reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
#!/usr/bin/env python

"""A shuffle vector fuzz tester.

This is a python program to fuzz test the LLVM shufflevector instruction. It
generates a function with a random sequnece of shufflevectors, maintaining the
element mapping accumulated across the function. It then generates a main
function which calls it with a different value in each element and checks that
the result matches the expected mapping.

Take the output IR printed to stdout, compile it to an executable using whatever
set of transforms you want to test, and run the program. If it crashes, it found
a bug.
"""

import argparse
import itertools
import random
import sys
import uuid

def main():
  element_types=['i8', 'i16', 'i32', 'i64', 'f32', 'f64']
  parser = argparse.ArgumentParser(description=__doc__)
  parser.add_argument('-v', '--verbose', action='store_true',
                      help='Show verbose output')
  parser.add_argument('--seed', default=str(uuid.uuid4()),
                      help='A string used to seed the RNG')
  parser.add_argument('--max-shuffle-height', type=int, default=16,
                      help='Specify a fixed height of shuffle tree to test')
  parser.add_argument('--no-blends', dest='blends', action='store_false',
                      help='Include blends of two input vectors')
  parser.add_argument('--fixed-bit-width', type=int, choices=[128, 256],
                      help='Specify a fixed bit width of vector to test')
  parser.add_argument('--fixed-element-type', choices=element_types,
                      help='Specify a fixed element type to test')
  parser.add_argument('--triple',
                      help='Specify a triple string to include in the IR')
  args = parser.parse_args()

  random.seed(args.seed)

  if args.fixed_element_type is not None:
    element_types=[args.fixed_element_type]

  if args.fixed_bit_width is not None:
    if args.fixed_bit_width == 128:
      width_map={'i64': 2, 'i32': 4, 'i16': 8, 'i8': 16, 'f64': 2, 'f32': 4}
      (width, element_type) = random.choice(
          [(width_map[t], t) for t in element_types])
    elif args.fixed_bit_width == 256:
      width_map={'i64': 4, 'i32': 8, 'i16': 16, 'i8': 32, 'f64': 4, 'f32': 8}
      (width, element_type) = random.choice(
          [(width_map[t], t) for t in element_types])
    else:
      sys.exit(1) # Checked above by argument parsing.
  else:
    width = random.choice([2, 4, 8, 16, 32, 64])
    element_type = random.choice(element_types)

  element_modulus = {
      'i8': 1 << 8, 'i16': 1 << 16, 'i32': 1 << 32, 'i64': 1 << 64,
      'f32': 1 << 32, 'f64': 1 << 64}[element_type]

  shuffle_range = (2 * width) if args.blends else width

  # Because undef (-1) saturates and is indistinguishable when testing the
  # correctness of a shuffle, we want to bias our fuzz toward having a decent
  # mixture of non-undef lanes in the end. With a deep shuffle tree, the
  # probabilies aren't good so we need to bias things. The math here is that if
  # we uniformly select between -1 and the other inputs, each element of the
  # result will have the following probability of being undef:
  #
  #   1 - (shuffle_range/(shuffle_range+1))^max_shuffle_height
  #
  # More generally, for any probability P of selecting a defined element in
  # a single shuffle, the end result is:
  #
  #   1 - P^max_shuffle_height
  #
  # The power of the shuffle height is the real problem, as we want:
  #
  #   1 - shuffle_range/(shuffle_range+1)
  #
  # So we bias the selection of undef at any given node based on the tree
  # height. Below, let 'A' be 'len(shuffle_range)', 'C' be 'max_shuffle_height',
  # and 'B' be the bias we use to compensate for
  # C '((A+1)*A^(1/C))/(A*(A+1)^(1/C))':
  #
  #   1 - (B * A)/(A + 1)^C = 1 - A/(A + 1)
  #
  # So at each node we use:
  #
  #   1 - (B * A)/(A + 1)
  # = 1 - ((A + 1) * A * A^(1/C))/(A * (A + 1) * (A + 1)^(1/C))
  # = 1 - ((A + 1) * A^((C + 1)/C))/(A * (A + 1)^((C + 1)/C))
  #
  # This is the formula we use to select undef lanes in the shuffle.
  A = float(shuffle_range)
  C = float(args.max_shuffle_height)
  undef_prob = 1.0 - (((A + 1.0) * pow(A, (C + 1.0)/C)) /
                      (A * pow(A + 1.0, (C + 1.0)/C)))

  shuffle_tree = [[[-1 if random.random() <= undef_prob
                       else random.choice(range(shuffle_range))
                    for _ in itertools.repeat(None, width)]
                   for _ in itertools.repeat(None, args.max_shuffle_height - i)]
                  for i in xrange(args.max_shuffle_height)]

  if args.verbose:
    # Print out the shuffle sequence in a compact form.
    print >>sys.stderr, ('Testing shuffle sequence "%s" (v%d%s):' %
                         (args.seed, width, element_type))
    for i, shuffles in enumerate(shuffle_tree):
      print >>sys.stderr, '  tree level %d:' % (i,)
      for j, s in enumerate(shuffles):
        print >>sys.stderr, '    shuffle %d: %s' % (j, s)
    print >>sys.stderr, ''

  # Symbolically evaluate the shuffle tree.
  inputs = [[int(j % element_modulus)
             for j in xrange(i * width + 1, (i + 1) * width + 1)]
            for i in xrange(args.max_shuffle_height + 1)]
  results = inputs
  for shuffles in shuffle_tree:
    results = [[((results[i] if j < width else results[i + 1])[j % width]
                 if j != -1 else -1)
                for j in s]
               for i, s in enumerate(shuffles)]
  if len(results) != 1:
    print >>sys.stderr, 'ERROR: Bad results: %s' % (results,)
    sys.exit(1)
  result = results[0]

  if args.verbose:
    print >>sys.stderr, 'Which transforms:'
    print >>sys.stderr, '  from: %s' % (inputs,)
    print >>sys.stderr, '  into: %s' % (result,)
    print >>sys.stderr, ''

  # The IR uses silly names for floating point types. We also need a same-size
  # integer type.
  integral_element_type = element_type
  if element_type == 'f32':
    integral_element_type = 'i32'
    element_type = 'float'
  elif element_type == 'f64':
    integral_element_type = 'i64'
    element_type = 'double'

  # Now we need to generate IR for the shuffle function.
  subst = {'N': width, 'T': element_type, 'IT': integral_element_type}
  print """
define internal fastcc <%(N)d x %(T)s> @test(%(arguments)s) noinline nounwind {
entry:""" % dict(subst,
                 arguments=', '.join(
                     ['<%(N)d x %(T)s> %%s.0.%(i)d' % dict(subst, i=i)
                      for i in xrange(args.max_shuffle_height + 1)]))

  for i, shuffles in enumerate(shuffle_tree):
   for j, s in enumerate(shuffles):
    print """
  %%s.%(next_i)d.%(j)d = shufflevector <%(N)d x %(T)s> %%s.%(i)d.%(j)d, <%(N)d x %(T)s> %%s.%(i)d.%(next_j)d, <%(N)d x i32> <%(S)s>
""".strip('\n') % dict(subst, i=i, next_i=i + 1, j=j, next_j=j + 1,
                       S=', '.join(['i32 ' + (str(si) if si != -1 else 'undef')
                                    for si in s]))

  print """
  ret <%(N)d x %(T)s> %%s.%(i)d.0
}
""" % dict(subst, i=len(shuffle_tree))

  # Generate some string constants that we can use to report errors.
  for i, r in enumerate(result):
    if r != -1:
      s = ('FAIL(%(seed)s): lane %(lane)d, expected %(result)d, found %%d\n\\0A' %
           {'seed': args.seed, 'lane': i, 'result': r})
      s += ''.join(['\\00' for _ in itertools.repeat(None, 128 - len(s) + 2)])
      print """
@error.%(i)d = private unnamed_addr global [128 x i8] c"%(s)s"
""".strip() % {'i': i, 's': s}

  # Define a wrapper function which is marked 'optnone' to prevent
  # interprocedural optimizations from deleting the test.
  print """
define internal fastcc <%(N)d x %(T)s> @test_wrapper(%(arguments)s) optnone noinline {
  %%result = call fastcc <%(N)d x %(T)s> @test(%(arguments)s)
  ret <%(N)d x %(T)s> %%result
}
""" % dict(subst,
           arguments=', '.join(['<%(N)d x %(T)s> %%s.%(i)d' % dict(subst, i=i)
                                for i in xrange(args.max_shuffle_height + 1)]))

  # Finally, generate a main function which will trap if any lanes are mapped
  # incorrectly (in an observable way).
  print """
define i32 @main() {
entry:
  ; Create a scratch space to print error messages.
  %%str = alloca [128 x i8]
  %%str.ptr = getelementptr inbounds [128 x i8], [128 x i8]* %%str, i32 0, i32 0

  ; Build the input vector and call the test function.
  %%v = call fastcc <%(N)d x %(T)s> @test_wrapper(%(inputs)s)
  ; We need to cast this back to an integer type vector to easily check the
  ; result.
  %%v.cast = bitcast <%(N)d x %(T)s> %%v to <%(N)d x %(IT)s>
  br label %%test.0
""" % dict(subst,
           inputs=', '.join(
               [('<%(N)d x %(T)s> bitcast '
                 '(<%(N)d x %(IT)s> <%(input)s> to <%(N)d x %(T)s>)' %
                 dict(subst, input=', '.join(['%(IT)s %(i)d' % dict(subst, i=i)
                                              for i in input])))
                for input in inputs]))

  # Test that each non-undef result lane contains the expected value.
  for i, r in enumerate(result):
    if r == -1:
      print """
test.%(i)d:
  ; Skip this lane, its value is undef.
  br label %%test.%(next_i)d
""" % dict(subst, i=i, next_i=i + 1)
    else:
      print """
test.%(i)d:
  %%v.%(i)d = extractelement <%(N)d x %(IT)s> %%v.cast, i32 %(i)d
  %%cmp.%(i)d = icmp ne %(IT)s %%v.%(i)d, %(r)d
  br i1 %%cmp.%(i)d, label %%die.%(i)d, label %%test.%(next_i)d

die.%(i)d:
  ; Capture the actual value and print an error message.
  %%tmp.%(i)d = zext %(IT)s %%v.%(i)d to i2048
  %%bad.%(i)d = trunc i2048 %%tmp.%(i)d to i32
  call i32 (i8*, i8*, ...) @sprintf(i8* %%str.ptr, i8* getelementptr inbounds ([128 x i8], [128 x i8]* @error.%(i)d, i32 0, i32 0), i32 %%bad.%(i)d)
  %%length.%(i)d = call i32 @strlen(i8* %%str.ptr)
  call i32 @write(i32 2, i8* %%str.ptr, i32 %%length.%(i)d)
  call void @llvm.trap()
  unreachable
""" % dict(subst, i=i, next_i=i + 1, r=r)

  print """
test.%d:
  ret i32 0
}

declare i32 @strlen(i8*)
declare i32 @write(i32, i8*, i32)
declare i32 @sprintf(i8*, i8*, ...)
declare void @llvm.trap() noreturn nounwind
""" % (len(result),)

if __name__ == '__main__':
  main()