reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
#!/usr/bin/env python

"""A shuffle-select vector fuzz tester.

This is a python program to fuzz test the LLVM shufflevector and select
instructions. It generates a function with a random sequnece of shufflevectors
while optionally attaching it with a select instruction (regular or zero merge),
maintaining the element mapping accumulated across the function. It then
generates a main function which calls it with a different value in each element
and checks that the result matches the expected mapping.

Take the output IR printed to stdout, compile it to an executable using whatever
set of transforms you want to test, and run the program. If it crashes, it found
a bug (an error message with the expected and actual result is printed).
"""

import random
import uuid
import argparse

# Possibility of one undef index in generated mask for shufflevector instruction
SHUF_UNDEF_POS = 0.15

# Possibility of one undef index in generated mask for select instruction
SEL_UNDEF_POS = 0.15

# Possibility of adding a select instruction to the result of a shufflevector
ADD_SEL_POS = 0.4

# If we are adding a select instruction, this is the possibility of a
# merge-select instruction (1 - MERGE_SEL_POS = possibility of zero-merge-select
# instruction.
MERGE_SEL_POS = 0.5


test_template = r'''
define internal fastcc {ty} @test({inputs}) noinline nounwind {{
entry:
{instructions}
  ret {ty} {last_name}
}}
'''

error_template = r'''@error.{lane} = private unnamed_addr global [64 x i8] c"FAIL: lane {lane}, expected {exp}, found %d\0A{padding}"'''

main_template = r'''
define i32 @main() {{
entry:
  ; Create a scratch space to print error messages.
  %str = alloca [64 x i8]
  %str.ptr = getelementptr inbounds [64 x i8], [64 x i8]* %str, i32 0, i32 0

  ; Build the input vector and call the test function.
  %v = call fastcc {ty} @test({inputs})
  br label %test.0

  {check_die}
}}

declare i32 @strlen(i8*)
declare i32 @write(i32, i8*, i32)
declare i32 @sprintf(i8*, i8*, ...)
declare void @llvm.trap() noreturn nounwind
'''

check_template = r'''
test.{lane}:
  %v.{lane} = extractelement {ty} %v, i32 {lane}
  %cmp.{lane} = {i_f}cmp {ordered}ne {scalar_ty} %v.{lane}, {exp}
  br i1 %cmp.{lane}, label %die.{lane}, label %test.{n_lane}
'''

undef_check_template = r'''
test.{lane}:
; Skip this lane, its value is undef.
  br label %test.{n_lane}
'''

die_template = r'''
die.{lane}:
; Capture the actual value and print an error message.
  call i32 (i8*, i8*, ...) @sprintf(i8* %str.ptr, i8* getelementptr inbounds ([64 x i8], [64 x i8]* @error.{lane}, i32 0, i32 0), {scalar_ty} %v.{lane})
  %length.{lane} = call i32 @strlen(i8* %str.ptr)
  call i32 @write(i32 2, i8* %str.ptr, i32 %length.{lane})
  call void @llvm.trap()
  unreachable
'''

class Type:
  def __init__(self, is_float, elt_width, elt_num):
    self.is_float = is_float        # Boolean
    self.elt_width = elt_width      # Integer
    self.elt_num = elt_num          # Integer

  def dump(self):
    if self.is_float:
      str_elt = 'float' if self.elt_width == 32 else 'double'
    else:
      str_elt = 'i' + str(self.elt_width)

    if self.elt_num == 1:
      return str_elt
    else:
      return '<' + str(self.elt_num) + ' x ' + str_elt + '>'

  def get_scalar_type(self):
    return Type(self.is_float, self.elt_width, 1)



# Class to represent any value (variable) that can be used.
class Value:
  def __init__(self, name, ty, value = None):
    self.ty = ty                  # Type
    self.name = name              # String
    self.value = value            # list of integers or floating points


# Class to represent an IR instruction (shuffle/select).
class Instruction(Value):
  def __init__(self, name, ty, op0, op1, mask):
    Value.__init__(self, name, ty)
    self.op0 = op0                # Value
    self.op1 = op1                # Value
    self.mask = mask              # list of integers

  def dump(self): pass

  def calc_value(self): pass


# Class to represent an IR shuffle instruction
class ShufInstr(Instruction):

  shuf_template = '  {name} = shufflevector {ty} {op0}, {ty} {op1}, <{num} x i32> {mask}\n'

  def __init__(self, name, ty, op0, op1, mask):
    Instruction.__init__(self, '%shuf' + name, ty, op0, op1, mask)

  def dump(self):
    str_mask = [('i32 ' + str(idx)) if idx != -1 else 'i32 undef' for idx in self.mask]
    str_mask = '<' + (', ').join(str_mask) + '>'
    return self.shuf_template.format(name = self.name, ty = self.ty.dump(), op0 = self.op0.name,
                               op1 = self.op1.name, num = self.ty.elt_num, mask = str_mask)

  def calc_value(self):
    if self.value != None:
      print 'Trying to calculate the value of a shuffle instruction twice'
      exit(1)

    result = []
    for i in range(len(self.mask)):
      index = self.mask[i]

      if index < self.ty.elt_num and index >= 0:
        result.append(self.op0.value[index])
      elif index >= self.ty.elt_num:
        index = index % self.ty.elt_num
        result.append(self.op1.value[index])
      else: # -1 => undef
        result.append(-1)

    self.value = result


# Class to represent an IR select instruction
class SelectInstr(Instruction):

  sel_template = '  {name} = select <{num} x i1> {mask}, {ty} {op0}, {ty} {op1}\n'

  def __init__(self, name, ty, op0, op1, mask):
    Instruction.__init__(self, '%sel' + name, ty, op0, op1, mask)

  def dump(self):
    str_mask = [('i1 ' + str(idx)) if idx != -1 else 'i1 undef' for idx in self.mask]
    str_mask = '<' + (', ').join(str_mask) + '>'
    return self.sel_template.format(name = self.name, ty = self.ty.dump(), op0 = self.op0.name,
                               op1 = self.op1.name, num = self.ty.elt_num, mask = str_mask)

  def calc_value(self):
    if self.value != None:
      print 'Trying to calculate the value of a select instruction twice'
      exit(1)

    result = []
    for i in range(len(self.mask)):
      index = self.mask[i]

      if index == 1:
        result.append(self.op0.value[i])
      elif index == 0:
        result.append(self.op1.value[i])
      else: # -1 => undef
        result.append(-1)

    self.value = result


# Returns a list of Values initialized with actual numbers according to the
# provided type
def gen_inputs(ty, num):
  inputs = []
  for i in range(num):
    inp = []
    for j in range(ty.elt_num):
      if ty.is_float:
        inp.append(float(i*ty.elt_num + j))
      else:
        inp.append((i*ty.elt_num + j) % (1 << ty.elt_width))
    inputs.append(Value('%inp' + str(i), ty, inp))

  return inputs


# Returns a random vector type to be tested
# In case one of the dimensions (scalar type/number of elements) is provided,
# fill the blank dimension and return appropriate Type object.
def get_random_type(ty, num_elts):
  if ty != None:
    if ty == 'i8':
      is_float = False
      width = 8
    elif ty == 'i16':
      is_float = False
      width = 16
    elif ty == 'i32':
      is_float = False
      width = 32
    elif ty == 'i64':
      is_float = False
      width = 64
    elif ty == 'f32':
      is_float = True
      width = 32
    elif ty == 'f64':
      is_float = True
      width = 64

  int_elt_widths = [8, 16, 32, 64]
  float_elt_widths = [32, 64]

  if num_elts == None:
    num_elts = random.choice(range(2, 65))

  if ty == None:
    # 1 for integer type, 0 for floating-point
    if random.randint(0,1):
      is_float = False
      width = random.choice(int_elt_widths)
    else:
      is_float = True
      width = random.choice(float_elt_widths)

  return Type(is_float, width, num_elts)


# Generate mask for shufflevector IR instruction, with SHUF_UNDEF_POS possibility
# of one undef index.
def gen_shuf_mask(ty):
  mask = []
  for i in range(ty.elt_num):
    if SHUF_UNDEF_POS/ty.elt_num > random.random():
      mask.append(-1)
    else:
      mask.append(random.randint(0, ty.elt_num*2 - 1))

  return mask


# Generate mask for select IR instruction, with SEL_UNDEF_POS possibility
# of one undef index.
def gen_sel_mask(ty):
  mask = []
  for i in range(ty.elt_num):
    if SEL_UNDEF_POS/ty.elt_num > random.random():
      mask.append(-1)
    else:
      mask.append(random.randint(0, 1))

  return mask

# Generate shuffle instructions with optional select instruction after.
def gen_insts(inputs, ty):
  int_zero_init = Value('zeroinitializer', ty, [0]*ty.elt_num)
  float_zero_init = Value('zeroinitializer', ty, [0.0]*ty.elt_num)

  insts = []
  name_idx = 0
  while len(inputs) > 1:
    # Choose 2 available Values - remove them from inputs list.
    [idx0, idx1] = sorted(random.sample(range(len(inputs)), 2))
    op0 = inputs[idx0]
    op1 = inputs[idx1]

    # Create the shuffle instruction.
    shuf_mask = gen_shuf_mask(ty)
    shuf_inst = ShufInstr(str(name_idx), ty, op0, op1, shuf_mask)
    shuf_inst.calc_value()

    # Add the new shuffle instruction to the list of instructions.
    insts.append(shuf_inst)

    # Optionally, add select instruction with the result of the previous shuffle.
    if random.random() < ADD_SEL_POS:
      #  Either blending with a random Value or with an all-zero vector.
      if random.random() < MERGE_SEL_POS:
        op2 = random.choice(inputs)
      else:
        op2 = float_zero_init if ty.is_float else int_zero_init

      select_mask = gen_sel_mask(ty)
      select_inst = SelectInstr(str(name_idx), ty, shuf_inst, op2, select_mask)
      select_inst.calc_value()

      # Add the select instructions to the list of instructions and to the available Values.
      insts.append(select_inst)
      inputs.append(select_inst)
    else:
      # If the shuffle instruction is not followed by select, add it to the available Values.
      inputs.append(shuf_inst)

    del inputs[idx1]
    del inputs[idx0]
    name_idx += 1

  return insts


def main():
  parser = argparse.ArgumentParser(description=__doc__)
  parser.add_argument('--seed', default=str(uuid.uuid4()),
                      help='A string used to seed the RNG')
  parser.add_argument('--max-num-inputs', type=int, default=20,
          help='Specify the maximum number of vector inputs for the test. (default: 20)')
  parser.add_argument('--min-num-inputs', type=int, default=10,
          help='Specify the minimum number of vector inputs for the test. (default: 10)')
  parser.add_argument('--type', default=None,
                      help='''
                          Choose specific type to be tested.
                          i8, i16, i32, i64, f32 or f64.
                          (default: random)''')
  parser.add_argument('--num-elts', default=None, type=int,
                      help='Choose specific number of vector elements to be tested. (default: random)')
  args = parser.parse_args()

  print '; The seed used for this test is ' + args.seed

  assert args.min_num_inputs < args.max_num_inputs , "Minimum value greater than maximum."
  assert args.type in [None, 'i8', 'i16', 'i32', 'i64', 'f32', 'f64'], "Illegal type."
  assert args.num_elts == None or args.num_elts > 0, "num_elts must be a positive integer."

  random.seed(args.seed)
  ty = get_random_type(args.type, args.num_elts)
  inputs = gen_inputs(ty, random.randint(args.min_num_inputs, args.max_num_inputs))
  inputs_str = (', ').join([inp.ty.dump() + ' ' + inp.name for inp in inputs])
  inputs_values = [inp.value for inp in inputs]

  insts = gen_insts(inputs, ty)

  assert len(inputs) == 1, "Only one value should be left after generating phase"
  res = inputs[0]

  # print the actual test function by dumping the generated instructions.
  insts_str = ''.join([inst.dump() for inst in insts])
  print test_template.format(ty = ty.dump(), inputs = inputs_str,
                             instructions = insts_str, last_name = res.name)

  # Print the error message templates as global strings
  for i in range(len(res.value)):
    pad = ''.join(['\\00']*(31 - len(str(i)) - len(str(res.value[i]))))
    print error_template.format(lane = str(i), exp = str(res.value[i]),
                                padding = pad)

  # Prepare the runtime checks and failure handlers.
  scalar_ty = ty.get_scalar_type()
  check_die = ''
  i_f = 'f' if ty.is_float else 'i'
  ordered = 'o' if ty.is_float else ''
  for i in range(len(res.value)):
    if res.value[i] != -1:
      # Emit runtime check for each non-undef expected value.
      check_die += check_template.format(lane = str(i), n_lane = str(i+1),
                             ty = ty.dump(), i_f = i_f, scalar_ty = scalar_ty.dump(),
                             exp = str(res.value[i]), ordered = ordered)
      # Emit failure handler for each runtime check with proper error message
      check_die += die_template.format(lane = str(i), scalar_ty = scalar_ty.dump())
    else:
      # Ignore lanes with undef result
      check_die += undef_check_template.format(lane = str(i), n_lane = str(i+1))

  check_die += '\ntest.' + str(len(res.value)) + ':\n'
  check_die += '  ret i32 0'

  # Prepare the input values passed to the test function.
  inputs_values = [', '.join([scalar_ty.dump() + ' ' + str(i) for i in inp]) for inp in inputs_values]
  inputs = ', '.join([ty.dump() + ' <' + inp + '>' for inp in inputs_values])

  print main_template.format(ty = ty.dump(), inputs = inputs, check_die = check_die)


if __name__ == '__main__':
  main()