reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
//===-- ReproducerInstrumentation.h -----------------------------*- C++ -*-===//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLDB_UTILITY_REPRODUCER_INSTRUMENTATION_H
#define LLDB_UTILITY_REPRODUCER_INSTRUMENTATION_H

#include "lldb/Utility/FileSpec.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Logging.h"

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ErrorHandling.h"

#include <iostream>
#include <map>
#include <type_traits>

template <typename T,
          typename std::enable_if<std::is_fundamental<T>::value, int>::type = 0>
inline void stringify_append(llvm::raw_string_ostream &ss, const T &t) {
  ss << t;
}

template <typename T, typename std::enable_if<!std::is_fundamental<T>::value,
                                              int>::type = 0>
inline void stringify_append(llvm::raw_string_ostream &ss, const T &t) {
  ss << &t;
}

template <typename T>
inline void stringify_append(llvm::raw_string_ostream &ss, const T *t) {
  ss << reinterpret_cast<const void *>(t);
}

template <>
inline void stringify_append<char>(llvm::raw_string_ostream &ss,
                                   const char *t) {
  ss << '\"' << t << '\"';
}

template <typename Head>
inline void stringify_helper(llvm::raw_string_ostream &ss, const Head &head) {
  stringify_append(ss, head);
}

template <typename Head, typename... Tail>
inline void stringify_helper(llvm::raw_string_ostream &ss, const Head &head,
                             const Tail &... tail) {
  stringify_append(ss, head);
  ss << ", ";
  stringify_helper(ss, tail...);
}

template <typename... Ts> inline std::string stringify_args(const Ts &... ts) {
  std::string buffer;
  llvm::raw_string_ostream ss(buffer);
  stringify_helper(ss, ts...);
  return ss.str();
}

// Define LLDB_REPRO_INSTR_TRACE to trace to stderr instead of LLDB's log
// infrastructure. This is useful when you need to see traces before the logger
// is initialized or enabled.
// #define LLDB_REPRO_INSTR_TRACE

#define LLDB_REGISTER_CONSTRUCTOR(Class, Signature)                            \
  R.Register<Class * Signature>(&construct<Class Signature>::doit, "", #Class, \
                                #Class, #Signature)
#define LLDB_REGISTER_METHOD(Result, Class, Method, Signature)                 \
  R.Register(                                                                  \
      &invoke<Result(Class::*) Signature>::method<(&Class::Method)>::doit,     \
      #Result, #Class, #Method, #Signature)
#define LLDB_REGISTER_METHOD_CONST(Result, Class, Method, Signature)           \
  R.Register(&invoke<Result(Class::*) Signature const>::method_const<(         \
                 &Class::Method)>::doit,                                       \
             #Result, #Class, #Method, #Signature)
#define LLDB_REGISTER_STATIC_METHOD(Result, Class, Method, Signature)          \
  R.Register<Result Signature>(                                                \
      static_cast<Result(*) Signature>(&Class::Method), #Result, #Class,       \
      #Method, #Signature)

#define LLDB_RECORD_CONSTRUCTOR(Class, Signature, ...)                         \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION,              \
                                            stringify_args(__VA_ARGS__));      \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(data.GetSerializer(), data.GetRegistry(),               \
                       &lldb_private::repro::construct<Class Signature>::doit, \
                       __VA_ARGS__);                                           \
    sb_recorder.RecordResult(this);                                            \
  }

#define LLDB_RECORD_CONSTRUCTOR_NO_ARGS(Class)                                 \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION);             \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(data.GetSerializer(), data.GetRegistry(),               \
                       &lldb_private::repro::construct<Class()>::doit);        \
    sb_recorder.RecordResult(this);                                            \
  }

#define LLDB_RECORD_METHOD(Result, Class, Method, Signature, ...)              \
  lldb_private::repro::Recorder sb_recorder(                                   \
      LLVM_PRETTY_FUNCTION, stringify_args(*this, __VA_ARGS__));               \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(                                                        \
        data.GetSerializer(), data.GetRegistry(),                              \
        &lldb_private::repro::invoke<Result(Class::*) Signature>::method<(     \
            &Class::Method)>::doit,                                            \
        this, __VA_ARGS__);                                                    \
  }

#define LLDB_RECORD_METHOD_CONST(Result, Class, Method, Signature, ...)        \
  lldb_private::repro::Recorder sb_recorder(                                   \
      LLVM_PRETTY_FUNCTION, stringify_args(*this, __VA_ARGS__));               \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(                                                        \
        data.GetSerializer(), data.GetRegistry(),                              \
        &lldb_private::repro::invoke<Result(                                   \
            Class::*) Signature const>::method_const<(&Class::Method)>::doit,  \
        this, __VA_ARGS__);                                                    \
  }

#define LLDB_RECORD_METHOD_NO_ARGS(Result, Class, Method)                      \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION,              \
                                            stringify_args(*this));            \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(data.GetSerializer(), data.GetRegistry(),               \
                       &lldb_private::repro::invoke<Result (                   \
                           Class::*)()>::method<(&Class::Method)>::doit,       \
                       this);                                                  \
  }

#define LLDB_RECORD_METHOD_CONST_NO_ARGS(Result, Class, Method)                \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION,              \
                                            stringify_args(*this));            \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(                                                        \
        data.GetSerializer(), data.GetRegistry(),                              \
        &lldb_private::repro::invoke<Result (                                  \
            Class::*)() const>::method_const<(&Class::Method)>::doit,          \
        this);                                                                 \
  }

#define LLDB_RECORD_STATIC_METHOD(Result, Class, Method, Signature, ...)       \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION,              \
                                            stringify_args(__VA_ARGS__));      \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(data.GetSerializer(), data.GetRegistry(),               \
                       static_cast<Result(*) Signature>(&Class::Method),       \
                       __VA_ARGS__);                                           \
  }

#define LLDB_RECORD_STATIC_METHOD_NO_ARGS(Result, Class, Method)               \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION);             \
  if (lldb_private::repro::InstrumentationData data =                          \
          LLDB_GET_INSTRUMENTATION_DATA()) {                                   \
    sb_recorder.Record(data.GetSerializer(), data.GetRegistry(),               \
                       static_cast<Result (*)()>(&Class::Method));             \
  }

#define LLDB_RECORD_RESULT(Result) sb_recorder.RecordResult(Result);

/// The LLDB_RECORD_DUMMY macro is special because it doesn't actually record
/// anything. It's used to track API boundaries when we cannot record for
/// technical reasons.
#define LLDB_RECORD_DUMMY(Result, Class, Method, Signature, ...)               \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION,              \
                                            stringify_args(__VA_ARGS__));
#define LLDB_RECORD_DUMMY_NO_ARGS(Result, Class, Method)                       \
  lldb_private::repro::Recorder sb_recorder(LLVM_PRETTY_FUNCTION);

namespace lldb_private {
namespace repro {

/// Mapping between serialized indices and their corresponding objects.
///
/// This class is used during replay to map indices back to in-memory objects.
///
/// When objects are constructed, they are added to this mapping using
/// AddObjectForIndex.
///
/// When an object is passed to a function, its index is deserialized and
/// AddObjectForIndex returns the corresponding object. If there is no object
/// for the given index, a nullptr is returend. The latter is valid when custom
/// replay code is in place and the actual object is ignored.
class IndexToObject {
public:
  /// Returns an object as a pointer for the given index or nullptr if not
  /// present in the map.
  template <typename T> T *GetObjectForIndex(unsigned idx) {
    assert(idx != 0 && "Cannot get object for sentinel");
    void *object = GetObjectForIndexImpl(idx);
    return static_cast<T *>(object);
  }

  /// Adds a pointer to an object to the mapping for the given index.
  template <typename T> void AddObjectForIndex(unsigned idx, T *object) {
    AddObjectForIndexImpl(
        idx, static_cast<void *>(
                 const_cast<typename std::remove_const<T>::type *>(object)));
  }

  /// Adds a reference to an object to the mapping for the given index.
  template <typename T> void AddObjectForIndex(unsigned idx, T &object) {
    AddObjectForIndexImpl(
        idx, static_cast<void *>(
                 const_cast<typename std::remove_const<T>::type *>(&object)));
  }

private:
  /// Helper method that does the actual lookup. The void* result is later cast
  /// by the caller.
  void *GetObjectForIndexImpl(unsigned idx);

  /// Helper method that does the actual insertion.
  void AddObjectForIndexImpl(unsigned idx, void *object);

  /// Keeps a mapping between indices and their corresponding object.
  llvm::DenseMap<unsigned, void *> m_mapping;
};

/// We need to differentiate between pointers to fundamental and
/// non-fundamental types. See the corresponding Deserializer::Read method
/// for the reason why.
struct PointerTag {};
struct ReferenceTag {};
struct ValueTag {};
struct FundamentalPointerTag {};
struct FundamentalReferenceTag {};
struct NotImplementedTag {};

/// Return the deserialization tag for the given type T.
template <class T> struct serializer_tag {
  typedef typename std::conditional<std::is_trivially_copyable<T>::value, ValueTag, NotImplementedTag>::type type;
};
template <class T> struct serializer_tag<T *> {
  typedef
      typename std::conditional<std::is_fundamental<T>::value,
                                FundamentalPointerTag, PointerTag>::type type;
};
template <class T> struct serializer_tag<T &> {
  typedef typename std::conditional<std::is_fundamental<T>::value,
                                    FundamentalReferenceTag, ReferenceTag>::type
      type;
};

/// Deserializes data from a buffer. It is used to deserialize function indices
/// to replay, their arguments and return values.
///
/// Fundamental types and strings are read by value. Objects are read by their
/// index, which get translated by the IndexToObject mapping maintained in
/// this class.
///
/// Additional bookkeeping with regards to the IndexToObject is required to
/// deserialize objects. When a constructor is run or an object is returned by
/// value, we need to capture the object and add it to the index together with
/// its index. This is the job of HandleReplayResult(Void).
class Deserializer {
public:
  Deserializer(llvm::StringRef buffer) : m_buffer(buffer) {}

  /// Returns true when the buffer has unread data.
  bool HasData(unsigned size) { return size <= m_buffer.size(); }

  /// Deserialize and interpret value as T.
  template <typename T> T Deserialize() {
#ifdef LLDB_REPRO_INSTR_TRACE
    llvm::errs() << "Deserializing with " << LLVM_PRETTY_FUNCTION << "\n";
#endif
    return Read<T>(typename serializer_tag<T>::type());
  }

  /// Store the returned value in the index-to-object mapping.
  template <typename T> void HandleReplayResult(const T &t) {
    unsigned result = Deserialize<unsigned>();
    if (std::is_fundamental<T>::value)
      return;
    // We need to make a copy as the original object might go out of scope.
    m_index_to_object.AddObjectForIndex(result, new T(t));
  }

  /// Store the returned value in the index-to-object mapping.
  template <typename T> void HandleReplayResult(T *t) {
    unsigned result = Deserialize<unsigned>();
    if (std::is_fundamental<T>::value)
      return;
    m_index_to_object.AddObjectForIndex(result, t);
  }

  /// All returned types are recorded, even when the function returns a void.
  /// The latter requires special handling.
  void HandleReplayResultVoid() {
    unsigned result = Deserialize<unsigned>();
    assert(result == 0);
    (void)result;
  }

private:
  template <typename T> T Read(NotImplementedTag) {
    m_buffer = m_buffer.drop_front(sizeof(T));
    return T();
  }

  template <typename T> T Read(ValueTag) {
    assert(HasData(sizeof(T)));
    T t;
    std::memcpy(reinterpret_cast<char *>(&t), m_buffer.data(), sizeof(T));
    m_buffer = m_buffer.drop_front(sizeof(T));
    return t;
  }

  template <typename T> T Read(PointerTag) {
    typedef typename std::remove_pointer<T>::type UnderlyingT;
    return m_index_to_object.template GetObjectForIndex<UnderlyingT>(
        Deserialize<unsigned>());
  }

  template <typename T> T Read(ReferenceTag) {
    typedef typename std::remove_reference<T>::type UnderlyingT;
    // If this is a reference to a fundamental type we just read its value.
    return *m_index_to_object.template GetObjectForIndex<UnderlyingT>(
        Deserialize<unsigned>());
  }

  /// This method is used to parse references to fundamental types. Because
  /// they're not recorded in the object table we have serialized their value.
  /// We read its value, allocate a copy on the heap, and return a pointer to
  /// the copy.
  template <typename T> T Read(FundamentalPointerTag) {
    typedef typename std::remove_pointer<T>::type UnderlyingT;
    return new UnderlyingT(Deserialize<UnderlyingT>());
  }

  /// This method is used to parse references to fundamental types. Because
  /// they're not recorded in the object table we have serialized their value.
  /// We read its value, allocate a copy on the heap, and return a reference to
  /// the copy.
  template <typename T> T Read(FundamentalReferenceTag) {
    // If this is a reference to a fundamental type we just read its value.
    typedef typename std::remove_reference<T>::type UnderlyingT;
    return *(new UnderlyingT(Deserialize<UnderlyingT>()));
  }

  /// Mapping of indices to objects.
  IndexToObject m_index_to_object;

  /// Buffer containing the serialized data.
  llvm::StringRef m_buffer;
};

/// Partial specialization for C-style strings. We read the string value
/// instead of treating it as pointer.
template <> const char *Deserializer::Deserialize<const char *>();
template <> char *Deserializer::Deserialize<char *>();

/// Helpers to auto-synthesize function replay code. It deserializes the replay
/// function's arguments one by one and finally calls the corresponding
/// function.
template <typename... Remaining> struct DeserializationHelper;

template <typename Head, typename... Tail>
struct DeserializationHelper<Head, Tail...> {
  template <typename Result, typename... Deserialized> struct deserialized {
    static Result doit(Deserializer &deserializer,
                       Result (*f)(Deserialized..., Head, Tail...),
                       Deserialized... d) {
      return DeserializationHelper<Tail...>::
          template deserialized<Result, Deserialized..., Head>::doit(
              deserializer, f, d..., deserializer.Deserialize<Head>());
    }
  };
};

template <> struct DeserializationHelper<> {
  template <typename Result, typename... Deserialized> struct deserialized {
    static Result doit(Deserializer &deserializer, Result (*f)(Deserialized...),
                       Deserialized... d) {
      return f(d...);
    }
  };
};

/// The replayer interface.
struct Replayer {
  virtual ~Replayer() {}
  virtual void operator()(Deserializer &deserializer) const = 0;
};

/// The default replayer deserializes the arguments and calls the function.
template <typename Signature> struct DefaultReplayer;
template <typename Result, typename... Args>
struct DefaultReplayer<Result(Args...)> : public Replayer {
  DefaultReplayer(Result (*f)(Args...)) : Replayer(), f(f) {}

  void operator()(Deserializer &deserializer) const override {
    deserializer.HandleReplayResult(
        DeserializationHelper<Args...>::template deserialized<Result>::doit(
            deserializer, f));
  }

  Result (*f)(Args...);
};

/// Partial specialization for function returning a void type. It ignores the
/// (absent) return value.
template <typename... Args>
struct DefaultReplayer<void(Args...)> : public Replayer {
  DefaultReplayer(void (*f)(Args...)) : Replayer(), f(f) {}

  void operator()(Deserializer &deserializer) const override {
    DeserializationHelper<Args...>::template deserialized<void>::doit(
        deserializer, f);
    deserializer.HandleReplayResultVoid();
  }

  void (*f)(Args...);
};

/// The registry contains a unique mapping between functions and their ID. The
/// IDs can be serialized and deserialized to replay a function. Functions need
/// to be registered with the registry for this to work.
class Registry {
private:
  struct SignatureStr {
    SignatureStr(llvm::StringRef result = {}, llvm::StringRef scope = {},
                 llvm::StringRef name = {}, llvm::StringRef args = {})
        : result(result), scope(scope), name(name), args(args) {}

    std::string ToString() const;

    llvm::StringRef result;
    llvm::StringRef scope;
    llvm::StringRef name;
    llvm::StringRef args;
  };

public:
  Registry() = default;
  virtual ~Registry() = default;

  /// Register a default replayer for a function.
  template <typename Signature>
  void Register(Signature *f, llvm::StringRef result = {},
                llvm::StringRef scope = {}, llvm::StringRef name = {},
                llvm::StringRef args = {}) {
    DoRegister(uintptr_t(f), std::make_unique<DefaultReplayer<Signature>>(f),
               SignatureStr(result, scope, name, args));
  }

  /// Register a replayer that invokes a custom function with the same
  /// signature as the replayed function.
  template <typename Signature>
  void Register(Signature *f, Signature *g, llvm::StringRef result = {},
                llvm::StringRef scope = {}, llvm::StringRef name = {},
                llvm::StringRef args = {}) {
    DoRegister(uintptr_t(f), std::make_unique<DefaultReplayer<Signature>>(g),
               SignatureStr(result, scope, name, args));
  }

  /// Replay functions from a file.
  bool Replay(const FileSpec &file);

  /// Replay functions from a buffer.
  bool Replay(llvm::StringRef buffer);

  /// Returns the ID for a given function address.
  unsigned GetID(uintptr_t addr);

protected:
  /// Register the given replayer for a function (and the ID mapping).
  void DoRegister(uintptr_t RunID, std::unique_ptr<Replayer> replayer,
                  SignatureStr signature);

private:
  std::string GetSignature(unsigned id);
  Replayer *GetReplayer(unsigned id);

  /// Mapping of function addresses to replayers and their ID.
  std::map<uintptr_t, std::pair<std::unique_ptr<Replayer>, unsigned>>
      m_replayers;

  /// Mapping of IDs to replayer instances.
  std::map<unsigned, std::pair<Replayer *, SignatureStr>> m_ids;
};

/// To be used as the "Runtime ID" of a constructor. It also invokes the
/// constructor when called.
template <typename Signature> struct construct;
template <typename Class, typename... Args> struct construct<Class(Args...)> {
  static Class *doit(Args... args) { return new Class(args...); }
};

/// To be used as the "Runtime ID" of a member function. It also invokes the
/// member function when called.
template <typename Signature> struct invoke;
template <typename Result, typename Class, typename... Args>
struct invoke<Result (Class::*)(Args...)> {
  template <Result (Class::*m)(Args...)> struct method {
    static Result doit(Class *c, Args... args) { return (c->*m)(args...); }
  };
};

template <typename Result, typename Class, typename... Args>
struct invoke<Result (Class::*)(Args...) const> {
  template <Result (Class::*m)(Args...) const> struct method_const {
    static Result doit(Class *c, Args... args) { return (c->*m)(args...); }
  };
};

template <typename Class, typename... Args>
struct invoke<void (Class::*)(Args...)> {
  template <void (Class::*m)(Args...)> struct method {
    static void doit(Class *c, Args... args) { (c->*m)(args...); }
  };
};

/// Maps an object to an index for serialization. Indices are unique and
/// incremented for every new object.
///
/// Indices start at 1 in order to differentiate with an invalid index (0) in
/// the serialized buffer.
class ObjectToIndex {
public:
  template <typename T> unsigned GetIndexForObject(T *t) {
    return GetIndexForObjectImpl(static_cast<const void *>(t));
  }

private:
  unsigned GetIndexForObjectImpl(const void *object);

  llvm::DenseMap<const void *, unsigned> m_mapping;
};

/// Serializes functions, their arguments and their return type to a stream.
class Serializer {
public:
  Serializer(llvm::raw_ostream &stream = llvm::outs()) : m_stream(stream) {}

  /// Recursively serialize all the given arguments.
  template <typename Head, typename... Tail>
  void SerializeAll(const Head &head, const Tail &... tail) {
    Serialize(head);
    SerializeAll(tail...);
  }

  void SerializeAll() { m_stream.flush(); }

private:
  /// Serialize pointers. We need to differentiate between pointers to
  /// fundamental types (in which case we serialize its value) and pointer to
  /// objects (in which case we serialize their index).
  template <typename T> void Serialize(T *t) {
    if (std::is_fundamental<T>::value) {
      Serialize(*t);
    } else {
      unsigned idx = m_tracker.GetIndexForObject(t);
      Serialize(idx);
    }
  }

  /// Serialize references. We need to differentiate between references to
  /// fundamental types (in which case we serialize its value) and references
  /// to objects (in which case we serialize their index).
  template <typename T> void Serialize(T &t) {
    if (std::is_fundamental<T>::value) {
      m_stream.write(reinterpret_cast<const char *>(&t), sizeof(T));
    } else {
      unsigned idx = m_tracker.GetIndexForObject(&t);
      Serialize(idx);
    }
  }

  void Serialize(void *v) {
    // FIXME: Support void*
    llvm_unreachable("void* is currently unsupported.");
  }

  void Serialize(const char *t) {
    m_stream << t;
    m_stream.write(0x0);
  }

  /// Serialization stream.
  llvm::raw_ostream &m_stream;

  /// Mapping of objects to indices.
  ObjectToIndex m_tracker;
};

class InstrumentationData {
public:
  InstrumentationData() : m_serializer(nullptr), m_registry(nullptr){};
  InstrumentationData(Serializer &serializer, Registry &registry)
      : m_serializer(&serializer), m_registry(&registry){};

  Serializer &GetSerializer() { return *m_serializer; }
  Registry &GetRegistry() { return *m_registry; }

  operator bool() { return m_serializer != nullptr && m_registry != nullptr; }

private:
  Serializer *m_serializer;
  Registry *m_registry;
};

/// RAII object that records function invocations and their return value.
///
/// API calls are only captured when the API boundary is crossed. Once we're in
/// the API layer, and another API function is called, it doesn't need to be
/// recorded.
///
/// When a call is recored, its result is always recorded as well, even if the
/// function returns a void. For functions that return by value, RecordResult
/// should be used. Otherwise a sentinel value (0) will be serialized.
///
/// Because of the functional overlap between logging and recording API calls,
/// this class is also used for logging.
class Recorder {
public:
  Recorder(llvm::StringRef pretty_func = {}, std::string &&pretty_args = {});
  ~Recorder();

  /// Records a single function call.
  template <typename Result, typename... FArgs, typename... RArgs>
  void Record(Serializer &serializer, Registry &registry, Result (*f)(FArgs...),
              const RArgs &... args) {
    m_serializer = &serializer;
    if (!ShouldCapture())
      return;

    unsigned id = registry.GetID(uintptr_t(f));

#ifdef LLDB_REPRO_INSTR_TRACE
    Log(id);
#endif

    serializer.SerializeAll(id);
    serializer.SerializeAll(args...);

    if (std::is_class<typename std::remove_pointer<
            typename std::remove_reference<Result>::type>::type>::value) {
      m_result_recorded = false;
    } else {
      serializer.SerializeAll(0);
      m_result_recorded = true;
    }
  }

  /// Records a single function call.
  template <typename... Args>
  void Record(Serializer &serializer, Registry &registry, void (*f)(Args...),
              const Args &... args) {
    m_serializer = &serializer;
    if (!ShouldCapture())
      return;

    unsigned id = registry.GetID(uintptr_t(f));

#ifdef LLDB_REPRO_INSTR_TRACE
    Log(id);
#endif

    serializer.SerializeAll(id);
    serializer.SerializeAll(args...);

    // Record result.
    serializer.SerializeAll(0);
    m_result_recorded = true;
  }

  /// Record the result of a function call.
  template <typename Result> Result RecordResult(Result &&r) {
    UpdateBoundary();
    if (m_serializer && ShouldCapture()) {
      assert(!m_result_recorded);
      m_serializer->SerializeAll(r);
      m_result_recorded = true;
    }
    return std::forward<Result>(r);
  }

private:
  void UpdateBoundary() {
    if (m_local_boundary)
      g_global_boundary = false;
  }

  bool ShouldCapture() { return m_local_boundary; }

#ifdef LLDB_REPRO_INSTR_TRACE
  void Log(unsigned id) {
    llvm::errs() << "Recording " << id << ": " << m_pretty_func << " ("
                 << m_pretty_args << ")\n";
  }
#endif

  Serializer *m_serializer;

  /// Pretty function for logging.
  llvm::StringRef m_pretty_func;
  std::string m_pretty_args;

  /// Whether this function call was the one crossing the API boundary.
  bool m_local_boundary;

  /// Whether the return value was recorded explicitly.
  bool m_result_recorded;

  /// Whether we're currently across the API boundary.
  static bool g_global_boundary;
};

} // namespace repro
} // namespace lldb_private

#endif // LLDB_UTILITY_REPRODUCER_INSTRUMENTATION_H