reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
//===- AggressiveInstCombine.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the aggressive expression pattern combiner classes.
// Currently, it handles expression patterns for:
//  * Truncate instruction
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
#include "AggressiveInstCombineInternal.h"
#include "llvm-c/Initialization.h"
#include "llvm-c/Transforms/AggressiveInstCombine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "aggressive-instcombine"

namespace {
/// Contains expression pattern combiner logic.
/// This class provides both the logic to combine expression patterns and
/// combine them. It differs from InstCombiner class in that each pattern
/// combiner runs only once as opposed to InstCombine's multi-iteration,
/// which allows pattern combiner to have higher complexity than the O(1)
/// required by the instruction combiner.
class AggressiveInstCombinerLegacyPass : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid

  AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
    initializeAggressiveInstCombinerLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  /// Run all expression pattern optimizations on the given /p F function.
  ///
  /// \param F function to optimize.
  /// \returns true if the IR is changed.
  bool runOnFunction(Function &F) override;
};
} // namespace

/// Match a pattern for a bitwise rotate operation that partially guards
/// against undefined behavior by branching around the rotation when the shift
/// amount is 0.
static bool foldGuardedRotateToFunnelShift(Instruction &I) {
  if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
    return false;

  // As with the one-use checks below, this is not strictly necessary, but we
  // are being cautious to avoid potential perf regressions on targets that
  // do not actually have a rotate instruction (where the funnel shift would be
  // expanded back into math/shift/logic ops).
  if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
    return false;

  // Match V to funnel shift left/right and capture the source operand and
  // shift amount in X and Y.
  auto matchRotate = [](Value *V, Value *&X, Value *&Y) {
    Value *L0, *L1, *R0, *R1;
    unsigned Width = V->getType()->getScalarSizeInBits();
    auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1));

    // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y))
    auto RotL = m_OneUse(
        m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub)));
    if (RotL.match(V) && L0 == R0 && L1 == R1) {
      X = L0;
      Y = L1;
      return Intrinsic::fshl;
    }

    // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y))
    auto RotR = m_OneUse(
        m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub)));
    if (RotR.match(V) && L0 == R0 && L1 == R1) {
      X = L0;
      Y = L1;
      return Intrinsic::fshr;
    }

    return Intrinsic::not_intrinsic;
  };

  // One phi operand must be a rotate operation, and the other phi operand must
  // be the source value of that rotate operation:
  // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ]
  PHINode &Phi = cast<PHINode>(I);
  Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
  Value *RotSrc, *RotAmt;
  Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt);
  if (IID == Intrinsic::not_intrinsic || RotSrc != P1) {
    IID = matchRotate(P1, RotSrc, RotAmt);
    if (IID == Intrinsic::not_intrinsic || RotSrc != P0)
      return false;
    assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
           "Pattern must match funnel shift left or right");
  }

  // The incoming block with our source operand must be the "guard" block.
  // That must contain a cmp+branch to avoid the rotate when the shift amount
  // is equal to 0. The other incoming block is the block with the rotate.
  BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1);
  BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1);
  Instruction *TermI = GuardBB->getTerminator();
  ICmpInst::Predicate Pred;
  BasicBlock *PhiBB = Phi.getParent();
  if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()),
                         m_SpecificBB(PhiBB), m_SpecificBB(RotBB))))
    return false;

  if (Pred != CmpInst::ICMP_EQ)
    return false;

  // We matched a variation of this IR pattern:
  // GuardBB:
  //   %cmp = icmp eq i32 %RotAmt, 0
  //   br i1 %cmp, label %PhiBB, label %RotBB
  // RotBB:
  //   %sub = sub i32 32, %RotAmt
  //   %shr = lshr i32 %X, %sub
  //   %shl = shl i32 %X, %RotAmt
  //   %rot = or i32 %shr, %shl
  //   br label %PhiBB
  // PhiBB:
  //   %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ]
  // -->
  // llvm.fshl.i32(i32 %X, i32 %RotAmt)
  IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
  Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
  Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt}));
  return true;
}

/// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
/// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
/// of 'and' ops, then we also need to capture the fact that we saw an
/// "and X, 1", so that's an extra return value for that case.
struct MaskOps {
  Value *Root;
  APInt Mask;
  bool MatchAndChain;
  bool FoundAnd1;

  MaskOps(unsigned BitWidth, bool MatchAnds)
      : Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
        MatchAndChain(MatchAnds), FoundAnd1(false) {}
};

/// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
/// chain of 'and' or 'or' instructions looking for shift ops of a common source
/// value. Examples:
///   or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
/// returns { X, 0x129 }
///   and (and (X >> 1), 1), (X >> 4)
/// returns { X, 0x12 }
static bool matchAndOrChain(Value *V, MaskOps &MOps) {
  Value *Op0, *Op1;
  if (MOps.MatchAndChain) {
    // Recurse through a chain of 'and' operands. This requires an extra check
    // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
    // in the chain to know that all of the high bits are cleared.
    if (match(V, m_And(m_Value(Op0), m_One()))) {
      MOps.FoundAnd1 = true;
      return matchAndOrChain(Op0, MOps);
    }
    if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
      return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
  } else {
    // Recurse through a chain of 'or' operands.
    if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
      return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
  }

  // We need a shift-right or a bare value representing a compare of bit 0 of
  // the original source operand.
  Value *Candidate;
  uint64_t BitIndex = 0;
  if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex))))
    Candidate = V;

  // Initialize result source operand.
  if (!MOps.Root)
    MOps.Root = Candidate;

  // The shift constant is out-of-range? This code hasn't been simplified.
  if (BitIndex >= MOps.Mask.getBitWidth())
    return false;

  // Fill in the mask bit derived from the shift constant.
  MOps.Mask.setBit(BitIndex);
  return MOps.Root == Candidate;
}

/// Match patterns that correspond to "any-bits-set" and "all-bits-set".
/// These will include a chain of 'or' or 'and'-shifted bits from a
/// common source value:
/// and (or  (lshr X, C), ...), 1 --> (X & CMask) != 0
/// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
/// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
/// that differ only with a final 'not' of the result. We expect that final
/// 'not' to be folded with the compare that we create here (invert predicate).
static bool foldAnyOrAllBitsSet(Instruction &I) {
  // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
  // final "and X, 1" instruction must be the final op in the sequence.
  bool MatchAllBitsSet;
  if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
    MatchAllBitsSet = true;
  else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
    MatchAllBitsSet = false;
  else
    return false;

  MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
  if (MatchAllBitsSet) {
    if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
      return false;
  } else {
    if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
      return false;
  }

  // The pattern was found. Create a masked compare that replaces all of the
  // shift and logic ops.
  IRBuilder<> Builder(&I);
  Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
  Value *And = Builder.CreateAnd(MOps.Root, Mask);
  Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
                               : Builder.CreateIsNotNull(And);
  Value *Zext = Builder.CreateZExt(Cmp, I.getType());
  I.replaceAllUsesWith(Zext);
  return true;
}

// Try to recognize below function as popcount intrinsic.
// This is the "best" algorithm from
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
// Also used in TargetLowering::expandCTPOP().
//
// int popcount(unsigned int i) {
//   i = i - ((i >> 1) & 0x55555555);
//   i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
//   i = ((i + (i >> 4)) & 0x0F0F0F0F);
//   return (i * 0x01010101) >> 24;
// }
static bool tryToRecognizePopCount(Instruction &I) {
  if (I.getOpcode() != Instruction::LShr)
    return false;

  Type *Ty = I.getType();
  if (!Ty->isIntOrIntVectorTy())
    return false;

  unsigned Len = Ty->getScalarSizeInBits();
  // FIXME: fix Len == 8 and other irregular type lengths.
  if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
    return false;

  APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
  APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
  APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
  APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
  APInt MaskShift = APInt(Len, Len - 8);

  Value *Op0 = I.getOperand(0);
  Value *Op1 = I.getOperand(1);
  Value *MulOp0;
  // Matching "(i * 0x01010101...) >> 24".
  if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
       match(Op1, m_SpecificInt(MaskShift))) {
    Value *ShiftOp0;
    // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
    if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
                                    m_Deferred(ShiftOp0)),
                            m_SpecificInt(Mask0F)))) {
      Value *AndOp0;
      // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
      if (match(ShiftOp0,
                m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
                        m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
                              m_SpecificInt(Mask33))))) {
        Value *Root, *SubOp1;
        // Matching "i - ((i >> 1) & 0x55555555...)".
        if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
            match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
                                m_SpecificInt(Mask55)))) {
          LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
          IRBuilder<> Builder(&I);
          Function *Func = Intrinsic::getDeclaration(
              I.getModule(), Intrinsic::ctpop, I.getType());
          I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
          return true;
        }
      }
    }
  }

  return false;
}

/// This is the entry point for folds that could be implemented in regular
/// InstCombine, but they are separated because they are not expected to
/// occur frequently and/or have more than a constant-length pattern match.
static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
  bool MadeChange = false;
  for (BasicBlock &BB : F) {
    // Ignore unreachable basic blocks.
    if (!DT.isReachableFromEntry(&BB))
      continue;
    // Do not delete instructions under here and invalidate the iterator.
    // Walk the block backwards for efficiency. We're matching a chain of
    // use->defs, so we're more likely to succeed by starting from the bottom.
    // Also, we want to avoid matching partial patterns.
    // TODO: It would be more efficient if we removed dead instructions
    // iteratively in this loop rather than waiting until the end.
    for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
      MadeChange |= foldAnyOrAllBitsSet(I);
      MadeChange |= foldGuardedRotateToFunnelShift(I);
      MadeChange |= tryToRecognizePopCount(I); 
    }
  }

  // We're done with transforms, so remove dead instructions.
  if (MadeChange)
    for (BasicBlock &BB : F)
      SimplifyInstructionsInBlock(&BB);

  return MadeChange;
}

/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
  bool MadeChange = false;
  const DataLayout &DL = F.getParent()->getDataLayout();
  TruncInstCombine TIC(TLI, DL, DT);
  MadeChange |= TIC.run(F);
  MadeChange |= foldUnusualPatterns(F, DT);
  return MadeChange;
}

void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
    AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
  AU.addPreserved<AAResultsWrapperPass>();
  AU.addPreserved<BasicAAWrapperPass>();
  AU.addPreserved<DominatorTreeWrapperPass>();
  AU.addPreserved<GlobalsAAWrapperPass>();
}

bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  return runImpl(F, TLI, DT);
}

PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
                                                 FunctionAnalysisManager &AM) {
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  if (!runImpl(F, TLI, DT)) {
    // No changes, all analyses are preserved.
    return PreservedAnalyses::all();
  }
  // Mark all the analyses that instcombine updates as preserved.
  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<AAManager>();
  PA.preserve<GlobalsAA>();
  return PA;
}

char AggressiveInstCombinerLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
                      "aggressive-instcombine",
                      "Combine pattern based expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
                    "Combine pattern based expressions", false, false)

// Initialization Routines
void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
  initializeAggressiveInstCombinerLegacyPassPass(Registry);
}

void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
  initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
}

FunctionPass *llvm::createAggressiveInstCombinerPass() {
  return new AggressiveInstCombinerLegacyPass();
}

void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
  unwrap(PM)->add(createAggressiveInstCombinerPass());
}