reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
#!/usr/bin/env python

"""A tool for extracting a list of symbols to export

When exporting symbols from a dll or exe we either need to mark the symbols in
the source code as __declspec(dllexport) or supply a list of symbols to the
linker. This program automates the latter by inspecting the symbol tables of a
list of link inputs and deciding which of those symbols need to be exported.

We can't just export all the defined symbols, as there's a limit of 65535
exported symbols and in clang we go way over that, particularly in a debug
build. Therefore a large part of the work is pruning symbols either which can't
be imported, or which we think are things that have definitions in public header
files (i.e. template instantiations) and we would get defined in the thing
importing these symbols anyway.
"""

from __future__ import print_function
import sys
import re
import os
import subprocess
import multiprocessing
import argparse

# Define functions which extract a list of symbols from a library using several
# different tools. We use subprocess.Popen and yield a symbol at a time instead
# of using subprocess.check_output and returning a list as, especially on
# Windows, waiting for the entire output to be ready can take a significant
# amount of time.

def dumpbin_get_symbols(lib):
    process = subprocess.Popen(['dumpbin','/symbols',lib], bufsize=1,
                               stdout=subprocess.PIPE, stdin=subprocess.PIPE,
                               universal_newlines=True)
    process.stdin.close()
    for line in process.stdout:
        # Look for external symbols that are defined in some section
        match = re.match("^.+SECT.+External\s+\|\s+(\S+).*$", line)
        if match:
            yield match.group(1)
    process.wait()

def nm_get_symbols(lib):
    process = subprocess.Popen(['nm',lib], bufsize=1,
                               stdout=subprocess.PIPE, stdin=subprocess.PIPE,
                               universal_newlines=True)
    process.stdin.close()
    for line in process.stdout:
        # Look for external symbols that are defined in some section
        match = re.match("^\S+\s+[BDGRSTVW]\s+(\S+)$", line)
        if match:
            yield match.group(1)
    process.wait()

def readobj_get_symbols(lib):
    process = subprocess.Popen(['llvm-readobj','-symbols',lib], bufsize=1,
                               stdout=subprocess.PIPE, stdin=subprocess.PIPE,
                               universal_newlines=True)
    process.stdin.close()
    for line in process.stdout:
        # When looking through the output of llvm-readobj we expect to see Name,
        # Section, then StorageClass, so record Name and Section when we see
        # them and decide if this is a defined external symbol when we see
        # StorageClass.
        match = re.search('Name: (\S+)', line)
        if match:
            name = match.group(1)
        match = re.search('Section: (\S+)', line)
        if match:
            section = match.group(1)
        match = re.search('StorageClass: (\S+)', line)
        if match:
            storageclass = match.group(1)
            if section != 'IMAGE_SYM_ABSOLUTE' and \
               section != 'IMAGE_SYM_UNDEFINED' and \
               storageclass == 'External':
                yield name
    process.wait()

# Define functions which determine if the target is 32-bit Windows (as that's
# where calling convention name decoration happens).

def dumpbin_is_32bit_windows(lib):
    # dumpbin /headers can output a huge amount of data (>100MB in a debug
    # build) so we read only up to the 'machine' line then close the output.
    process = subprocess.Popen(['dumpbin','/headers',lib], bufsize=1,
                               stdout=subprocess.PIPE, stdin=subprocess.PIPE,
                               universal_newlines=True)
    process.stdin.close()
    retval = False
    for line in process.stdout:
        match = re.match('.+machine \((\S+)\)', line)
        if match:
            retval = (match.group(1) == 'x86')
            break
    process.stdout.close()
    process.wait()
    return retval

def objdump_is_32bit_windows(lib):
    output = subprocess.check_output(['objdump','-f',lib],
                                     universal_newlines=True)
    for line in output:
        match = re.match('.+file format (\S+)', line)
        if match:
            return (match.group(1) == 'pe-i386')
    return False

def readobj_is_32bit_windows(lib):
    output = subprocess.check_output(['llvm-readobj','-file-headers',lib],
                                     universal_newlines=True)
    for line in output:
        match = re.match('Format: (\S+)', line)
        if match:
            return (match.group(1) == 'COFF-i386')
    return False

# MSVC mangles names to ?<identifier_mangling>@<type_mangling>. By examining the
# identifier/type mangling we can decide which symbols could possibly be
# required and which we can discard.
def should_keep_microsoft_symbol(symbol, calling_convention_decoration):
    # Keep unmangled (i.e. extern "C") names
    if not '?' in symbol:
        if calling_convention_decoration:
            # Remove calling convention decoration from names
            match = re.match('[_@]([^@]+)', symbol)
            if match:
                return match.group(1)
        return symbol
    # Function template instantiations start with ?$; keep the instantiations of
    # clang::Type::getAs, as some of them are explipict specializations that are
    # defined in clang's lib/AST/Type.cpp; discard the rest as it's assumed that
    # the definition is public
    elif re.match('\?\?\$getAs@.+@Type@clang@@', symbol):
        return symbol
    elif symbol.startswith('??$'):
        return None
    # Deleting destructors start with ?_G or ?_E and can be discarded because
    # link.exe gives you a warning telling you they can't be exported if you
    # don't
    elif symbol.startswith('??_G') or symbol.startswith('??_E'):
        return None
    # Constructors (?0) and destructors (?1) of templates (?$) are assumed to be
    # defined in headers and not required to be kept
    elif symbol.startswith('??0?$') or symbol.startswith('??1?$'):
        return None
    # An anonymous namespace is mangled as ?A(maybe hex number)@. Any symbol
    # that mentions an anonymous namespace can be discarded, as the anonymous
    # namespace doesn't exist outside of that translation unit.
    elif re.search('\?A(0x\w+)?@', symbol):
        return None
    # Keep mangled llvm:: and clang:: function symbols. How we detect these is a
    # bit of a mess and imprecise, but that avoids having to completely demangle
    # the symbol name. The outermost namespace is at the end of the identifier
    # mangling, and the identifier mangling is followed by the type mangling, so
    # we look for (llvm|clang)@@ followed by something that looks like a
    # function type mangling. To spot a function type we use (this is derived
    # from clang/lib/AST/MicrosoftMangle.cpp):
    # <function-type> ::= <function-class> <this-cvr-qualifiers>
    #                     <calling-convention> <return-type>
    #                     <argument-list> <throw-spec>
    # <function-class> ::= [A-Z]
    # <this-cvr-qualifiers> ::= [A-Z0-9_]*
    # <calling-convention> ::= [A-JQ]
    # <return-type> ::= .+
    # <argument-list> ::= X   (void)
    #                 ::= .+@ (list of types)
    #                 ::= .*Z (list of types, varargs)
    # <throw-spec> ::= exceptions are not allowed
    elif re.search('(llvm|clang)@@[A-Z][A-Z0-9_]*[A-JQ].+(X|.+@|.*Z)$', symbol):
        return symbol
    return None

# Itanium manglings are of the form _Z<identifier_mangling><type_mangling>. We
# demangle the identifier mangling to identify symbols that can be safely
# discarded.
def should_keep_itanium_symbol(symbol, calling_convention_decoration):
    # Start by removing any calling convention decoration (which we expect to
    # see on all symbols, even mangled C++ symbols)
    if calling_convention_decoration and symbol.startswith('_'):
        symbol = symbol[1:]
    # Keep unmangled names
    if not symbol.startswith('_') and not symbol.startswith('.'):
        return symbol
    # Discard manglings that aren't nested names
    match = re.match('_Z(T[VTIS])?(N.+)', symbol)
    if not match:
        return None
    # Demangle the name. If the name is too complex then we don't need to keep
    # it, but it the demangling fails then keep the symbol just in case.
    try:
        names, _ = parse_itanium_nested_name(match.group(2))
    except TooComplexName:
        return None
    if not names:
        return symbol
    # Constructors and destructors of templates classes are assumed to be
    # defined in headers and not required to be kept
    if re.match('[CD][123]', names[-1][0]) and names[-2][1]:
        return None
    # Keep the instantiations of clang::Type::getAs, as some of them are
    # explipict specializations that are defined in clang's lib/AST/Type.cpp;
    # discard any other function template instantiations as it's assumed that
    # the definition is public
    elif symbol.startswith('_ZNK5clang4Type5getAs'):
        return symbol
    elif names[-1][1]:
        return None
    # Keep llvm:: and clang:: names
    elif names[0][0] == '4llvm' or names[0][0] == '5clang':
        return symbol
    # Discard everything else
    else:
        return None

# Certain kinds of complex manglings we assume cannot be part of a public
# interface, and we handle them by raising an exception.
class TooComplexName(Exception):
    pass

# Parse an itanium mangled name from the start of a string and return a
# (name, rest of string) pair.
def parse_itanium_name(arg):
    # Check for a normal name
    match = re.match('(\d+)(.+)', arg)
    if match:
        n = int(match.group(1))
        name = match.group(1)+match.group(2)[:n]
        rest = match.group(2)[n:]
        return name, rest
    # Check for constructor/destructor names
    match = re.match('([CD][123])(.+)', arg)
    if match:
        return match.group(1), match.group(2)
    # Assume that a sequence of characters that doesn't end a nesting is an
    # operator (this is very imprecise, but appears to be good enough)
    match = re.match('([^E]+)(.+)', arg)
    if match:
        return match.group(1), match.group(2)
    # Anything else: we can't handle it
    return None, arg

# Parse an itanium mangled template argument list from the start of a string
# and throw it away, returning the rest of the string.
def skip_itanium_template(arg):
    # A template argument list starts with I
    assert arg.startswith('I'), arg
    tmp = arg[1:]
    while tmp:
        # Check for names
        match = re.match('(\d+)(.+)', tmp)
        if match:
            n = int(match.group(1))
            tmp =  match.group(2)[n:]
            continue
        # Check for substitutions
        match = re.match('S[A-Z0-9]*_(.+)', tmp)
        if match:
            tmp = match.group(1)
        # Start of a template
        elif tmp.startswith('I'):
            tmp = skip_itanium_template(tmp)
        # Start of a nested name
        elif tmp.startswith('N'):
            _, tmp = parse_itanium_nested_name(tmp)
        # Start of an expression: assume that it's too complicated
        elif tmp.startswith('L') or tmp.startswith('X'):
            raise TooComplexName
        # End of the template
        elif tmp.startswith('E'):
            return tmp[1:]
        # Something else: probably a type, skip it
        else:
            tmp = tmp[1:]
    return None

# Parse an itanium mangled nested name and transform it into a list of pairs of
# (name, is_template), returning (list, rest of string).
def parse_itanium_nested_name(arg):
    # A nested name starts with N
    assert arg.startswith('N'), arg
    ret = []

    # Skip past the N, and possibly a substitution
    match = re.match('NS[A-Z0-9]*_(.+)', arg)
    if match:
        tmp = match.group(1)
    else:
        tmp = arg[1:]

    # Skip past CV-qualifiers and ref qualifiers
    match = re.match('[rVKRO]*(.+)', tmp);
    if match:
        tmp = match.group(1)

    # Repeatedly parse names from the string until we reach the end of the
    # nested name
    while tmp:
        # An E ends the nested name
        if tmp.startswith('E'):
            return ret, tmp[1:]
        # Parse a name
        name_part, tmp = parse_itanium_name(tmp)
        if not name_part:
            # If we failed then we don't know how to demangle this
            return None, None
        is_template = False
        # If this name is a template record that, then skip the template
        # arguments
        if tmp.startswith('I'):
            tmp = skip_itanium_template(tmp)
            is_template = True
        # Add the name to the list
        ret.append((name_part, is_template))

    # If we get here then something went wrong
    return None, None

def extract_symbols(arg):
    get_symbols, should_keep_symbol, calling_convention_decoration, lib = arg
    symbols = dict()
    for symbol in get_symbols(lib):
        symbol = should_keep_symbol(symbol, calling_convention_decoration)
        if symbol:
            symbols[symbol] = 1 + symbols.setdefault(symbol,0)
    return symbols

if __name__ == '__main__':
    tool_exes = ['dumpbin','nm','objdump','llvm-readobj']
    parser = argparse.ArgumentParser(
        description='Extract symbols to export from libraries')
    parser.add_argument('--mangling', choices=['itanium','microsoft'],
                        required=True, help='expected symbol mangling scheme')
    parser.add_argument('--tools', choices=tool_exes, nargs='*',
                        help='tools to use to extract symbols and determine the'
                        ' target')
    parser.add_argument('libs', metavar='lib', type=str, nargs='+',
                        help='libraries to extract symbols from')
    parser.add_argument('-o', metavar='file', type=str, help='output to file')
    args = parser.parse_args()

    # Determine the function to use to get the list of symbols from the inputs,
    # and the function to use to determine if the target is 32-bit windows.
    tools = { 'dumpbin' : (dumpbin_get_symbols, dumpbin_is_32bit_windows),
              'nm' : (nm_get_symbols, None),
              'objdump' : (None, objdump_is_32bit_windows),
              'llvm-readobj' : (readobj_get_symbols, readobj_is_32bit_windows) }
    get_symbols = None
    is_32bit_windows = None
    # If we have a tools argument then use that for the list of tools to check
    if args.tools:
        tool_exes = args.tools
    # Find a tool to use by trying each in turn until we find one that exists
    # (subprocess.call will throw OSError when the program does not exist)
    get_symbols = None
    for exe in tool_exes:
        try:
            # Close std streams as we don't want any output and we don't
            # want the process to wait for something on stdin.
            p = subprocess.Popen([exe], stdout=subprocess.PIPE,
                                 stderr=subprocess.PIPE,
                                 stdin=subprocess.PIPE,
                                 universal_newlines=True)
            p.stdout.close()
            p.stderr.close()
            p.stdin.close()
            p.wait()
            # Keep going until we have a tool to use for both get_symbols and
            # is_32bit_windows
            if not get_symbols:
                get_symbols = tools[exe][0]
            if not is_32bit_windows:
                is_32bit_windows = tools[exe][1]
            if get_symbols and is_32bit_windows:
                break
        except OSError:
            continue
    if not get_symbols:
        print("Couldn't find a program to read symbols with", file=sys.stderr)
        exit(1)
    if not is_32bit_windows:
        print("Couldn't find a program to determing the target", file=sys.stderr)
        exit(1)

    # How we determine which symbols to keep and which to discard depends on
    # the mangling scheme
    if args.mangling == 'microsoft':
        should_keep_symbol = should_keep_microsoft_symbol
    else:
        should_keep_symbol = should_keep_itanium_symbol

    # Get the list of libraries to extract symbols from
    libs = list()
    for lib in args.libs:
        # When invoked by cmake the arguments are the cmake target names of the
        # libraries, so we need to add .lib/.a to the end and maybe lib to the
        # start to get the filename. Also allow objects.
        suffixes = ['.lib','.a','.obj','.o']
        if not any([lib.endswith(s) for s in suffixes]):
            for s in suffixes:
                if os.path.exists(lib+s):
                    lib = lib+s
                    break
                if os.path.exists('lib'+lib+s):
                    lib = 'lib'+lib+s
                    break
        if not any([lib.endswith(s) for s in suffixes]):
            print("Don't know what to do with argument "+lib, file=sys.stderr)
            exit(1)
        libs.append(lib)

    # Check if calling convention decoration is used by inspecting the first
    # library in the list
    calling_convention_decoration = is_32bit_windows(libs[0])

    # Extract symbols from libraries in parallel. This is a huge time saver when
    # doing a debug build, as there are hundreds of thousands of symbols in each
    # library.
    pool = multiprocessing.Pool()
    try:
        # Only one argument can be passed to the mapping function, and we can't
        # use a lambda or local function definition as that doesn't work on
        # windows, so create a list of tuples which duplicates the arguments
        # that are the same in all calls.
        vals = [(get_symbols, should_keep_symbol, calling_convention_decoration, x) for x in libs]
        # Do an async map then wait for the result to make sure that
        # KeyboardInterrupt gets caught correctly (see
        # http://bugs.python.org/issue8296)
        result = pool.map_async(extract_symbols, vals)
        pool.close()
        libs_symbols = result.get(3600)
    except KeyboardInterrupt:
        # On Ctrl-C terminate everything and exit
        pool.terminate()
        pool.join()
        exit(1)

    # Merge everything into a single dict
    symbols = dict()
    for this_lib_symbols in libs_symbols:
        for k,v in list(this_lib_symbols.items()):
            symbols[k] = v + symbols.setdefault(k,0)

    # Count instances of member functions of template classes, and map the
    # symbol name to the function+class. We do this under the assumption that if
    # a member function of a template class is instantiated many times it's
    # probably declared in a public header file.
    template_function_count = dict()
    template_function_mapping = dict()
    template_function_count[""] = 0
    for k in symbols:
        name = None
        if args.mangling == 'microsoft':
            # Member functions of templates start with
            # ?<fn_name>@?$<class_name>@, so we map to <fn_name>@?$<class_name>.
            # As manglings go from the innermost scope to the outermost scope
            # this means:
            #  * When we have a function member of a subclass of a template
            #    class then <fn_name> will actually contain the mangling of
            #    both the subclass and the function member. This is fine.
            #  * When we have a function member of a template subclass of a
            #    (possibly template) class then it's the innermost template
            #    subclass that becomes <class_name>. This should be OK so long
            #    as we don't have multiple classes with a template subclass of
            #    the same name.
            match = re.search("^\?(\??\w+\@\?\$\w+)\@", k)
            if match:
                name = match.group(1)
        else:
            # Find member functions of templates by demangling the name and
            # checking if the second-to-last name in the list is a template.
            match = re.match('_Z(T[VTIS])?(N.+)', k)
            if match:
                try:
                    names, _ = parse_itanium_nested_name(match.group(2))
                    if names and names[-2][1]:
                        name = ''.join([x for x,_ in names])
                except TooComplexName:
                    # Manglings that are too complex should already have been
                    # filtered out, but if we happen to somehow see one here
                    # just leave it as-is.
                    pass
        if name:
            old_count = template_function_count.setdefault(name,0)
            template_function_count[name] = old_count + 1
            template_function_mapping[k] = name
        else:
            template_function_mapping[k] = ""

    # Print symbols which both:
    #  * Appear in exactly one input, as symbols defined in multiple
    #    objects/libraries are assumed to have public definitions.
    #  * Aren't instances of member functions of templates which have been
    #    instantiated 100 times or more, which are assumed to have public
    #    definitions. (100 is an arbitrary guess here.)
    if args.o:
        outfile = open(args.o,'w')
    else:
        outfile = sys.stdout
    for k,v in list(symbols.items()):
        template_count = template_function_count[template_function_mapping[k]]
        if v == 1 and template_count < 100:
            print(k, file=outfile)