuted + 1, E = Entry.CycleRetired; I < E; ++I)
OS << TimelineView::DisplayChar::RetireLag;
OS << TimelineView::DisplayChar::Retired;
// Skip other columns.
for (unsigned I = Entry.CycleRetired + 1, E = LastCycle; I <= E; ++I)
OS << ((I % 5 == 0 || I == LastCycle) ? '.' : ' ');
}
static void printTimelineHeader(formatted_raw_ostream &OS, unsigned Cycles) {
OS << "\n\nTimeline view:\n";
if (Cycles >= 10) {
OS.PadToColumn(10);
for (unsigned I = 0; I <= Cycles; ++I) {
if (((I / 10) & 1) == 0)
OS << ' ';
else
OS << I % 10;
}
OS << '\n';
}
OS << "Index";
OS.PadToColumn(10);
for (unsigned I = 0; I <= Cycles; ++I) {
if (((I / 10) & 1) == 0)
OS << I % 10;
else
OS << ' ';
}
OS << '\n';
}
void TimelineView::printTimeline(raw_ostream &OS) const {
formatted_raw_ostream FOS(OS);
printTimelineHeader(FOS, LastCycle);
FOS.flush();
// Use a different string stream for the instruction.
std::string Instruction;
raw_string_ostream InstrStream(Instruction);
unsigned IID = 0;
const unsigned Iterations = Timeline.size() / Source.size();
for (unsigned Iteration = 0; Iteration < Iterations; ++Iteration) {
for (const MCInst &Inst : Source) {
const TimelineViewEntry &Entry = Timeline[IID];
if (Entry.CycleRetired == 0)
return;
unsigned SourceIndex = IID % Source.size();
printTimelineViewEntry(FOS, Entry, Iteration, SourceIndex);
// Append the instruction info at the end of the line.
MCIP.printInst(&Inst, InstrStream, "", STI);
InstrStream.flush();
// Consume any tabs or spaces at the beginning of the string.
StringRef Str(Instruction);
Str = Str.ltrim();
FOS << " " << Str << '\n';
FOS.flush();
Instruction = "";
++IID;
}
}
}
} // namespace mca
} // namespace llvm
|