reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
//===-- MainLoop.cpp --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Config/llvm-config.h"

#include "lldb/Host/MainLoop.h"
#include "lldb/Host/PosixApi.h"
#include "lldb/Utility/Status.h"
#include <algorithm>
#include <cassert>
#include <cerrno>
#include <csignal>
#include <time.h>
#include <vector>

// Multiplexing is implemented using kqueue on systems that support it (BSD
// variants including OSX). On linux we use ppoll, while android uses pselect
// (ppoll is present but not implemented properly). On windows we use WSApoll
// (which does not support signals).

#if HAVE_SYS_EVENT_H
#include <sys/event.h>
#elif defined(_WIN32)
#include <winsock2.h>
#elif defined(__ANDROID__)
#include <sys/syscall.h>
#else
#include <poll.h>
#endif

#ifdef _WIN32
#define POLL WSAPoll
#else
#define POLL poll
#endif

#if SIGNAL_POLLING_UNSUPPORTED
#ifdef _WIN32
typedef int sigset_t;
typedef int siginfo_t;
#endif

int ppoll(struct pollfd *fds, size_t nfds, const struct timespec *timeout_ts,
          const sigset_t *) {
  int timeout =
      (timeout_ts == nullptr)
          ? -1
          : (timeout_ts->tv_sec * 1000 + timeout_ts->tv_nsec / 1000000);
  return POLL(fds, nfds, timeout);
}

#endif

using namespace lldb;
using namespace lldb_private;

static sig_atomic_t g_signal_flags[NSIG];

#ifndef SIGNAL_POLLING_UNSUPPORTED
static void SignalHandler(int signo, siginfo_t *info, void *) {
  assert(signo < NSIG);
  g_signal_flags[signo] = 1;
}
#endif

class MainLoop::RunImpl {
public:
  RunImpl(MainLoop &loop);
  ~RunImpl() = default;

  Status Poll();
  void ProcessEvents();

private:
  MainLoop &loop;

#if HAVE_SYS_EVENT_H
  std::vector<struct kevent> in_events;
  struct kevent out_events[4];
  int num_events = -1;

#else
#ifdef __ANDROID__
  fd_set read_fd_set;
#else
  std::vector<struct pollfd> read_fds;
#endif

  sigset_t get_sigmask();
#endif
};

#if HAVE_SYS_EVENT_H
MainLoop::RunImpl::RunImpl(MainLoop &loop) : loop(loop) {
  in_events.reserve(loop.m_read_fds.size());
}

Status MainLoop::RunImpl::Poll() {
  in_events.resize(loop.m_read_fds.size());
  unsigned i = 0;
  for (auto &fd : loop.m_read_fds)
    EV_SET(&in_events[i++], fd.first, EVFILT_READ, EV_ADD, 0, 0, 0);

  num_events = kevent(loop.m_kqueue, in_events.data(), in_events.size(),
                      out_events, llvm::array_lengthof(out_events), nullptr);

  if (num_events < 0) {
    if (errno == EINTR) {
      // in case of EINTR, let the main loop run one iteration
      // we need to zero num_events to avoid assertions failing
      num_events = 0;
    } else
      return Status(errno, eErrorTypePOSIX);
  }
  return Status();
}

void MainLoop::RunImpl::ProcessEvents() {
  assert(num_events >= 0);
  for (int i = 0; i < num_events; ++i) {
    if (loop.m_terminate_request)
      return;
    switch (out_events[i].filter) {
    case EVFILT_READ:
      loop.ProcessReadObject(out_events[i].ident);
      break;
    case EVFILT_SIGNAL:
      loop.ProcessSignal(out_events[i].ident);
      break;
    default:
      llvm_unreachable("Unknown event");
    }
  }
}
#else
MainLoop::RunImpl::RunImpl(MainLoop &loop) : loop(loop) {
#ifndef __ANDROID__
  read_fds.reserve(loop.m_read_fds.size());
#endif
}

sigset_t MainLoop::RunImpl::get_sigmask() {
  sigset_t sigmask;
#if defined(_WIN32)
  sigmask = 0;
#elif SIGNAL_POLLING_UNSUPPORTED
  sigemptyset(&sigmask);
#else
  int ret = pthread_sigmask(SIG_SETMASK, nullptr, &sigmask);
  assert(ret == 0);
  (void) ret;

  for (const auto &sig : loop.m_signals)
    sigdelset(&sigmask, sig.first);
#endif
  return sigmask;
}

#ifdef __ANDROID__
Status MainLoop::RunImpl::Poll() {
  // ppoll(2) is not supported on older all android versions. Also, older
  // versions android (API <= 19) implemented pselect in a non-atomic way, as a
  // combination of pthread_sigmask and select. This is not sufficient for us,
  // as we rely on the atomicity to correctly implement signal polling, so we
  // call the underlying syscall ourselves.

  FD_ZERO(&read_fd_set);
  int nfds = 0;
  for (const auto &fd : loop.m_read_fds) {
    FD_SET(fd.first, &read_fd_set);
    nfds = std::max(nfds, fd.first + 1);
  }

  union {
    sigset_t set;
    uint64_t pad;
  } kernel_sigset;
  memset(&kernel_sigset, 0, sizeof(kernel_sigset));
  kernel_sigset.set = get_sigmask();

  struct {
    void *sigset_ptr;
    size_t sigset_len;
  } extra_data = {&kernel_sigset, sizeof(kernel_sigset)};
  if (syscall(__NR_pselect6, nfds, &read_fd_set, nullptr, nullptr, nullptr,
              &extra_data) == -1 &&
      errno != EINTR)
    return Status(errno, eErrorTypePOSIX);

  return Status();
}
#else
Status MainLoop::RunImpl::Poll() {
  read_fds.clear();

  sigset_t sigmask = get_sigmask();

  for (const auto &fd : loop.m_read_fds) {
    struct pollfd pfd;
    pfd.fd = fd.first;
    pfd.events = POLLIN;
    pfd.revents = 0;
    read_fds.push_back(pfd);
  }

  if (ppoll(read_fds.data(), read_fds.size(), nullptr, &sigmask) == -1 &&
      errno != EINTR)
    return Status(errno, eErrorTypePOSIX);

  return Status();
}
#endif

void MainLoop::RunImpl::ProcessEvents() {
#ifdef __ANDROID__
  // Collect first all readable file descriptors into a separate vector and
  // then iterate over it to invoke callbacks. Iterating directly over
  // loop.m_read_fds is not possible because the callbacks can modify the
  // container which could invalidate the iterator.
  std::vector<IOObject::WaitableHandle> fds;
  for (const auto &fd : loop.m_read_fds)
    if (FD_ISSET(fd.first, &read_fd_set))
      fds.push_back(fd.first);

  for (const auto &handle : fds) {
#else
  for (const auto &fd : read_fds) {
    if ((fd.revents & (POLLIN | POLLHUP)) == 0)
      continue;
    IOObject::WaitableHandle handle = fd.fd;
#endif
    if (loop.m_terminate_request)
      return;

    loop.ProcessReadObject(handle);
  }

  std::vector<int> signals;
  for (const auto &entry : loop.m_signals)
    if (g_signal_flags[entry.first] != 0)
      signals.push_back(entry.first);

  for (const auto &signal : signals) {
    if (loop.m_terminate_request)
      return;
    g_signal_flags[signal] = 0;
    loop.ProcessSignal(signal);
  }
}
#endif

MainLoop::MainLoop() {
#if HAVE_SYS_EVENT_H
  m_kqueue = kqueue();
  assert(m_kqueue >= 0);
#endif
}
MainLoop::~MainLoop() {
#if HAVE_SYS_EVENT_H
  close(m_kqueue);
#endif
  assert(m_read_fds.size() == 0);
  assert(m_signals.size() == 0);
}

MainLoop::ReadHandleUP MainLoop::RegisterReadObject(const IOObjectSP &object_sp,
                                                    const Callback &callback,
                                                    Status &error) {
#ifdef _WIN32
  if (object_sp->GetFdType() != IOObject:: eFDTypeSocket) {
    error.SetErrorString("MainLoop: non-socket types unsupported on Windows");
    return nullptr;
  }
#endif
  if (!object_sp || !object_sp->IsValid()) {
    error.SetErrorString("IO object is not valid.");
    return nullptr;
  }

  const bool inserted =
      m_read_fds.insert({object_sp->GetWaitableHandle(), callback}).second;
  if (!inserted) {
    error.SetErrorStringWithFormat("File descriptor %d already monitored.",
                                   object_sp->GetWaitableHandle());
    return nullptr;
  }

  return CreateReadHandle(object_sp);
}

// We shall block the signal, then install the signal handler. The signal will
// be unblocked in the Run() function to check for signal delivery.
MainLoop::SignalHandleUP
MainLoop::RegisterSignal(int signo, const Callback &callback, Status &error) {
#ifdef SIGNAL_POLLING_UNSUPPORTED
  error.SetErrorString("Signal polling is not supported on this platform.");
  return nullptr;
#else
  if (m_signals.find(signo) != m_signals.end()) {
    error.SetErrorStringWithFormat("Signal %d already monitored.", signo);
    return nullptr;
  }

  SignalInfo info;
  info.callback = callback;
  struct sigaction new_action;
  new_action.sa_sigaction = &SignalHandler;
  new_action.sa_flags = SA_SIGINFO;
  sigemptyset(&new_action.sa_mask);
  sigaddset(&new_action.sa_mask, signo);
  sigset_t old_set;

  g_signal_flags[signo] = 0;

  // Even if using kqueue, the signal handler will still be invoked, so it's
  // important to replace it with our "benign" handler.
  int ret = sigaction(signo, &new_action, &info.old_action);
  (void)ret;
  assert(ret == 0 && "sigaction failed");

#if HAVE_SYS_EVENT_H
  struct kevent ev;
  EV_SET(&ev, signo, EVFILT_SIGNAL, EV_ADD, 0, 0, 0);
  ret = kevent(m_kqueue, &ev, 1, nullptr, 0, nullptr);
  assert(ret == 0);
#endif

  // If we're using kqueue, the signal needs to be unblocked in order to
  // receive it. If using pselect/ppoll, we need to block it, and later unblock
  // it as a part of the system call.
  ret = pthread_sigmask(HAVE_SYS_EVENT_H ? SIG_UNBLOCK : SIG_BLOCK,
                        &new_action.sa_mask, &old_set);
  assert(ret == 0 && "pthread_sigmask failed");
  info.was_blocked = sigismember(&old_set, signo);
  m_signals.insert({signo, info});

  return SignalHandleUP(new SignalHandle(*this, signo));
#endif
}

void MainLoop::UnregisterReadObject(IOObject::WaitableHandle handle) {
  bool erased = m_read_fds.erase(handle);
  UNUSED_IF_ASSERT_DISABLED(erased);
  assert(erased);
}

void MainLoop::UnregisterSignal(int signo) {
#if SIGNAL_POLLING_UNSUPPORTED
  Status("Signal polling is not supported on this platform.");
#else
  auto it = m_signals.find(signo);
  assert(it != m_signals.end());

  sigaction(signo, &it->second.old_action, nullptr);

  sigset_t set;
  sigemptyset(&set);
  sigaddset(&set, signo);
  int ret = pthread_sigmask(it->second.was_blocked ? SIG_BLOCK : SIG_UNBLOCK,
                            &set, nullptr);
  assert(ret == 0);
  (void)ret;

#if HAVE_SYS_EVENT_H
  struct kevent ev;
  EV_SET(&ev, signo, EVFILT_SIGNAL, EV_DELETE, 0, 0, 0);
  ret = kevent(m_kqueue, &ev, 1, nullptr, 0, nullptr);
  assert(ret == 0);
#endif

  m_signals.erase(it);
#endif
}

Status MainLoop::Run() {
  m_terminate_request = false;

  Status error;
  RunImpl impl(*this);

  // run until termination or until we run out of things to listen to
  while (!m_terminate_request && (!m_read_fds.empty() || !m_signals.empty())) {

    error = impl.Poll();
    if (error.Fail())
      return error;

    impl.ProcessEvents();
  }
  return Status();
}

void MainLoop::ProcessSignal(int signo) {
  auto it = m_signals.find(signo);
  if (it != m_signals.end())
    it->second.callback(*this); // Do the work
}

void MainLoop::ProcessReadObject(IOObject::WaitableHandle handle) {
  auto it = m_read_fds.find(handle);
  if (it != m_read_fds.end())
    it->second(*this); // Do the work
}