reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
//===-------- cfi.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the runtime support for the cross-DSO CFI.
//
//===----------------------------------------------------------------------===//

#include <assert.h>
#include <elf.h>

#include "sanitizer_common/sanitizer_common.h"
#if SANITIZER_FREEBSD
#include <sys/link_elf.h>
#endif
#include <link.h>
#include <string.h>
#include <stdlib.h>
#include <sys/mman.h>

#if SANITIZER_LINUX
typedef ElfW(Phdr) Elf_Phdr;
typedef ElfW(Ehdr) Elf_Ehdr;
typedef ElfW(Addr) Elf_Addr;
typedef ElfW(Sym) Elf_Sym;
typedef ElfW(Dyn) Elf_Dyn;
#elif SANITIZER_FREEBSD
#if SANITIZER_WORDSIZE == 64
#define ElfW64_Dyn Elf_Dyn
#define ElfW64_Sym Elf_Sym
#else
#define ElfW32_Dyn Elf_Dyn
#define ElfW32_Sym Elf_Sym
#endif
#endif

#include "interception/interception.h"
#include "sanitizer_common/sanitizer_flag_parser.h"
#include "ubsan/ubsan_init.h"
#include "ubsan/ubsan_flags.h"

#ifdef CFI_ENABLE_DIAG
#include "ubsan/ubsan_handlers.h"
#endif

using namespace __sanitizer;

namespace __cfi {

#define kCfiShadowLimitsStorageSize 4096 // 1 page
// Lets hope that the data segment is mapped with 4K pages.
// The pointer to the cfi shadow region is stored at the start of this page.
// The rest of the page is unused and re-mapped read-only.
static union {
  char space[kCfiShadowLimitsStorageSize];
  struct {
    uptr start;
    uptr size;
  } limits;
} cfi_shadow_limits_storage
    __attribute__((aligned(kCfiShadowLimitsStorageSize)));
static constexpr uptr kShadowGranularity = 12;
static constexpr uptr kShadowAlign = 1UL << kShadowGranularity; // 4096

static constexpr uint16_t kInvalidShadow = 0;
static constexpr uint16_t kUncheckedShadow = 0xFFFFU;

// Get the start address of the CFI shadow region.
uptr GetShadow() {
  return cfi_shadow_limits_storage.limits.start;
}

uptr GetShadowSize() {
  return cfi_shadow_limits_storage.limits.size;
}

// This will only work while the shadow is not allocated.
void SetShadowSize(uptr size) {
  cfi_shadow_limits_storage.limits.size = size;
}

uptr MemToShadowOffset(uptr x) {
  return (x >> kShadowGranularity) << 1;
}

uint16_t *MemToShadow(uptr x, uptr shadow_base) {
  return (uint16_t *)(shadow_base + MemToShadowOffset(x));
}

typedef int (*CFICheckFn)(u64, void *, void *);

// This class reads and decodes the shadow contents.
class ShadowValue {
  uptr addr;
  uint16_t v;
  explicit ShadowValue(uptr addr, uint16_t v) : addr(addr), v(v) {}

public:
  bool is_invalid() const { return v == kInvalidShadow; }

  bool is_unchecked() const { return v == kUncheckedShadow; }

  CFICheckFn get_cfi_check() const {
    assert(!is_invalid() && !is_unchecked());
    uptr aligned_addr = addr & ~(kShadowAlign - 1);
    uptr p = aligned_addr - (((uptr)v - 1) << kShadowGranularity);
    return reinterpret_cast<CFICheckFn>(p);
  }

  // Load a shadow value for the given application memory address.
  static const ShadowValue load(uptr addr) {
    uptr shadow_base = GetShadow();
    uptr shadow_offset = MemToShadowOffset(addr);
    if (shadow_offset > GetShadowSize())
      return ShadowValue(addr, kInvalidShadow);
    else
      return ShadowValue(
          addr, *reinterpret_cast<uint16_t *>(shadow_base + shadow_offset));
  }
};

class ShadowBuilder {
  uptr shadow_;

public:
  // Allocate a new empty shadow (for the entire address space) on the side.
  void Start();
  // Mark the given address range as unchecked.
  // This is used for uninstrumented libraries like libc.
  // Any CFI check with a target in that range will pass.
  void AddUnchecked(uptr begin, uptr end);
  // Mark the given address range as belonging to a library with the given
  // cfi_check function.
  void Add(uptr begin, uptr end, uptr cfi_check);
  // Finish shadow construction. Atomically switch the current active shadow
  // region with the newly constructed one and deallocate the former.
  void Install();
};

void ShadowBuilder::Start() {
  shadow_ = (uptr)MmapNoReserveOrDie(GetShadowSize(), "CFI shadow");
  VReport(1, "CFI: shadow at %zx .. %zx\n", shadow_, shadow_ + GetShadowSize());
}

void ShadowBuilder::AddUnchecked(uptr begin, uptr end) {
  uint16_t *shadow_begin = MemToShadow(begin, shadow_);
  uint16_t *shadow_end = MemToShadow(end - 1, shadow_) + 1;
  // memset takes a byte, so our unchecked shadow value requires both bytes to
  // be the same. Make sure we're ok during compilation.
  static_assert((kUncheckedShadow & 0xff) == ((kUncheckedShadow >> 8) & 0xff),
                "Both bytes of the 16-bit value must be the same!");
  memset(shadow_begin, kUncheckedShadow & 0xff,
         (shadow_end - shadow_begin) * sizeof(*shadow_begin));
}

void ShadowBuilder::Add(uptr begin, uptr end, uptr cfi_check) {
  assert((cfi_check & (kShadowAlign - 1)) == 0);

  // Don't fill anything below cfi_check. We can not represent those addresses
  // in the shadow, and must make sure at codegen to place all valid call
  // targets above cfi_check.
  begin = Max(begin, cfi_check);
  uint16_t *s = MemToShadow(begin, shadow_);
  uint16_t *s_end = MemToShadow(end - 1, shadow_) + 1;
  uint16_t sv = ((begin - cfi_check) >> kShadowGranularity) + 1;
  for (; s < s_end; s++, sv++)
    *s = sv;
}

#if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD
void ShadowBuilder::Install() {
  MprotectReadOnly(shadow_, GetShadowSize());
  uptr main_shadow = GetShadow();
  if (main_shadow) {
    // Update.
#if SANITIZER_LINUX
    void *res = mremap((void *)shadow_, GetShadowSize(), GetShadowSize(),
                       MREMAP_MAYMOVE | MREMAP_FIXED, (void *)main_shadow);
    CHECK(res != MAP_FAILED);
#elif SANITIZER_NETBSD
    void *res = mremap((void *)shadow_, GetShadowSize(), (void *)main_shadow,
                       GetShadowSize(), MAP_FIXED);
    CHECK(res != MAP_FAILED);
#else
    void *res = MmapFixedOrDie(shadow_, GetShadowSize(), "cfi shadow");
    CHECK(res != MAP_FAILED);
    ::memcpy(&shadow_, &main_shadow, GetShadowSize());
#endif
  } else {
    // Initial setup.
    CHECK_EQ(kCfiShadowLimitsStorageSize, GetPageSizeCached());
    CHECK_EQ(0, GetShadow());
    cfi_shadow_limits_storage.limits.start = shadow_;
    MprotectReadOnly((uptr)&cfi_shadow_limits_storage,
                     sizeof(cfi_shadow_limits_storage));
    CHECK_EQ(shadow_, GetShadow());
  }
}
#else
#error not implemented
#endif

// This is a workaround for a glibc bug:
// https://sourceware.org/bugzilla/show_bug.cgi?id=15199
// Other platforms can, hopefully, just do
//    dlopen(RTLD_NOLOAD | RTLD_LAZY)
//    dlsym("__cfi_check").
uptr find_cfi_check_in_dso(dl_phdr_info *info) {
  const Elf_Dyn *dynamic = nullptr;
  for (int i = 0; i < info->dlpi_phnum; ++i) {
    if (info->dlpi_phdr[i].p_type == PT_DYNAMIC) {
      dynamic =
          (const Elf_Dyn *)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
      break;
    }
  }
  if (!dynamic) return 0;
  uptr strtab = 0, symtab = 0, strsz = 0;
  for (const Elf_Dyn *p = dynamic; p->d_tag != PT_NULL; ++p) {
    if (p->d_tag == DT_SYMTAB)
      symtab = p->d_un.d_ptr;
    else if (p->d_tag == DT_STRTAB)
      strtab = p->d_un.d_ptr;
    else if (p->d_tag == DT_STRSZ)
      strsz = p->d_un.d_ptr;
  }

  if (symtab > strtab) {
    VReport(1, "Can not handle: symtab > strtab (%p > %zx)\n", symtab, strtab);
    return 0;
  }

  // Verify that strtab and symtab are inside of the same LOAD segment.
  // This excludes VDSO, which has (very high) bogus strtab and symtab pointers.
  int phdr_idx;
  for (phdr_idx = 0; phdr_idx < info->dlpi_phnum; phdr_idx++) {
    const Elf_Phdr *phdr = &info->dlpi_phdr[phdr_idx];
    if (phdr->p_type == PT_LOAD) {
      uptr beg = info->dlpi_addr + phdr->p_vaddr;
      uptr end = beg + phdr->p_memsz;
      if (strtab >= beg && strtab + strsz < end && symtab >= beg &&
          symtab < end)
        break;
    }
  }
  if (phdr_idx == info->dlpi_phnum) {
    // Nope, either different segments or just bogus pointers.
    // Can not handle this.
    VReport(1, "Can not handle: symtab %p, strtab %zx\n", symtab, strtab);
    return 0;
  }

  for (const Elf_Sym *p = (const Elf_Sym *)symtab; (Elf_Addr)p < strtab;
       ++p) {
    // There is no reliable way to find the end of the symbol table. In
    // lld-produces files, there are other sections between symtab and strtab.
    // Stop looking when the symbol name is not inside strtab.
    if (p->st_name >= strsz) break;
    char *name = (char*)(strtab + p->st_name);
    if (strcmp(name, "__cfi_check") == 0) {
      assert(p->st_info == ELF32_ST_INFO(STB_GLOBAL, STT_FUNC) ||
             p->st_info == ELF32_ST_INFO(STB_WEAK, STT_FUNC));
      uptr addr = info->dlpi_addr + p->st_value;
      return addr;
    }
  }
  return 0;
}

int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *data) {
  uptr cfi_check = find_cfi_check_in_dso(info);
  if (cfi_check)
    VReport(1, "Module '%s' __cfi_check %zx\n", info->dlpi_name, cfi_check);

  ShadowBuilder *b = reinterpret_cast<ShadowBuilder *>(data);

  for (int i = 0; i < info->dlpi_phnum; i++) {
    const Elf_Phdr *phdr = &info->dlpi_phdr[i];
    if (phdr->p_type == PT_LOAD) {
      // Jump tables are in the executable segment.
      // VTables are in the non-executable one.
      // Need to fill shadow for both.
      // FIXME: reject writable if vtables are in the r/o segment. Depend on
      // PT_RELRO?
      uptr cur_beg = info->dlpi_addr + phdr->p_vaddr;
      uptr cur_end = cur_beg + phdr->p_memsz;
      if (cfi_check) {
        VReport(1, "   %zx .. %zx\n", cur_beg, cur_end);
        b->Add(cur_beg, cur_end, cfi_check);
      } else {
        b->AddUnchecked(cur_beg, cur_end);
      }
    }
  }
  return 0;
}

// Init or update shadow for the current set of loaded libraries.
void UpdateShadow() {
  ShadowBuilder b;
  b.Start();
  dl_iterate_phdr(dl_iterate_phdr_cb, &b);
  b.Install();
}

void InitShadow() {
  CHECK_EQ(0, GetShadow());
  CHECK_EQ(0, GetShadowSize());

  uptr vma = GetMaxUserVirtualAddress();
  // Shadow is 2 -> 2**kShadowGranularity.
  SetShadowSize((vma >> (kShadowGranularity - 1)) + 1);
  VReport(1, "CFI: VMA size %zx, shadow size %zx\n", vma, GetShadowSize());

  UpdateShadow();
}

THREADLOCAL int in_loader;
BlockingMutex shadow_update_lock(LINKER_INITIALIZED);

void EnterLoader() {
  if (in_loader == 0) {
    shadow_update_lock.Lock();
  }
  ++in_loader;
}

void ExitLoader() {
  CHECK(in_loader > 0);
  --in_loader;
  UpdateShadow();
  if (in_loader == 0) {
    shadow_update_lock.Unlock();
  }
}

ALWAYS_INLINE void CfiSlowPathCommon(u64 CallSiteTypeId, void *Ptr,
                                     void *DiagData) {
  uptr Addr = (uptr)Ptr;
  VReport(3, "__cfi_slowpath: %llx, %p\n", CallSiteTypeId, Ptr);
  ShadowValue sv = ShadowValue::load(Addr);
  if (sv.is_invalid()) {
    VReport(1, "CFI: invalid memory region for a check target: %p\n", Ptr);
#ifdef CFI_ENABLE_DIAG
    if (DiagData) {
      __ubsan_handle_cfi_check_fail(
          reinterpret_cast<__ubsan::CFICheckFailData *>(DiagData), Addr, false);
      return;
    }
#endif
    Trap();
  }
  if (sv.is_unchecked()) {
    VReport(2, "CFI: unchecked call (shadow=FFFF): %p\n", Ptr);
    return;
  }
  CFICheckFn cfi_check = sv.get_cfi_check();
  VReport(2, "__cfi_check at %p\n", cfi_check);
  cfi_check(CallSiteTypeId, Ptr, DiagData);
}

void InitializeFlags() {
  SetCommonFlagsDefaults();
#ifdef CFI_ENABLE_DIAG
  __ubsan::Flags *uf = __ubsan::flags();
  uf->SetDefaults();
#endif

  FlagParser cfi_parser;
  RegisterCommonFlags(&cfi_parser);
  cfi_parser.ParseStringFromEnv("CFI_OPTIONS");

#ifdef CFI_ENABLE_DIAG
  FlagParser ubsan_parser;
  __ubsan::RegisterUbsanFlags(&ubsan_parser, uf);
  RegisterCommonFlags(&ubsan_parser);

  const char *ubsan_default_options = __ubsan::MaybeCallUbsanDefaultOptions();
  ubsan_parser.ParseString(ubsan_default_options);
  ubsan_parser.ParseStringFromEnv("UBSAN_OPTIONS");
#endif

  InitializeCommonFlags();

  if (Verbosity())
    ReportUnrecognizedFlags();

  if (common_flags()->help) {
    cfi_parser.PrintFlagDescriptions();
  }
}

} // namespace __cfi

using namespace __cfi;

extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
__cfi_slowpath(u64 CallSiteTypeId, void *Ptr) {
  CfiSlowPathCommon(CallSiteTypeId, Ptr, nullptr);
}

#ifdef CFI_ENABLE_DIAG
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
__cfi_slowpath_diag(u64 CallSiteTypeId, void *Ptr, void *DiagData) {
  CfiSlowPathCommon(CallSiteTypeId, Ptr, DiagData);
}
#endif

static void EnsureInterceptorsInitialized();

// Setup shadow for dlopen()ed libraries.
// The actual shadow setup happens after dlopen() returns, which means that
// a library can not be a target of any CFI checks while its constructors are
// running. It's unclear how to fix this without some extra help from libc.
// In glibc, mmap inside dlopen is not interceptable.
// Maybe a seccomp-bpf filter?
// We could insert a high-priority constructor into the library, but that would
// not help with the uninstrumented libraries.
INTERCEPTOR(void*, dlopen, const char *filename, int flag) {
  EnsureInterceptorsInitialized();
  EnterLoader();
  void *handle = REAL(dlopen)(filename, flag);
  ExitLoader();
  return handle;
}

INTERCEPTOR(int, dlclose, void *handle) {
  EnsureInterceptorsInitialized();
  EnterLoader();
  int res = REAL(dlclose)(handle);
  ExitLoader();
  return res;
}

static BlockingMutex interceptor_init_lock(LINKER_INITIALIZED);
static bool interceptors_inited = false;

static void EnsureInterceptorsInitialized() {
  BlockingMutexLock lock(&interceptor_init_lock);
  if (interceptors_inited)
    return;

  INTERCEPT_FUNCTION(dlopen);
  INTERCEPT_FUNCTION(dlclose);

  interceptors_inited = true;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
#if !SANITIZER_CAN_USE_PREINIT_ARRAY
// On ELF platforms, the constructor is invoked using .preinit_array (see below)
__attribute__((constructor(0)))
#endif
void __cfi_init() {
  SanitizerToolName = "CFI";
  InitializeFlags();
  InitShadow();

#ifdef CFI_ENABLE_DIAG
  __ubsan::InitAsPlugin();
#endif
}

#if SANITIZER_CAN_USE_PREINIT_ARRAY
// On ELF platforms, run cfi initialization before any other constructors.
// On other platforms we use the constructor attribute to arrange to run our
// initialization early.
extern "C" {
__attribute__((section(".preinit_array"),
               used)) void (*__cfi_preinit)(void) = __cfi_init;
}
#endif