reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
//===- BinaryStreamArray.h - Array backed by an arbitrary stream *- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_BINARYSTREAMARRAY_H
#define LLVM_SUPPORT_BINARYSTREAMARRAY_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/BinaryStreamRef.h"
#include "llvm/Support/Error.h"
#include <cassert>
#include <cstdint>

/// Lightweight arrays that are backed by an arbitrary BinaryStream.  This file
/// provides two different array implementations.
///
///     VarStreamArray - Arrays of variable length records.  The user specifies
///       an Extractor type that can extract a record from a given offset and
///       return the number of bytes consumed by the record.
///
///     FixedStreamArray - Arrays of fixed length records.  This is similar in
///       spirit to ArrayRef<T>, but since it is backed by a BinaryStream, the
///       elements of the array need not be laid out in contiguous memory.
namespace llvm {

/// VarStreamArrayExtractor is intended to be specialized to provide customized
/// extraction logic.  On input it receives a BinaryStreamRef pointing to the
/// beginning of the next record, but where the length of the record is not yet
/// known.  Upon completion, it should return an appropriate Error instance if
/// a record could not be extracted, or if one could be extracted it should
/// return success and set Len to the number of bytes this record occupied in
/// the underlying stream, and it should fill out the fields of the value type
/// Item appropriately to represent the current record.
///
/// You can specialize this template for your own custom value types to avoid
/// having to specify a second template argument to VarStreamArray (documented
/// below).
template <typename T> struct VarStreamArrayExtractor {
  // Method intentionally deleted.  You must provide an explicit specialization
  // with the following method implemented.
  Error operator()(BinaryStreamRef Stream, uint32_t &Len,
                   T &Item) const = delete;
};

/// VarStreamArray represents an array of variable length records backed by a
/// stream.  This could be a contiguous sequence of bytes in memory, it could
/// be a file on disk, or it could be a PDB stream where bytes are stored as
/// discontiguous blocks in a file.  Usually it is desirable to treat arrays
/// as contiguous blocks of memory, but doing so with large PDB files, for
/// example, could mean allocating huge amounts of memory just to allow
/// re-ordering of stream data to be contiguous before iterating over it.  By
/// abstracting this out, we need not duplicate this memory, and we can
/// iterate over arrays in arbitrarily formatted streams.  Elements are parsed
/// lazily on iteration, so there is no upfront cost associated with building
/// or copying a VarStreamArray, no matter how large it may be.
///
/// You create a VarStreamArray by specifying a ValueType and an Extractor type.
/// If you do not specify an Extractor type, you are expected to specialize
/// VarStreamArrayExtractor<T> for your ValueType.
///
/// By default an Extractor is default constructed in the class, but in some
/// cases you might find it useful for an Extractor to maintain state across
/// extractions.  In this case you can provide your own Extractor through a
/// secondary constructor.  The following examples show various ways of
/// creating a VarStreamArray.
///
///       // Will use VarStreamArrayExtractor<MyType> as the extractor.
///       VarStreamArray<MyType> MyTypeArray;
///
///       // Will use a default-constructed MyExtractor as the extractor.
///       VarStreamArray<MyType, MyExtractor> MyTypeArray2;
///
///       // Will use the specific instance of MyExtractor provided.
///       // MyExtractor need not be default-constructible in this case.
///       MyExtractor E(SomeContext);
///       VarStreamArray<MyType, MyExtractor> MyTypeArray3(E);
///

template <typename ValueType, typename Extractor> class VarStreamArrayIterator;

template <typename ValueType,
          typename Extractor = VarStreamArrayExtractor<ValueType>>
class VarStreamArray {
  friend class VarStreamArrayIterator<ValueType, Extractor>;

public:
  typedef VarStreamArrayIterator<ValueType, Extractor> Iterator;

  VarStreamArray() = default;

  explicit VarStreamArray(const Extractor &E) : E(E) {}

  explicit VarStreamArray(BinaryStreamRef Stream, uint32_t Skew = 0)
      : Stream(Stream), Skew(Skew) {}

  VarStreamArray(BinaryStreamRef Stream, const Extractor &E, uint32_t Skew = 0)
      : Stream(Stream), E(E), Skew(Skew) {}

  Iterator begin(bool *HadError = nullptr) const {
    return Iterator(*this, E, Skew, nullptr);
  }

  bool valid() const { return Stream.valid(); }

  uint32_t skew() const { return Skew; }
  Iterator end() const { return Iterator(E); }

  bool empty() const { return Stream.getLength() == 0; }

  VarStreamArray<ValueType, Extractor> substream(uint32_t Begin,
                                                 uint32_t End) const {
    assert(Begin >= Skew);
    // We should never cut off the beginning of the stream since it might be
    // skewed, meaning the initial bytes are important.
    BinaryStreamRef NewStream = Stream.slice(0, End);
    return {NewStream, E, Begin};
  }

  /// given an offset into the array's underlying stream, return an
  /// iterator to the record at that offset.  This is considered unsafe
  /// since the behavior is undefined if \p Offset does not refer to the
  /// beginning of a valid record.
  Iterator at(uint32_t Offset) const {
    return Iterator(*this, E, Offset, nullptr);
  }

  const Extractor &getExtractor() const { return E; }
  Extractor &getExtractor() { return E; }

  BinaryStreamRef getUnderlyingStream() const { return Stream; }
  void setUnderlyingStream(BinaryStreamRef S, uint32_t Skew = 0) {
    Stream = S;
    this->Skew = Skew;
  }

  void drop_front() { Skew += begin()->length(); }

private:
  BinaryStreamRef Stream;
  Extractor E;
  uint32_t Skew;
};

template <typename ValueType, typename Extractor>
class VarStreamArrayIterator
    : public iterator_facade_base<VarStreamArrayIterator<ValueType, Extractor>,
                                  std::forward_iterator_tag, ValueType> {
  typedef VarStreamArrayIterator<ValueType, Extractor> IterType;
  typedef VarStreamArray<ValueType, Extractor> ArrayType;

public:
  VarStreamArrayIterator(const ArrayType &Array, const Extractor &E,
                         uint32_t Offset, bool *HadError)
      : IterRef(Array.Stream.drop_front(Offset)), Extract(E),
        Array(&Array), AbsOffset(Offset), HadError(HadError) {
    if (IterRef.getLength() == 0)
      moveToEnd();
    else {
      auto EC = Extract(IterRef, ThisLen, ThisValue);
      if (EC) {
        consumeError(std::move(EC));
        markError();
      }
    }
  }

  VarStreamArrayIterator() = default;
  explicit VarStreamArrayIterator(const Extractor &E) : Extract(E) {}
  ~VarStreamArrayIterator() = default;

  bool operator==(const IterType &R) const {
    if (Array && R.Array) {
      // Both have a valid array, make sure they're same.
      assert(Array == R.Array);
      return IterRef == R.IterRef;
    }

    // Both iterators are at the end.
    if (!Array && !R.Array)
      return true;

    // One is not at the end and one is.
    return false;
  }

  const ValueType &operator*() const {
    assert(Array && !HasError);
    return ThisValue;
  }

  ValueType &operator*() {
    assert(Array && !HasError);
    return ThisValue;
  }

  IterType &operator+=(unsigned N) {
    for (unsigned I = 0; I < N; ++I) {
      // We are done with the current record, discard it so that we are
      // positioned at the next record.
      AbsOffset += ThisLen;
      IterRef = IterRef.drop_front(ThisLen);
      if (IterRef.getLength() == 0) {
        // There is nothing after the current record, we must make this an end
        // iterator.
        moveToEnd();
      } else {
        // There is some data after the current record.
        auto EC = Extract(IterRef, ThisLen, ThisValue);
        if (EC) {
          consumeError(std::move(EC));
          markError();
        } else if (ThisLen == 0) {
          // An empty record? Make this an end iterator.
          moveToEnd();
        }
      }
    }
    return *this;
  }

  uint32_t offset() const { return AbsOffset; }
  uint32_t getRecordLength() const { return ThisLen; }

private:
  void moveToEnd() {
    Array = nullptr;
    ThisLen = 0;
  }
  void markError() {
    moveToEnd();
    HasError = true;
    if (HadError != nullptr)
      *HadError = true;
  }

  ValueType ThisValue;
  BinaryStreamRef IterRef;
  Extractor Extract;
  const ArrayType *Array{nullptr};
  uint32_t ThisLen{0};
  uint32_t AbsOffset{0};
  bool HasError{false};
  bool *HadError{nullptr};
};

template <typename T> class FixedStreamArrayIterator;

/// FixedStreamArray is similar to VarStreamArray, except with each record
/// having a fixed-length.  As with VarStreamArray, there is no upfront
/// cost associated with building or copying a FixedStreamArray, as the
/// memory for each element is not read from the backing stream until that
/// element is iterated.
template <typename T> class FixedStreamArray {
  friend class FixedStreamArrayIterator<T>;

public:
  typedef FixedStreamArrayIterator<T> Iterator;

  FixedStreamArray() = default;
  explicit FixedStreamArray(BinaryStreamRef Stream) : Stream(Stream) {
    assert(Stream.getLength() % sizeof(T) == 0);
  }

  bool operator==(const FixedStreamArray<T> &Other) const {
    return Stream == Other.Stream;
  }

  bool operator!=(const FixedStreamArray<T> &Other) const {
    return !(*this == Other);
  }

  FixedStreamArray &operator=(const FixedStreamArray &) = default;

  const T &operator[](uint32_t Index) const {
    assert(Index < size());
    uint32_t Off = Index * sizeof(T);
    ArrayRef<uint8_t> Data;
    if (auto EC = Stream.readBytes(Off, sizeof(T), Data)) {
      assert(false && "Unexpected failure reading from stream");
      // This should never happen since we asserted that the stream length was
      // an exact multiple of the element size.
      consumeError(std::move(EC));
    }
    assert(llvm::alignmentAdjustment(Data.data(), alignof(T)) == 0);
    return *reinterpret_cast<const T *>(Data.data());
  }

  uint32_t size() const { return Stream.getLength() / sizeof(T); }

  bool empty() const { return size() == 0; }

  FixedStreamArrayIterator<T> begin() const {
    return FixedStreamArrayIterator<T>(*this, 0);
  }

  FixedStreamArrayIterator<T> end() const {
    return FixedStreamArrayIterator<T>(*this, size());
  }

  const T &front() const { return *begin(); }
  const T &back() const {
    FixedStreamArrayIterator<T> I = end();
    return *(--I);
  }

  BinaryStreamRef getUnderlyingStream() const { return Stream; }

private:
  BinaryStreamRef Stream;
};

template <typename T>
class FixedStreamArrayIterator
    : public iterator_facade_base<FixedStreamArrayIterator<T>,
                                  std::random_access_iterator_tag, const T> {

public:
  FixedStreamArrayIterator(const FixedStreamArray<T> &Array, uint32_t Index)
      : Array(Array), Index(Index) {}

  FixedStreamArrayIterator<T> &
  operator=(const FixedStreamArrayIterator<T> &Other) {
    Array = Other.Array;
    Index = Other.Index;
    return *this;
  }

  const T &operator*() const { return Array[Index]; }
  const T &operator*() { return Array[Index]; }

  bool operator==(const FixedStreamArrayIterator<T> &R) const {
    assert(Array == R.Array);
    return (Index == R.Index) && (Array == R.Array);
  }

  FixedStreamArrayIterator<T> &operator+=(std::ptrdiff_t N) {
    Index += N;
    return *this;
  }

  FixedStreamArrayIterator<T> &operator-=(std::ptrdiff_t N) {
    assert(std::ptrdiff_t(Index) >= N);
    Index -= N;
    return *this;
  }

  std::ptrdiff_t operator-(const FixedStreamArrayIterator<T> &R) const {
    assert(Array == R.Array);
    assert(Index >= R.Index);
    return Index - R.Index;
  }

  bool operator<(const FixedStreamArrayIterator<T> &RHS) const {
    assert(Array == RHS.Array);
    return Index < RHS.Index;
  }

private:
  FixedStreamArray<T> Array;
  uint32_t Index;
};

} // namespace llvm

#endif // LLVM_SUPPORT_BINARYSTREAMARRAY_H