reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
//===-- list.h --------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef SCUDO_LIST_H_
#define SCUDO_LIST_H_

#include "internal_defs.h"

namespace scudo {

// Intrusive POD singly and doubly linked list.
// An object with all zero fields should represent a valid empty list. clear()
// should be called on all non-zero-initialized objects before using.

template <class T> class IteratorBase {
public:
  explicit IteratorBase(T *CurrentT) : Current(CurrentT) {}
  IteratorBase &operator++() {
    Current = Current->Next;
    return *this;
  }
  bool operator!=(IteratorBase Other) const { return Current != Other.Current; }
  T &operator*() { return *Current; }

private:
  T *Current;
};

template <class T> struct IntrusiveList {
  bool empty() const { return Size == 0; }
  uptr size() const { return Size; }

  T *front() { return First; }
  const T *front() const { return First; }
  T *back() { return Last; }
  const T *back() const { return Last; }

  void clear() {
    First = Last = nullptr;
    Size = 0;
  }

  typedef IteratorBase<T> Iterator;
  typedef IteratorBase<const T> ConstIterator;

  Iterator begin() { return Iterator(First); }
  Iterator end() { return Iterator(nullptr); }

  ConstIterator begin() const { return ConstIterator(First); }
  ConstIterator end() const { return ConstIterator(nullptr); }

  void checkConsistency() const;

protected:
  uptr Size;
  T *First;
  T *Last;
};

template <class T> void IntrusiveList<T>::checkConsistency() const {
  if (Size == 0) {
    CHECK_EQ(First, nullptr);
    CHECK_EQ(Last, nullptr);
  } else {
    uptr Count = 0;
    for (T *I = First;; I = I->Next) {
      Count++;
      if (I == Last)
        break;
    }
    CHECK_EQ(this->size(), Count);
    CHECK_EQ(Last->Next, nullptr);
  }
}

template <class T> struct SinglyLinkedList : public IntrusiveList<T> {
  using IntrusiveList<T>::First;
  using IntrusiveList<T>::Last;
  using IntrusiveList<T>::Size;
  using IntrusiveList<T>::empty;

  void push_back(T *X) {
    X->Next = nullptr;
    if (empty())
      First = X;
    else
      Last->Next = X;
    Last = X;
    Size++;
  }

  void push_front(T *X) {
    if (empty())
      Last = X;
    X->Next = First;
    First = X;
    Size++;
  }

  void pop_front() {
    DCHECK(!empty());
    First = First->Next;
    if (!First)
      Last = nullptr;
    Size--;
  }

  void extract(T *Prev, T *X) {
    DCHECK(!empty());
    DCHECK_NE(Prev, nullptr);
    DCHECK_NE(X, nullptr);
    DCHECK_EQ(Prev->Next, X);
    Prev->Next = X->Next;
    if (Last == X)
      Last = Prev;
    Size--;
  }

  void append_back(SinglyLinkedList<T> *L) {
    DCHECK_NE(this, L);
    if (L->empty())
      return;
    if (empty()) {
      *this = *L;
    } else {
      Last->Next = L->First;
      Last = L->Last;
      Size += L->size();
    }
    L->clear();
  }
};

template <class T> struct DoublyLinkedList : IntrusiveList<T> {
  using IntrusiveList<T>::First;
  using IntrusiveList<T>::Last;
  using IntrusiveList<T>::Size;
  using IntrusiveList<T>::empty;

  void push_front(T *X) {
    X->Prev = nullptr;
    if (empty()) {
      Last = X;
    } else {
      DCHECK_EQ(First->Prev, nullptr);
      First->Prev = X;
    }
    X->Next = First;
    First = X;
    Size++;
  }

  // Inserts X before Y.
  void insert(T *X, T *Y) {
    if (Y == First)
      return push_front(X);
    T *Prev = Y->Prev;
    // This is a hard CHECK to ensure consistency in the event of an intentional
    // corruption of Y->Prev, to prevent a potential write-{4,8}.
    CHECK_EQ(Prev->Next, Y);
    Prev->Next = X;
    X->Prev = Prev;
    X->Next = Y;
    Y->Prev = X;
    Size++;
  }

  void push_back(T *X) {
    X->Next = nullptr;
    if (empty()) {
      First = X;
    } else {
      DCHECK_EQ(Last->Next, nullptr);
      Last->Next = X;
    }
    X->Prev = Last;
    Last = X;
    Size++;
  }

  void pop_front() {
    DCHECK(!empty());
    First = First->Next;
    if (!First)
      Last = nullptr;
    else
      First->Prev = nullptr;
    Size--;
  }

  // The consistency of the adjacent links is aggressively checked in order to
  // catch potential corruption attempts, that could yield a mirrored
  // write-{4,8} primitive. nullptr checks are deemed less vital.
  void remove(T *X) {
    T *Prev = X->Prev;
    T *Next = X->Next;
    if (Prev) {
      CHECK_EQ(Prev->Next, X);
      Prev->Next = Next;
    }
    if (Next) {
      CHECK_EQ(Next->Prev, X);
      Next->Prev = Prev;
    }
    if (First == X) {
      DCHECK_EQ(Prev, nullptr);
      First = Next;
    } else {
      DCHECK_NE(Prev, nullptr);
    }
    if (Last == X) {
      DCHECK_EQ(Next, nullptr);
      Last = Prev;
    } else {
      DCHECK_NE(Next, nullptr);
    }
    Size--;
  }
};

} // namespace scudo

#endif // SCUDO_LIST_H_