reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
//===-- HashedNameToDIE.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "HashedNameToDIE.h"
#include "llvm/ADT/StringRef.h"

void DWARFMappedHash::ExtractDIEArray(const DIEInfoArray &die_info_array,
                                      DIEArray &die_offsets) {
  const size_t count = die_info_array.size();
  for (size_t i = 0; i < count; ++i)
    die_offsets.emplace_back(die_info_array[i]);
}

void DWARFMappedHash::ExtractDIEArray(const DIEInfoArray &die_info_array,
                                      const dw_tag_t tag,
                                      DIEArray &die_offsets) {
  if (tag == 0) {
    ExtractDIEArray(die_info_array, die_offsets);
  } else {
    const size_t count = die_info_array.size();
    for (size_t i = 0; i < count; ++i) {
      const dw_tag_t die_tag = die_info_array[i].tag;
      bool tag_matches = die_tag == 0 || tag == die_tag;
      if (!tag_matches) {
        if (die_tag == DW_TAG_class_type || die_tag == DW_TAG_structure_type)
          tag_matches =
              tag == DW_TAG_structure_type || tag == DW_TAG_class_type;
      }
      if (tag_matches)
        die_offsets.emplace_back(die_info_array[i]);
    }
  }
}

void DWARFMappedHash::ExtractDIEArray(const DIEInfoArray &die_info_array,
                                      const dw_tag_t tag,
                                      const uint32_t qualified_name_hash,
                                      DIEArray &die_offsets) {
  if (tag == 0) {
    ExtractDIEArray(die_info_array, die_offsets);
  } else {
    const size_t count = die_info_array.size();
    for (size_t i = 0; i < count; ++i) {
      if (qualified_name_hash != die_info_array[i].qualified_name_hash)
        continue;
      const dw_tag_t die_tag = die_info_array[i].tag;
      bool tag_matches = die_tag == 0 || tag == die_tag;
      if (!tag_matches) {
        if (die_tag == DW_TAG_class_type || die_tag == DW_TAG_structure_type)
          tag_matches =
              tag == DW_TAG_structure_type || tag == DW_TAG_class_type;
      }
      if (tag_matches)
        die_offsets.emplace_back(die_info_array[i]);
    }
  }
}

void DWARFMappedHash::ExtractClassOrStructDIEArray(
    const DIEInfoArray &die_info_array,
    bool return_implementation_only_if_available, DIEArray &die_offsets) {
  const size_t count = die_info_array.size();
  for (size_t i = 0; i < count; ++i) {
    const dw_tag_t die_tag = die_info_array[i].tag;
    if (die_tag == 0 || die_tag == DW_TAG_class_type ||
        die_tag == DW_TAG_structure_type) {
      if (die_info_array[i].type_flags & eTypeFlagClassIsImplementation) {
        if (return_implementation_only_if_available) {
          // We found the one true definition for this class, so only return
          // that
          die_offsets.clear();
          die_offsets.emplace_back(die_info_array[i]);
          return;
        } else {
          // Put the one true definition as the first entry so it matches first
          die_offsets.emplace(die_offsets.begin(), die_info_array[i]);
        }
      } else {
        die_offsets.emplace_back(die_info_array[i]);
      }
    }
  }
}

void DWARFMappedHash::ExtractTypesFromDIEArray(
    const DIEInfoArray &die_info_array, uint32_t type_flag_mask,
    uint32_t type_flag_value, DIEArray &die_offsets) {
  const size_t count = die_info_array.size();
  for (size_t i = 0; i < count; ++i) {
    if ((die_info_array[i].type_flags & type_flag_mask) == type_flag_value)
      die_offsets.emplace_back(die_info_array[i]);
  }
}

const char *DWARFMappedHash::GetAtomTypeName(uint16_t atom) {
  switch (atom) {
  case eAtomTypeNULL:
    return "NULL";
  case eAtomTypeDIEOffset:
    return "die-offset";
  case eAtomTypeCUOffset:
    return "cu-offset";
  case eAtomTypeTag:
    return "die-tag";
  case eAtomTypeNameFlags:
    return "name-flags";
  case eAtomTypeTypeFlags:
    return "type-flags";
  case eAtomTypeQualNameHash:
    return "qualified-name-hash";
  }
  return "<invalid>";
}

DWARFMappedHash::DIEInfo::DIEInfo(dw_offset_t o, dw_tag_t t, uint32_t f,
                                  uint32_t h)
    : die_offset(o), tag(t), type_flags(f), qualified_name_hash(h) {}

DWARFMappedHash::Prologue::Prologue(dw_offset_t _die_base_offset)
    : die_base_offset(_die_base_offset), atoms(), atom_mask(0),
      min_hash_data_byte_size(0), hash_data_has_fixed_byte_size(true) {
  // Define an array of DIE offsets by first defining an array, and then define
  // the atom type for the array, in this case we have an array of DIE offsets.
  AppendAtom(eAtomTypeDIEOffset, DW_FORM_data4);
}

void DWARFMappedHash::Prologue::ClearAtoms() {
  hash_data_has_fixed_byte_size = true;
  min_hash_data_byte_size = 0;
  atom_mask = 0;
  atoms.clear();
}

bool DWARFMappedHash::Prologue::ContainsAtom(AtomType atom_type) const {
  return (atom_mask & (1u << atom_type)) != 0;
}

void DWARFMappedHash::Prologue::Clear() {
  die_base_offset = 0;
  ClearAtoms();
}

void DWARFMappedHash::Prologue::AppendAtom(AtomType type, dw_form_t form) {
  atoms.push_back({type, form});
  atom_mask |= 1u << type;
  switch (form) {
  case DW_FORM_indirect:
  case DW_FORM_exprloc:
  case DW_FORM_flag_present:
  case DW_FORM_ref_sig8:
    llvm_unreachable("Unhandled atom form");

  case DW_FORM_addrx:
  case DW_FORM_string:
  case DW_FORM_block:
  case DW_FORM_block1:
  case DW_FORM_sdata:
  case DW_FORM_udata:
  case DW_FORM_ref_udata:
  case DW_FORM_GNU_addr_index:
  case DW_FORM_GNU_str_index:
    hash_data_has_fixed_byte_size = false;
    LLVM_FALLTHROUGH;
  case DW_FORM_flag:
  case DW_FORM_data1:
  case DW_FORM_ref1:
  case DW_FORM_sec_offset:
    min_hash_data_byte_size += 1;
    break;

  case DW_FORM_block2:
    hash_data_has_fixed_byte_size = false;
    LLVM_FALLTHROUGH;
  case DW_FORM_data2:
  case DW_FORM_ref2:
    min_hash_data_byte_size += 2;
    break;

  case DW_FORM_block4:
    hash_data_has_fixed_byte_size = false;
    LLVM_FALLTHROUGH;
  case DW_FORM_data4:
  case DW_FORM_ref4:
  case DW_FORM_addr:
  case DW_FORM_ref_addr:
  case DW_FORM_strp:
    min_hash_data_byte_size += 4;
    break;

  case DW_FORM_data8:
  case DW_FORM_ref8:
    min_hash_data_byte_size += 8;
    break;
  }
}

lldb::offset_t
DWARFMappedHash::Prologue::Read(const lldb_private::DataExtractor &data,
                                lldb::offset_t offset) {
  ClearAtoms();

  die_base_offset = data.GetU32(&offset);

  const uint32_t atom_count = data.GetU32(&offset);
  if (atom_count == 0x00060003u) {
    // Old format, deal with contents of old pre-release format.
    while (data.GetU32(&offset)) {
      /* do nothing */;
    }

    // Hardcode to the only known value for now.
    AppendAtom(eAtomTypeDIEOffset, DW_FORM_data4);
  } else {
    for (uint32_t i = 0; i < atom_count; ++i) {
      AtomType type = (AtomType)data.GetU16(&offset);
      dw_form_t form = (dw_form_t)data.GetU16(&offset);
      AppendAtom(type, form);
    }
  }
  return offset;
}

size_t DWARFMappedHash::Prologue::GetByteSize() const {
  // Add an extra count to the atoms size for the zero termination Atom that
  // gets written to disk.
  return sizeof(die_base_offset) + sizeof(uint32_t) +
         atoms.size() * sizeof(Atom);
}

size_t DWARFMappedHash::Prologue::GetMinimumHashDataByteSize() const {
  return min_hash_data_byte_size;
}

bool DWARFMappedHash::Prologue::HashDataHasFixedByteSize() const {
  return hash_data_has_fixed_byte_size;
}

size_t DWARFMappedHash::Header::GetByteSize(const HeaderData &header_data) {
  return header_data.GetByteSize();
}

lldb::offset_t DWARFMappedHash::Header::Read(lldb_private::DataExtractor &data,
                                             lldb::offset_t offset) {
  offset = MappedHash::Header<Prologue>::Read(data, offset);
  if (offset != UINT32_MAX) {
    offset = header_data.Read(data, offset);
  }
  return offset;
}

bool DWARFMappedHash::Header::Read(const lldb_private::DWARFDataExtractor &data,
                                   lldb::offset_t *offset_ptr,
                                   DIEInfo &hash_data) const {
  const size_t num_atoms = header_data.atoms.size();
  if (num_atoms == 0)
    return false;

  for (size_t i = 0; i < num_atoms; ++i) {
    DWARFFormValue form_value(nullptr, header_data.atoms[i].form);

    if (!form_value.ExtractValue(data, offset_ptr))
      return false;

    switch (header_data.atoms[i].type) {
    case eAtomTypeDIEOffset: // DIE offset, check form for encoding
      hash_data.die_offset =
          DWARFFormValue::IsDataForm(form_value.Form())
              ? form_value.Unsigned()
              : form_value.Reference(header_data.die_base_offset);
      break;

    case eAtomTypeTag: // DW_TAG value for the DIE
      hash_data.tag = (dw_tag_t)form_value.Unsigned();
      break;

    case eAtomTypeTypeFlags: // Flags from enum TypeFlags
      hash_data.type_flags = (uint32_t)form_value.Unsigned();
      break;

    case eAtomTypeQualNameHash: // Flags from enum TypeFlags
      hash_data.qualified_name_hash = form_value.Unsigned();
      break;

    default:
      // We can always skip atoms we don't know about.
      break;
    }
  }
  return hash_data.die_offset != DW_INVALID_OFFSET;
}

DWARFMappedHash::MemoryTable::MemoryTable(
    lldb_private::DWARFDataExtractor &table_data,
    const lldb_private::DWARFDataExtractor &string_table, const char *name)
    : MappedHash::MemoryTable<uint32_t, Header, DIEInfoArray>(table_data),
      m_data(table_data), m_string_table(string_table), m_name(name) {}

const char *
DWARFMappedHash::MemoryTable::GetStringForKeyType(KeyType key) const {
  // The key in the DWARF table is the .debug_str offset for the string
  return m_string_table.PeekCStr(key);
}

bool DWARFMappedHash::MemoryTable::ReadHashData(uint32_t hash_data_offset,
                                                HashData &hash_data) const {
  lldb::offset_t offset = hash_data_offset;
  // Skip string table offset that contains offset of hash name in .debug_str.
  offset += 4;
  const uint32_t count = m_data.GetU32(&offset);
  if (count > 0) {
    hash_data.resize(count);
    for (uint32_t i = 0; i < count; ++i) {
      if (!m_header.Read(m_data, &offset, hash_data[i]))
        return false;
    }
  } else
    hash_data.clear();
  return true;
}

DWARFMappedHash::MemoryTable::Result
DWARFMappedHash::MemoryTable::GetHashDataForName(
    llvm::StringRef name, lldb::offset_t *hash_data_offset_ptr,
    Pair &pair) const {
  pair.key = m_data.GetU32(hash_data_offset_ptr);
  pair.value.clear();

  // If the key is zero, this terminates our chain of HashData objects for this
  // hash value.
  if (pair.key == 0)
    return eResultEndOfHashData;

  // There definitely should be a string for this string offset, if there
  // isn't, there is something wrong, return and error.
  const char *strp_cstr = m_string_table.PeekCStr(pair.key);
  if (strp_cstr == nullptr) {
    *hash_data_offset_ptr = UINT32_MAX;
    return eResultError;
  }

  const uint32_t count = m_data.GetU32(hash_data_offset_ptr);
  const size_t min_total_hash_data_size =
      count * m_header.header_data.GetMinimumHashDataByteSize();
  if (count > 0 && m_data.ValidOffsetForDataOfSize(*hash_data_offset_ptr,
                                                   min_total_hash_data_size)) {
    // We have at least one HashData entry, and we have enough data to parse at
    // least "count" HashData entries.

    // First make sure the entire C string matches...
    const bool match = name == strp_cstr;

    if (!match && m_header.header_data.HashDataHasFixedByteSize()) {
      // If the string doesn't match and we have fixed size data, we can just
      // add the total byte size of all HashData objects to the hash data
      // offset and be done...
      *hash_data_offset_ptr += min_total_hash_data_size;
    } else {
      // If the string does match, or we don't have fixed size data then we
      // need to read the hash data as a stream. If the string matches we also
      // append all HashData objects to the value array.
      for (uint32_t i = 0; i < count; ++i) {
        DIEInfo die_info;
        if (m_header.Read(m_data, hash_data_offset_ptr, die_info)) {
          // Only happened if the HashData of the string matched...
          if (match)
            pair.value.push_back(die_info);
        } else {
          // Something went wrong while reading the data.
          *hash_data_offset_ptr = UINT32_MAX;
          return eResultError;
        }
      }
    }
    // Return the correct response depending on if the string matched or not...
    if (match) {
      // The key (cstring) matches and we have lookup results!
      return eResultKeyMatch;
    } else {
      // The key doesn't match, this function will get called again for the
      // next key/value or the key terminator which in our case is a zero
      // .debug_str offset.
      return eResultKeyMismatch;
    }
  } else {
    *hash_data_offset_ptr = UINT32_MAX;
    return eResultError;
  }
}

DWARFMappedHash::MemoryTable::Result
DWARFMappedHash::MemoryTable::AppendHashDataForRegularExpression(
    const lldb_private::RegularExpression &regex,
    lldb::offset_t *hash_data_offset_ptr, Pair &pair) const {
  pair.key = m_data.GetU32(hash_data_offset_ptr);
  // If the key is zero, this terminates our chain of HashData objects for this
  // hash value.
  if (pair.key == 0)
    return eResultEndOfHashData;

  // There definitely should be a string for this string offset, if there
  // isn't, there is something wrong, return and error.
  const char *strp_cstr = m_string_table.PeekCStr(pair.key);
  if (strp_cstr == nullptr)
    return eResultError;

  const uint32_t count = m_data.GetU32(hash_data_offset_ptr);
  const size_t min_total_hash_data_size =
      count * m_header.header_data.GetMinimumHashDataByteSize();
  if (count > 0 && m_data.ValidOffsetForDataOfSize(*hash_data_offset_ptr,
                                                   min_total_hash_data_size)) {
    const bool match = regex.Execute(llvm::StringRef(strp_cstr));

    if (!match && m_header.header_data.HashDataHasFixedByteSize()) {
      // If the regex doesn't match and we have fixed size data, we can just
      // add the total byte size of all HashData objects to the hash data
      // offset and be done...
      *hash_data_offset_ptr += min_total_hash_data_size;
    } else {
      // If the string does match, or we don't have fixed size data then we
      // need to read the hash data as a stream. If the string matches we also
      // append all HashData objects to the value array.
      for (uint32_t i = 0; i < count; ++i) {
        DIEInfo die_info;
        if (m_header.Read(m_data, hash_data_offset_ptr, die_info)) {
          // Only happened if the HashData of the string matched...
          if (match)
            pair.value.push_back(die_info);
        } else {
          // Something went wrong while reading the data
          *hash_data_offset_ptr = UINT32_MAX;
          return eResultError;
        }
      }
    }
    // Return the correct response depending on if the string matched or not...
    if (match) {
      // The key (cstring) matches and we have lookup results!
      return eResultKeyMatch;
    } else {
      // The key doesn't match, this function will get called again for the
      // next key/value or the key terminator which in our case is a zero
      // .debug_str offset.
      return eResultKeyMismatch;
    }
  } else {
    *hash_data_offset_ptr = UINT32_MAX;
    return eResultError;
  }
}

size_t DWARFMappedHash::MemoryTable::AppendAllDIEsThatMatchingRegex(
    const lldb_private::RegularExpression &regex,
    DIEInfoArray &die_info_array) const {
  const uint32_t hash_count = m_header.hashes_count;
  Pair pair;
  for (uint32_t offset_idx = 0; offset_idx < hash_count; ++offset_idx) {
    lldb::offset_t hash_data_offset = GetHashDataOffset(offset_idx);
    while (hash_data_offset != UINT32_MAX) {
      const lldb::offset_t prev_hash_data_offset = hash_data_offset;
      Result hash_result =
          AppendHashDataForRegularExpression(regex, &hash_data_offset, pair);
      if (prev_hash_data_offset == hash_data_offset)
        break;

      // Check the result of getting our hash data.
      switch (hash_result) {
      case eResultKeyMatch:
      case eResultKeyMismatch:
        // Whether we matches or not, it doesn't matter, we keep looking.
        break;

      case eResultEndOfHashData:
      case eResultError:
        hash_data_offset = UINT32_MAX;
        break;
      }
    }
  }
  die_info_array.swap(pair.value);
  return die_info_array.size();
}

size_t DWARFMappedHash::MemoryTable::AppendAllDIEsInRange(
    const uint32_t die_offset_start, const uint32_t die_offset_end,
    DIEInfoArray &die_info_array) const {
  const uint32_t hash_count = m_header.hashes_count;
  for (uint32_t offset_idx = 0; offset_idx < hash_count; ++offset_idx) {
    bool done = false;
    lldb::offset_t hash_data_offset = GetHashDataOffset(offset_idx);
    while (!done && hash_data_offset != UINT32_MAX) {
      KeyType key = m_data.GetU32(&hash_data_offset);
      // If the key is zero, this terminates our chain of HashData objects for
      // this hash value.
      if (key == 0)
        break;

      const uint32_t count = m_data.GetU32(&hash_data_offset);
      for (uint32_t i = 0; i < count; ++i) {
        DIEInfo die_info;
        if (m_header.Read(m_data, &hash_data_offset, die_info)) {
          if (die_info.die_offset == 0)
            done = true;
          if (die_offset_start <= die_info.die_offset &&
              die_info.die_offset < die_offset_end)
            die_info_array.push_back(die_info);
        }
      }
    }
  }
  return die_info_array.size();
}

size_t DWARFMappedHash::MemoryTable::FindByName(llvm::StringRef name,
                                                DIEArray &die_offsets) {
  if (name.empty())
    return 0;

  DIEInfoArray die_info_array;
  if (FindByName(name, die_info_array))
    DWARFMappedHash::ExtractDIEArray(die_info_array, die_offsets);
  return die_info_array.size();
}

size_t DWARFMappedHash::MemoryTable::FindByNameAndTag(llvm::StringRef name,
                                                      const dw_tag_t tag,
                                                      DIEArray &die_offsets) {
  DIEInfoArray die_info_array;
  if (FindByName(name, die_info_array))
    DWARFMappedHash::ExtractDIEArray(die_info_array, tag, die_offsets);
  return die_info_array.size();
}

size_t DWARFMappedHash::MemoryTable::FindByNameAndTagAndQualifiedNameHash(
    llvm::StringRef name, const dw_tag_t tag,
    const uint32_t qualified_name_hash, DIEArray &die_offsets) {
  DIEInfoArray die_info_array;
  if (FindByName(name, die_info_array))
    DWARFMappedHash::ExtractDIEArray(die_info_array, tag, qualified_name_hash,
                                     die_offsets);
  return die_info_array.size();
}

size_t DWARFMappedHash::MemoryTable::FindCompleteObjCClassByName(
    llvm::StringRef name, DIEArray &die_offsets, bool must_be_implementation) {
  DIEInfoArray die_info_array;
  if (FindByName(name, die_info_array)) {
    if (must_be_implementation &&
        GetHeader().header_data.ContainsAtom(eAtomTypeTypeFlags)) {
      // If we have two atoms, then we have the DIE offset and the type flags
      // so we can find the objective C class efficiently.
      DWARFMappedHash::ExtractTypesFromDIEArray(die_info_array, UINT32_MAX,
                                                eTypeFlagClassIsImplementation,
                                                die_offsets);
    } else {
      // We don't only want the one true definition, so try and see what we can
      // find, and only return class or struct DIEs. If we do have the full
      // implementation, then return it alone, else return all possible
      // matches.
      const bool return_implementation_only_if_available = true;
      DWARFMappedHash::ExtractClassOrStructDIEArray(
          die_info_array, return_implementation_only_if_available, die_offsets);
    }
  }
  return die_offsets.size();
}

size_t DWARFMappedHash::MemoryTable::FindByName(llvm::StringRef name,
                                                DIEInfoArray &die_info_array) {
  if (name.empty())
    return 0;

  Pair kv_pair;
  size_t old_size = die_info_array.size();
  if (Find(name, kv_pair)) {
    die_info_array.swap(kv_pair.value);
    return die_info_array.size() - old_size;
  }
  return 0;
}