reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
/*
 * Copyright 2012-2014 Ecole Normale Superieure
 * Copyright 2014      INRIA Rocquencourt
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege,
 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
 * B.P. 105 - 78153 Le Chesnay, France
 */

#include <limits.h>
#include <isl/id.h>
#include <isl/val.h>
#include <isl/space.h>
#include <isl/aff.h>
#include <isl/constraint.h>
#include <isl/set.h>
#include <isl/ilp.h>
#include <isl/union_set.h>
#include <isl/union_map.h>
#include <isl/schedule_node.h>
#include <isl/options.h>
#include <isl_sort.h>
#include <isl_tarjan.h>
#include <isl_ast_private.h>
#include <isl_ast_build_expr.h>
#include <isl_ast_build_private.h>
#include <isl_ast_graft_private.h>

/* Try and reduce the number of disjuncts in the representation of "set",
 * without dropping explicit representations of local variables.
 */
static __isl_give isl_set *isl_set_coalesce_preserve(__isl_take isl_set *set)
{
	isl_ctx *ctx;
	int save_preserve;

	if (!set)
		return NULL;

	ctx = isl_set_get_ctx(set);
	save_preserve = isl_options_get_coalesce_preserve_locals(ctx);
	isl_options_set_coalesce_preserve_locals(ctx, 1);
	set = isl_set_coalesce(set);
	isl_options_set_coalesce_preserve_locals(ctx, save_preserve);
	return set;
}

/* Data used in generate_domain.
 *
 * "build" is the input build.
 * "list" collects the results.
 */
struct isl_generate_domain_data {
	isl_ast_build *build;

	isl_ast_graft_list *list;
};

static __isl_give isl_ast_graft_list *generate_next_level(
	__isl_take isl_union_map *executed,
	__isl_take isl_ast_build *build);
static __isl_give isl_ast_graft_list *generate_code(
	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
	int internal);

/* Generate an AST for a single domain based on
 * the (non single valued) inverse schedule "executed".
 *
 * We extend the schedule with the iteration domain
 * and continue generating through a call to generate_code.
 *
 * In particular, if executed has the form
 *
 *	S -> D
 *
 * then we continue generating code on
 *
 *	[S -> D] -> D
 *
 * The extended inverse schedule is clearly single valued
 * ensuring that the nested generate_code will not reach this function,
 * but will instead create calls to all elements of D that need
 * to be executed from the current schedule domain.
 */
static isl_stat generate_non_single_valued(__isl_take isl_map *executed,
	struct isl_generate_domain_data *data)
{
	isl_map *identity;
	isl_ast_build *build;
	isl_ast_graft_list *list;

	build = isl_ast_build_copy(data->build);

	identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
	executed = isl_map_domain_product(executed, identity);
	build = isl_ast_build_set_single_valued(build, 1);

	list = generate_code(isl_union_map_from_map(executed), build, 1);

	data->list = isl_ast_graft_list_concat(data->list, list);

	return isl_stat_ok;
}

/* Call the at_each_domain callback, if requested by the user,
 * after recording the current inverse schedule in the build.
 */
static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
	__isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
{
	if (!graft || !build)
		return isl_ast_graft_free(graft);
	if (!build->at_each_domain)
		return graft;

	build = isl_ast_build_copy(build);
	build = isl_ast_build_set_executed(build,
			isl_union_map_from_map(isl_map_copy(executed)));
	if (!build)
		return isl_ast_graft_free(graft);

	graft->node = build->at_each_domain(graft->node,
					build, build->at_each_domain_user);
	isl_ast_build_free(build);

	if (!graft->node)
		graft = isl_ast_graft_free(graft);

	return graft;
}

/* Generate a call expression for the single executed
 * domain element "map" and put a guard around it based its (simplified)
 * domain.  "executed" is the original inverse schedule from which "map"
 * has been derived.  In particular, "map" is either identical to "executed"
 * or it is the result of gisting "executed" with respect to the build domain.
 * "executed" is only used if there is an at_each_domain callback.
 *
 * At this stage, any pending constraints in the build can no longer
 * be simplified with respect to any enforced constraints since
 * the call node does not have any enforced constraints.
 * Since all pending constraints not covered by any enforced constraints
 * will be added as a guard to the graft in create_node_scaled,
 * even in the eliminated case, the pending constraints
 * can be considered to have been generated by outer constructs.
 *
 * If the user has set an at_each_domain callback, it is called
 * on the constructed call expression node.
 */
static isl_stat add_domain(__isl_take isl_map *executed,
	__isl_take isl_map *map, struct isl_generate_domain_data *data)
{
	isl_ast_build *build;
	isl_ast_graft *graft;
	isl_ast_graft_list *list;
	isl_set *guard, *pending;

	build = isl_ast_build_copy(data->build);
	pending = isl_ast_build_get_pending(build);
	build = isl_ast_build_replace_pending_by_guard(build, pending);

	guard = isl_map_domain(isl_map_copy(map));
	guard = isl_set_compute_divs(guard);
	guard = isl_set_coalesce_preserve(guard);
	guard = isl_set_gist(guard, isl_ast_build_get_generated(build));
	guard = isl_ast_build_specialize(build, guard);

	graft = isl_ast_graft_alloc_domain(map, build);
	graft = at_each_domain(graft, executed, build);
	isl_ast_build_free(build);
	isl_map_free(executed);
	graft = isl_ast_graft_add_guard(graft, guard, data->build);

	list = isl_ast_graft_list_from_ast_graft(graft);
	data->list = isl_ast_graft_list_concat(data->list, list);

	return isl_stat_ok;
}

/* Generate an AST for a single domain based on
 * the inverse schedule "executed" and add it to data->list.
 *
 * If there is more than one domain element associated to the current
 * schedule "time", then we need to continue the generation process
 * in generate_non_single_valued.
 * Note that the inverse schedule being single-valued may depend
 * on constraints that are only available in the original context
 * domain specified by the user.  We therefore first introduce
 * some of the constraints of data->build->domain.  In particular,
 * we intersect with a single-disjunct approximation of this set.
 * We perform this approximation to avoid further splitting up
 * the executed relation, possibly introducing a disjunctive guard
 * on the statement.
 *
 * On the other hand, we only perform the test after having taken the gist
 * of the domain as the resulting map is the one from which the call
 * expression is constructed.  Using this map to construct the call
 * expression usually yields simpler results in cases where the original
 * map is not obviously single-valued.
 * If the original map is obviously single-valued, then the gist
 * operation is skipped.
 *
 * Because we perform the single-valuedness test on the gisted map,
 * we may in rare cases fail to recognize that the inverse schedule
 * is single-valued.  This becomes problematic if this happens
 * from the recursive call through generate_non_single_valued
 * as we would then end up in an infinite recursion.
 * We therefore check if we are inside a call to generate_non_single_valued
 * and revert to the ungisted map if the gisted map turns out not to be
 * single-valued.
 *
 * Otherwise, call add_domain to generate a call expression (with guard) and
 * to call the at_each_domain callback, if any.
 */
static isl_stat generate_domain(__isl_take isl_map *executed, void *user)
{
	struct isl_generate_domain_data *data = user;
	isl_set *domain;
	isl_map *map = NULL;
	int empty, sv;

	domain = isl_ast_build_get_domain(data->build);
	domain = isl_set_from_basic_set(isl_set_simple_hull(domain));
	executed = isl_map_intersect_domain(executed, domain);
	empty = isl_map_is_empty(executed);
	if (empty < 0)
		goto error;
	if (empty) {
		isl_map_free(executed);
		return isl_stat_ok;
	}

	sv = isl_map_plain_is_single_valued(executed);
	if (sv < 0)
		goto error;
	if (sv)
		return add_domain(executed, isl_map_copy(executed), data);

	executed = isl_map_coalesce(executed);
	map = isl_map_copy(executed);
	map = isl_ast_build_compute_gist_map_domain(data->build, map);
	sv = isl_map_is_single_valued(map);
	if (sv < 0)
		goto error;
	if (!sv) {
		isl_map_free(map);
		if (data->build->single_valued)
			map = isl_map_copy(executed);
		else
			return generate_non_single_valued(executed, data);
	}

	return add_domain(executed, map, data);
error:
	isl_map_free(map);
	isl_map_free(executed);
	return isl_stat_error;
}

/* Call build->create_leaf to a create "leaf" node in the AST,
 * encapsulate the result in an isl_ast_graft and return the result
 * as a 1-element list.
 *
 * Note that the node returned by the user may be an entire tree.
 *
 * Since the node itself cannot enforce any constraints, we turn
 * all pending constraints into guards and add them to the resulting
 * graft to ensure that they will be generated.
 *
 * Before we pass control to the user, we first clear some information
 * from the build that is (presumbably) only meaningful
 * for the current code generation.
 * This includes the create_leaf callback itself, so we make a copy
 * of the build first.
 */
static __isl_give isl_ast_graft_list *call_create_leaf(
	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
{
	isl_set *guard;
	isl_ast_node *node;
	isl_ast_graft *graft;
	isl_ast_build *user_build;

	guard = isl_ast_build_get_pending(build);
	user_build = isl_ast_build_copy(build);
	user_build = isl_ast_build_replace_pending_by_guard(user_build,
							isl_set_copy(guard));
	user_build = isl_ast_build_set_executed(user_build, executed);
	user_build = isl_ast_build_clear_local_info(user_build);
	if (!user_build)
		node = NULL;
	else
		node = build->create_leaf(user_build, build->create_leaf_user);
	graft = isl_ast_graft_alloc(node, build);
	graft = isl_ast_graft_add_guard(graft, guard, build);
	isl_ast_build_free(build);
	return isl_ast_graft_list_from_ast_graft(graft);
}

static __isl_give isl_ast_graft_list *build_ast_from_child(
	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
	__isl_take isl_union_map *executed);

/* Generate an AST after having handled the complete schedule
 * of this call to the code generator or the complete band
 * if we are generating an AST from a schedule tree.
 *
 * If we are inside a band node, then move on to the child of the band.
 *
 * If the user has specified a create_leaf callback, control
 * is passed to the user in call_create_leaf.
 *
 * Otherwise, we generate one or more calls for each individual
 * domain in generate_domain.
 */
static __isl_give isl_ast_graft_list *generate_inner_level(
	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
{
	isl_ctx *ctx;
	struct isl_generate_domain_data data = { build };

	if (!build || !executed)
		goto error;

	if (isl_ast_build_has_schedule_node(build)) {
		isl_schedule_node *node;
		node = isl_ast_build_get_schedule_node(build);
		build = isl_ast_build_reset_schedule_node(build);
		return build_ast_from_child(build, node, executed);
	}

	if (build->create_leaf)
		return call_create_leaf(executed, build);

	ctx = isl_union_map_get_ctx(executed);
	data.list = isl_ast_graft_list_alloc(ctx, 0);
	if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
		data.list = isl_ast_graft_list_free(data.list);

	if (0)
error:		data.list = NULL;
	isl_ast_build_free(build);
	isl_union_map_free(executed);
	return data.list;
}

/* Call the before_each_for callback, if requested by the user.
 */
static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
	__isl_keep isl_ast_build *build)
{
	isl_id *id;

	if (!node || !build)
		return isl_ast_node_free(node);
	if (!build->before_each_for)
		return node;
	id = build->before_each_for(build, build->before_each_for_user);
	node = isl_ast_node_set_annotation(node, id);
	return node;
}

/* Call the after_each_for callback, if requested by the user.
 */
static __isl_give isl_ast_graft *after_each_for(__isl_take isl_ast_graft *graft,
	__isl_keep isl_ast_build *build)
{
	if (!graft || !build)
		return isl_ast_graft_free(graft);
	if (!build->after_each_for)
		return graft;
	graft->node = build->after_each_for(graft->node, build,
						build->after_each_for_user);
	if (!graft->node)
		return isl_ast_graft_free(graft);
	return graft;
}

/* Plug in all the know values of the current and outer dimensions
 * in the domain of "executed".  In principle, we only need to plug
 * in the known value of the current dimension since the values of
 * outer dimensions have been plugged in already.
 * However, it turns out to be easier to just plug in all known values.
 */
static __isl_give isl_union_map *plug_in_values(
	__isl_take isl_union_map *executed, __isl_keep isl_ast_build *build)
{
	return isl_ast_build_substitute_values_union_map_domain(build,
								    executed);
}

/* Check if the constraint "c" is a lower bound on dimension "pos",
 * an upper bound, or independent of dimension "pos".
 */
static int constraint_type(isl_constraint *c, int pos)
{
	if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
		return 1;
	if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
		return 2;
	return 0;
}

/* Compare the types of the constraints "a" and "b",
 * resulting in constraints that are independent of "depth"
 * to be sorted before the lower bounds on "depth", which in
 * turn are sorted before the upper bounds on "depth".
 */
static int cmp_constraint(__isl_keep isl_constraint *a,
	__isl_keep isl_constraint *b, void *user)
{
	int *depth = user;
	int t1 = constraint_type(a, *depth);
	int t2 = constraint_type(b, *depth);

	return t1 - t2;
}

/* Extract a lower bound on dimension "pos" from constraint "c".
 *
 * If the constraint is of the form
 *
 *	a x + f(...) >= 0
 *
 * then we essentially return
 *
 *	l = ceil(-f(...)/a)
 *
 * However, if the current dimension is strided, then we need to make
 * sure that the lower bound we construct is of the form
 *
 *	f + s a
 *
 * with f the offset and s the stride.
 * We therefore compute
 *
 *	f + s * ceil((l - f)/s)
 */
static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
	int pos, __isl_keep isl_ast_build *build)
{
	isl_aff *aff;

	aff = isl_constraint_get_bound(c, isl_dim_set, pos);
	aff = isl_aff_ceil(aff);

	if (isl_ast_build_has_stride(build, pos)) {
		isl_aff *offset;
		isl_val *stride;

		offset = isl_ast_build_get_offset(build, pos);
		stride = isl_ast_build_get_stride(build, pos);

		aff = isl_aff_sub(aff, isl_aff_copy(offset));
		aff = isl_aff_scale_down_val(aff, isl_val_copy(stride));
		aff = isl_aff_ceil(aff);
		aff = isl_aff_scale_val(aff, stride);
		aff = isl_aff_add(aff, offset);
	}

	aff = isl_ast_build_compute_gist_aff(build, aff);

	return aff;
}

/* Return the exact lower bound (or upper bound if "upper" is set)
 * of "domain" as a piecewise affine expression.
 *
 * If we are computing a lower bound (of a strided dimension), then
 * we need to make sure it is of the form
 *
 *	f + s a
 *
 * where f is the offset and s is the stride.
 * We therefore need to include the stride constraint before computing
 * the minimum.
 */
static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
	__isl_keep isl_ast_build *build, int upper)
{
	isl_set *stride;
	isl_map *it_map;
	isl_pw_aff *pa;
	isl_pw_multi_aff *pma;

	domain = isl_set_copy(domain);
	if (!upper) {
		stride = isl_ast_build_get_stride_constraint(build);
		domain = isl_set_intersect(domain, stride);
	}
	it_map = isl_ast_build_map_to_iterator(build, domain);
	if (upper)
		pma = isl_map_lexmax_pw_multi_aff(it_map);
	else
		pma = isl_map_lexmin_pw_multi_aff(it_map);
	pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
	isl_pw_multi_aff_free(pma);
	pa = isl_ast_build_compute_gist_pw_aff(build, pa);
	pa = isl_pw_aff_coalesce(pa);

	return pa;
}

/* Callback for sorting the isl_pw_aff_list passed to reduce_list and
 * remove_redundant_lower_bounds.
 */
static int reduce_list_cmp(__isl_keep isl_pw_aff *a, __isl_keep isl_pw_aff *b,
	void *user)
{
	return isl_pw_aff_plain_cmp(a, b);
}

/* Given a list of lower bounds "list", remove those that are redundant
 * with respect to the other bounds in "list" and the domain of "build".
 *
 * We first sort the bounds in the same way as they would be sorted
 * by set_for_node_expressions so that we can try and remove the last
 * bounds first.
 *
 * For a lower bound to be effective, there needs to be at least
 * one domain element for which it is larger than all other lower bounds.
 * For each lower bound we therefore intersect the domain with
 * the conditions that it is larger than all other bounds and
 * check whether the result is empty.  If so, the bound can be removed.
 */
static __isl_give isl_pw_aff_list *remove_redundant_lower_bounds(
	__isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
{
	int i, j, n;
	isl_set *domain;

	list = isl_pw_aff_list_sort(list, &reduce_list_cmp, NULL);
	if (!list)
		return NULL;

	n = isl_pw_aff_list_n_pw_aff(list);
	if (n <= 1)
		return list;

	domain = isl_ast_build_get_domain(build);

	for (i = n - 1; i >= 0; --i) {
		isl_pw_aff *pa_i;
		isl_set *domain_i;
		int empty;

		domain_i = isl_set_copy(domain);
		pa_i = isl_pw_aff_list_get_pw_aff(list, i);

		for (j = 0; j < n; ++j) {
			isl_pw_aff *pa_j;
			isl_set *better;

			if (j == i)
				continue;

			pa_j = isl_pw_aff_list_get_pw_aff(list, j);
			better = isl_pw_aff_gt_set(isl_pw_aff_copy(pa_i), pa_j);
			domain_i = isl_set_intersect(domain_i, better);
		}

		empty = isl_set_is_empty(domain_i);

		isl_set_free(domain_i);
		isl_pw_aff_free(pa_i);

		if (empty < 0)
			goto error;
		if (!empty)
			continue;
		list = isl_pw_aff_list_drop(list, i, 1);
		n--;
	}

	isl_set_free(domain);

	return list;
error:
	isl_set_free(domain);
	return isl_pw_aff_list_free(list);
}

/* Extract a lower bound on dimension "pos" from each constraint
 * in "constraints" and return the list of lower bounds.
 * If "constraints" has zero elements, then we extract a lower bound
 * from "domain" instead.
 *
 * If the current dimension is strided, then the lower bound
 * is adjusted by lower_bound to match the stride information.
 * This modification may make one or more lower bounds redundant
 * with respect to the other lower bounds.  We therefore check
 * for this condition and remove the redundant lower bounds.
 */
static __isl_give isl_pw_aff_list *lower_bounds(
	__isl_keep isl_constraint_list *constraints, int pos,
	__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
{
	isl_ctx *ctx;
	isl_pw_aff_list *list;
	int i, n;

	if (!build)
		return NULL;

	n = isl_constraint_list_n_constraint(constraints);
	if (n == 0) {
		isl_pw_aff *pa;
		pa = exact_bound(domain, build, 0);
		return isl_pw_aff_list_from_pw_aff(pa);
	}

	ctx = isl_ast_build_get_ctx(build);
	list = isl_pw_aff_list_alloc(ctx,n);

	for (i = 0; i < n; ++i) {
		isl_aff *aff;
		isl_constraint *c;

		c = isl_constraint_list_get_constraint(constraints, i);
		aff = lower_bound(c, pos, build);
		isl_constraint_free(c);
		list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
	}

	if (isl_ast_build_has_stride(build, pos))
		list = remove_redundant_lower_bounds(list, build);

	return list;
}

/* Extract an upper bound on dimension "pos" from each constraint
 * in "constraints" and return the list of upper bounds.
 * If "constraints" has zero elements, then we extract an upper bound
 * from "domain" instead.
 */
static __isl_give isl_pw_aff_list *upper_bounds(
	__isl_keep isl_constraint_list *constraints, int pos,
	__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
{
	isl_ctx *ctx;
	isl_pw_aff_list *list;
	int i, n;

	n = isl_constraint_list_n_constraint(constraints);
	if (n == 0) {
		isl_pw_aff *pa;
		pa = exact_bound(domain, build, 1);
		return isl_pw_aff_list_from_pw_aff(pa);
	}

	ctx = isl_ast_build_get_ctx(build);
	list = isl_pw_aff_list_alloc(ctx,n);

	for (i = 0; i < n; ++i) {
		isl_aff *aff;
		isl_constraint *c;

		c = isl_constraint_list_get_constraint(constraints, i);
		aff = isl_constraint_get_bound(c, isl_dim_set, pos);
		isl_constraint_free(c);
		aff = isl_aff_floor(aff);
		list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
	}

	return list;
}

/* Return an isl_ast_expr that performs the reduction of type "type"
 * on AST expressions corresponding to the elements in "list".
 *
 * The list is assumed to contain at least one element.
 * If the list contains exactly one element, then the returned isl_ast_expr
 * simply computes that affine expression.
 * If the list contains more than one element, then we sort it
 * using a fairly abitrary but hopefully reasonably stable order.
 */
static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
	__isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
{
	int i, n;
	isl_ctx *ctx;
	isl_ast_expr *expr;

	if (!list)
		return NULL;

	n = isl_pw_aff_list_n_pw_aff(list);

	if (n == 1)
		return isl_ast_build_expr_from_pw_aff_internal(build,
				isl_pw_aff_list_get_pw_aff(list, 0));

	ctx = isl_pw_aff_list_get_ctx(list);
	expr = isl_ast_expr_alloc_op(ctx, type, n);
	if (!expr)
		return NULL;

	list = isl_pw_aff_list_copy(list);
	list = isl_pw_aff_list_sort(list, &reduce_list_cmp, NULL);
	if (!list)
		return isl_ast_expr_free(expr);

	for (i = 0; i < n; ++i) {
		isl_ast_expr *expr_i;

		expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
				isl_pw_aff_list_get_pw_aff(list, i));
		if (!expr_i)
			goto error;
		expr->u.op.args[i] = expr_i;
	}

	isl_pw_aff_list_free(list);
	return expr;
error:
	isl_pw_aff_list_free(list);
	isl_ast_expr_free(expr);
	return NULL;
}

/* Add guards implied by the "generated constraints",
 * but not (necessarily) enforced by the generated AST to "guard".
 * In particular, if there is any stride constraints,
 * then add the guard implied by those constraints.
 * If we have generated a degenerate loop, then add the guard
 * implied by "bounds" on the outer dimensions, i.e., the guard
 * that ensures that the single value actually exists.
 * Since there may also be guards implied by a combination
 * of these constraints, we first combine them before
 * deriving the implied constraints.
 */
static __isl_give isl_set *add_implied_guards(__isl_take isl_set *guard,
	int degenerate, __isl_keep isl_basic_set *bounds,
	__isl_keep isl_ast_build *build)
{
	int depth, has_stride;
	isl_space *space;
	isl_set *dom, *set;

	depth = isl_ast_build_get_depth(build);
	has_stride = isl_ast_build_has_stride(build, depth);
	if (!has_stride && !degenerate)
		return guard;

	space = isl_basic_set_get_space(bounds);
	dom = isl_set_universe(space);

	if (degenerate) {
		bounds = isl_basic_set_copy(bounds);
		bounds = isl_basic_set_drop_constraints_not_involving_dims(
					bounds, isl_dim_set, depth, 1);
		set = isl_set_from_basic_set(bounds);
		dom = isl_set_intersect(dom, set);
	}

	if (has_stride) {
		set = isl_ast_build_get_stride_constraint(build);
		dom = isl_set_intersect(dom, set);
	}

	dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
	dom = isl_ast_build_compute_gist(build, dom);
	guard = isl_set_intersect(guard, dom);

	return guard;
}

/* Update "graft" based on "sub_build" for the degenerate case.
 *
 * "build" is the build in which graft->node was created
 * "sub_build" contains information about the current level itself,
 * including the single value attained.
 *
 * We set the initialization part of the for loop to the single
 * value attained by the current dimension.
 * The increment and condition are not strictly needed as the are known
 * to be "1" and "iterator <= value" respectively.
 */
static __isl_give isl_ast_graft *refine_degenerate(
	__isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build,
	__isl_keep isl_ast_build *sub_build)
{
	isl_pw_aff *value;

	if (!graft || !sub_build)
		return isl_ast_graft_free(graft);

	value = isl_pw_aff_copy(sub_build->value);

	graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
						value);
	if (!graft->node->u.f.init)
		return isl_ast_graft_free(graft);

	return graft;
}

/* Return the intersection of constraints in "list" as a set.
 */
static __isl_give isl_set *intersect_constraints(
	__isl_keep isl_constraint_list *list)
{
	int i, n;
	isl_basic_set *bset;

	n = isl_constraint_list_n_constraint(list);
	if (n < 1)
		isl_die(isl_constraint_list_get_ctx(list), isl_error_internal,
			"expecting at least one constraint", return NULL);

	bset = isl_basic_set_from_constraint(
				isl_constraint_list_get_constraint(list, 0));
	for (i = 1; i < n; ++i) {
		isl_basic_set *bset_i;

		bset_i = isl_basic_set_from_constraint(
				isl_constraint_list_get_constraint(list, i));
		bset = isl_basic_set_intersect(bset, bset_i);
	}

	return isl_set_from_basic_set(bset);
}

/* Compute the constraints on the outer dimensions enforced by
 * graft->node and add those constraints to graft->enforced,
 * in case the upper bound is expressed as a set "upper".
 *
 * In particular, if l(...) is a lower bound in "lower", and
 *
 *	-a i + f(...) >= 0		or	a i <= f(...)
 *
 * is an upper bound ocnstraint on the current dimension i,
 * then the for loop enforces the constraint
 *
 *	-a l(...) + f(...) >= 0		or	a l(...) <= f(...)
 *
 * We therefore simply take each lower bound in turn, plug it into
 * the upper bounds and compute the intersection over all lower bounds.
 *
 * If a lower bound is a rational expression, then
 * isl_basic_set_preimage_multi_aff will force this rational
 * expression to have only integer values.  However, the loop
 * itself does not enforce this integrality constraint.  We therefore
 * use the ceil of the lower bounds instead of the lower bounds themselves.
 * Other constraints will make sure that the for loop is only executed
 * when each of the lower bounds attains an integral value.
 * In particular, potentially rational values only occur in
 * lower_bound if the offset is a (seemingly) rational expression,
 * but then outer conditions will make sure that this rational expression
 * only attains integer values.
 */
static __isl_give isl_ast_graft *set_enforced_from_set(
	__isl_take isl_ast_graft *graft,
	__isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
{
	isl_space *space;
	isl_basic_set *enforced;
	isl_pw_multi_aff *pma;
	int i, n;

	if (!graft || !lower)
		return isl_ast_graft_free(graft);

	space = isl_set_get_space(upper);
	enforced = isl_basic_set_universe(isl_space_copy(space));

	space = isl_space_map_from_set(space);
	pma = isl_pw_multi_aff_identity(space);

	n = isl_pw_aff_list_n_pw_aff(lower);
	for (i = 0; i < n; ++i) {
		isl_pw_aff *pa;
		isl_set *enforced_i;
		isl_basic_set *hull;
		isl_pw_multi_aff *pma_i;

		pa = isl_pw_aff_list_get_pw_aff(lower, i);
		pa = isl_pw_aff_ceil(pa);
		pma_i = isl_pw_multi_aff_copy(pma);
		pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
		enforced_i = isl_set_copy(upper);
		enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
		hull = isl_set_simple_hull(enforced_i);
		enforced = isl_basic_set_intersect(enforced, hull);
	}

	isl_pw_multi_aff_free(pma);

	graft = isl_ast_graft_enforce(graft, enforced);

	return graft;
}

/* Compute the constraints on the outer dimensions enforced by
 * graft->node and add those constraints to graft->enforced,
 * in case the upper bound is expressed as
 * a list of affine expressions "upper".
 *
 * The enforced condition is that each lower bound expression is less
 * than or equal to each upper bound expression.
 */
static __isl_give isl_ast_graft *set_enforced_from_list(
	__isl_take isl_ast_graft *graft,
	__isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
{
	isl_set *cond;
	isl_basic_set *enforced;

	lower = isl_pw_aff_list_copy(lower);
	upper = isl_pw_aff_list_copy(upper);
	cond = isl_pw_aff_list_le_set(lower, upper);
	enforced = isl_set_simple_hull(cond);
	graft = isl_ast_graft_enforce(graft, enforced);

	return graft;
}

/* Does "aff" have a negative constant term?
 */
static isl_stat aff_constant_is_negative(__isl_take isl_set *set,
	__isl_take isl_aff *aff, void *user)
{
	int *neg = user;
	isl_val *v;

	v = isl_aff_get_constant_val(aff);
	*neg = isl_val_is_neg(v);
	isl_val_free(v);
	isl_set_free(set);
	isl_aff_free(aff);

	return *neg ? isl_stat_ok : isl_stat_error;
}

/* Does "pa" have a negative constant term over its entire domain?
 */
static isl_stat pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa,
	void *user)
{
	isl_stat r;
	int *neg = user;

	r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user);
	isl_pw_aff_free(pa);

	return (*neg && r >= 0) ? isl_stat_ok : isl_stat_error;
}

/* Does each element in "list" have a negative constant term?
 *
 * The callback terminates the iteration as soon an element has been
 * found that does not have a negative constant term.
 */
static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
{
	int neg = 1;

	if (isl_pw_aff_list_foreach(list,
				&pw_aff_constant_is_negative, &neg) < 0 && neg)
		return -1;

	return neg;
}

/* Add 1 to each of the elements in "list", where each of these elements
 * is defined over the internal schedule space of "build".
 */
static __isl_give isl_pw_aff_list *list_add_one(
	__isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
{
	int i, n;
	isl_space *space;
	isl_aff *aff;
	isl_pw_aff *one;

	space = isl_ast_build_get_space(build, 1);
	aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
	aff = isl_aff_add_constant_si(aff, 1);
	one = isl_pw_aff_from_aff(aff);

	n = isl_pw_aff_list_n_pw_aff(list);
	for (i = 0; i < n; ++i) {
		isl_pw_aff *pa;
		pa = isl_pw_aff_list_get_pw_aff(list, i);
		pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
		list = isl_pw_aff_list_set_pw_aff(list, i, pa);
	}

	isl_pw_aff_free(one);

	return list;
}

/* Set the condition part of the for node graft->node in case
 * the upper bound is represented as a list of piecewise affine expressions.
 *
 * In particular, set the condition to
 *
 *	iterator <= min(list of upper bounds)
 *
 * If each of the upper bounds has a negative constant term, then
 * set the condition to
 *
 *	iterator < min(list of (upper bound + 1)s)
 *
 */
static __isl_give isl_ast_graft *set_for_cond_from_list(
	__isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
	__isl_keep isl_ast_build *build)
{
	int neg;
	isl_ast_expr *bound, *iterator, *cond;
	enum isl_ast_op_type type = isl_ast_op_le;

	if (!graft || !list)
		return isl_ast_graft_free(graft);

	neg = list_constant_is_negative(list);
	if (neg < 0)
		return isl_ast_graft_free(graft);
	list = isl_pw_aff_list_copy(list);
	if (neg) {
		list = list_add_one(list, build);
		type = isl_ast_op_lt;
	}

	bound = reduce_list(isl_ast_op_min, list, build);
	iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
	cond = isl_ast_expr_alloc_binary(type, iterator, bound);
	graft->node->u.f.cond = cond;

	isl_pw_aff_list_free(list);
	if (!graft->node->u.f.cond)
		return isl_ast_graft_free(graft);
	return graft;
}

/* Set the condition part of the for node graft->node in case
 * the upper bound is represented as a set.
 */
static __isl_give isl_ast_graft *set_for_cond_from_set(
	__isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
	__isl_keep isl_ast_build *build)
{
	isl_ast_expr *cond;

	if (!graft)
		return NULL;

	cond = isl_ast_build_expr_from_set_internal(build, isl_set_copy(set));
	graft->node->u.f.cond = cond;
	if (!graft->node->u.f.cond)
		return isl_ast_graft_free(graft);
	return graft;
}

/* Construct an isl_ast_expr for the increment (i.e., stride) of
 * the current dimension.
 */
static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
{
	int depth;
	isl_val *v;
	isl_ctx *ctx;

	if (!build)
		return NULL;
	ctx = isl_ast_build_get_ctx(build);
	depth = isl_ast_build_get_depth(build);

	if (!isl_ast_build_has_stride(build, depth))
		return isl_ast_expr_alloc_int_si(ctx, 1);

	v = isl_ast_build_get_stride(build, depth);
	return isl_ast_expr_from_val(v);
}

/* Should we express the loop condition as
 *
 *	iterator <= min(list of upper bounds)
 *
 * or as a conjunction of constraints?
 *
 * The first is constructed from a list of upper bounds.
 * The second is constructed from a set.
 *
 * If there are no upper bounds in "constraints", then this could mean
 * that "domain" simply doesn't have an upper bound or that we didn't
 * pick any upper bound.  In the first case, we want to generate the
 * loop condition as a(n empty) conjunction of constraints
 * In the second case, we will compute
 * a single upper bound from "domain" and so we use the list form.
 *
 * If there are upper bounds in "constraints",
 * then we use the list form iff the atomic_upper_bound option is set.
 */
static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
	__isl_keep isl_set *domain, int depth)
{
	if (n_upper > 0)
		return isl_options_get_ast_build_atomic_upper_bound(ctx);
	else
		return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
}

/* Fill in the expressions of the for node in graft->node.
 *
 * In particular,
 * - set the initialization part of the loop to the maximum of the lower bounds
 * - extract the increment from the stride of the current dimension
 * - construct the for condition either based on a list of upper bounds
 *	or on a set of upper bound constraints.
 */
static __isl_give isl_ast_graft *set_for_node_expressions(
	__isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
	int use_list, __isl_keep isl_pw_aff_list *upper_list,
	__isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
{
	isl_ast_node *node;

	if (!graft)
		return NULL;

	build = isl_ast_build_copy(build);

	node = graft->node;
	node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
	node->u.f.inc = for_inc(build);

	if (!node->u.f.init || !node->u.f.inc)
		graft = isl_ast_graft_free(graft);

	if (use_list)
		graft = set_for_cond_from_list(graft, upper_list, build);
	else
		graft = set_for_cond_from_set(graft, upper_set, build);

	isl_ast_build_free(build);

	return graft;
}

/* Update "graft" based on "bounds" and "domain" for the generic,
 * non-degenerate, case.
 *
 * "c_lower" and "c_upper" contain the lower and upper bounds
 * that the loop node should express.
 * "domain" is the subset of the intersection of the constraints
 * for which some code is executed.
 *
 * There may be zero lower bounds or zero upper bounds in "constraints"
 * in case the list of constraints was created
 * based on the atomic option or based on separation with explicit bounds.
 * In that case, we use "domain" to derive lower and/or upper bounds.
 *
 * We first compute a list of one or more lower bounds.
 *
 * Then we decide if we want to express the condition as
 *
 *	iterator <= min(list of upper bounds)
 *
 * or as a conjunction of constraints.
 *
 * The set of enforced constraints is then computed either based on
 * a list of upper bounds or on a set of upper bound constraints.
 * We do not compute any enforced constraints if we were forced
 * to compute a lower or upper bound using exact_bound.  The domains
 * of the resulting expressions may imply some bounds on outer dimensions
 * that we do not want to appear in the enforced constraints since
 * they are not actually enforced by the corresponding code.
 *
 * Finally, we fill in the expressions of the for node.
 */
static __isl_give isl_ast_graft *refine_generic_bounds(
	__isl_take isl_ast_graft *graft,
	__isl_take isl_constraint_list *c_lower,
	__isl_take isl_constraint_list *c_upper,
	__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
{
	int depth;
	isl_ctx *ctx;
	isl_pw_aff_list *lower;
	int use_list;
	isl_set *upper_set = NULL;
	isl_pw_aff_list *upper_list = NULL;
	int n_lower, n_upper;

	if (!graft || !c_lower || !c_upper || !build)
		goto error;

	depth = isl_ast_build_get_depth(build);
	ctx = isl_ast_graft_get_ctx(graft);

	n_lower = isl_constraint_list_n_constraint(c_lower);
	n_upper = isl_constraint_list_n_constraint(c_upper);

	use_list = use_upper_bound_list(ctx, n_upper, domain, depth);

	lower = lower_bounds(c_lower, depth, domain, build);

	if (use_list)
		upper_list = upper_bounds(c_upper, depth, domain, build);
	else if (n_upper > 0)
		upper_set = intersect_constraints(c_upper);
	else
		upper_set = isl_set_universe(isl_set_get_space(domain));

	if (n_lower == 0 || n_upper == 0)
		;
	else if (use_list)
		graft = set_enforced_from_list(graft, lower, upper_list);
	else
		graft = set_enforced_from_set(graft, lower, depth, upper_set);

	graft = set_for_node_expressions(graft, lower, use_list, upper_list,
					upper_set, build);

	isl_pw_aff_list_free(lower);
	isl_pw_aff_list_free(upper_list);
	isl_set_free(upper_set);
	isl_constraint_list_free(c_lower);
	isl_constraint_list_free(c_upper);

	return graft;
error:
	isl_constraint_list_free(c_lower);
	isl_constraint_list_free(c_upper);
	return isl_ast_graft_free(graft);
}

/* Internal data structure used inside count_constraints to keep
 * track of the number of constraints that are independent of dimension "pos",
 * the lower bounds in "pos" and the upper bounds in "pos".
 */
struct isl_ast_count_constraints_data {
	int pos;

	int n_indep;
	int n_lower;
	int n_upper;
};

/* Increment data->n_indep, data->lower or data->upper depending
 * on whether "c" is independenct of dimensions data->pos,
 * a lower bound or an upper bound.
 */
static isl_stat count_constraints(__isl_take isl_constraint *c, void *user)
{
	struct isl_ast_count_constraints_data *data = user;

	if (isl_constraint_is_lower_bound(c, isl_dim_set, data->pos))
		data->n_lower++;
	else if (isl_constraint_is_upper_bound(c, isl_dim_set, data->pos))
		data->n_upper++;
	else
		data->n_indep++;

	isl_constraint_free(c);

	return isl_stat_ok;
}

/* Update "graft" based on "bounds" and "domain" for the generic,
 * non-degenerate, case.
 *
 * "list" respresent the list of bounds that need to be encoded by
 * the for loop.  Only the constraints that involve the iterator
 * are relevant here.  The other constraints are taken care of by
 * the caller and are included in the generated constraints of "build".
 * "domain" is the subset of the intersection of the constraints
 * for which some code is executed.
 * "build" is the build in which graft->node was created.
 *
 * We separate lower bounds, upper bounds and constraints that
 * are independent of the loop iterator.
 *
 * The actual for loop bounds are generated in refine_generic_bounds.
 */
static __isl_give isl_ast_graft *refine_generic_split(
	__isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list,
	__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
{
	struct isl_ast_count_constraints_data data;
	isl_constraint_list *lower;
	isl_constraint_list *upper;

	if (!list)
		return isl_ast_graft_free(graft);

	data.pos = isl_ast_build_get_depth(build);

	list = isl_constraint_list_sort(list, &cmp_constraint, &data.pos);
	if (!list)
		return isl_ast_graft_free(graft);

	data.n_indep = data.n_lower = data.n_upper = 0;
	if (isl_constraint_list_foreach(list, &count_constraints, &data) < 0) {
		isl_constraint_list_free(list);
		return isl_ast_graft_free(graft);
	}

	lower = isl_constraint_list_drop(list, 0, data.n_indep);
	upper = isl_constraint_list_copy(lower);
	lower = isl_constraint_list_drop(lower, data.n_lower, data.n_upper);
	upper = isl_constraint_list_drop(upper, 0, data.n_lower);

	return refine_generic_bounds(graft, lower, upper, domain, build);
}

/* Update "graft" based on "bounds" and "domain" for the generic,
 * non-degenerate, case.
 *
 * "bounds" respresent the bounds that need to be encoded by
 * the for loop (or a guard around the for loop).
 * "domain" is the subset of "bounds" for which some code is executed.
 * "build" is the build in which graft->node was created.
 *
 * We break up "bounds" into a list of constraints and continue with
 * refine_generic_split.
 */
static __isl_give isl_ast_graft *refine_generic(
	__isl_take isl_ast_graft *graft,
	__isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
	__isl_keep isl_ast_build *build)
{
	isl_constraint_list *list;

	if (!build || !graft)
		return isl_ast_graft_free(graft);

	list = isl_basic_set_get_constraint_list(bounds);

	graft = refine_generic_split(graft, list, domain, build);

	return graft;
}

/* Create a for node for the current level.
 *
 * Mark the for node degenerate if "degenerate" is set.
 */
static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
	int degenerate)
{
	int depth;
	isl_id *id;
	isl_ast_node *node;

	if (!build)
		return NULL;

	depth = isl_ast_build_get_depth(build);
	id = isl_ast_build_get_iterator_id(build, depth);
	node = isl_ast_node_alloc_for(id);
	if (degenerate)
		node = isl_ast_node_for_mark_degenerate(node);

	return node;
}

/* If the ast_build_exploit_nested_bounds option is set, then return
 * the constraints enforced by all elements in "list".
 * Otherwise, return the universe.
 */
static __isl_give isl_basic_set *extract_shared_enforced(
	__isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build)
{
	isl_ctx *ctx;
	isl_space *space;

	if (!list)
		return NULL;

	ctx = isl_ast_graft_list_get_ctx(list);
	if (isl_options_get_ast_build_exploit_nested_bounds(ctx))
		return isl_ast_graft_list_extract_shared_enforced(list, build);

	space = isl_ast_build_get_space(build, 1);
	return isl_basic_set_universe(space);
}

/* Return the pending constraints of "build" that are not already taken
 * care of (by a combination of "enforced" and the generated constraints
 * of "build").
 */
static __isl_give isl_set *extract_pending(__isl_keep isl_ast_build *build,
	__isl_keep isl_basic_set *enforced)
{
	isl_set *guard, *context;

	guard = isl_ast_build_get_pending(build);
	context = isl_set_from_basic_set(isl_basic_set_copy(enforced));
	context = isl_set_intersect(context,
					isl_ast_build_get_generated(build));
	return isl_set_gist(guard, context);
}

/* Create an AST node for the current dimension based on
 * the schedule domain "bounds" and return the node encapsulated
 * in an isl_ast_graft.
 *
 * "executed" is the current inverse schedule, taking into account
 * the bounds in "bounds"
 * "domain" is the domain of "executed", with inner dimensions projected out.
 * It may be a strict subset of "bounds" in case "bounds" was created
 * based on the atomic option or based on separation with explicit bounds.
 *
 * "domain" may satisfy additional equalities that result
 * from intersecting "executed" with "bounds" in add_node.
 * It may also satisfy some global constraints that were dropped out because
 * we performed separation with explicit bounds.
 * The very first step is then to copy these constraints to "bounds".
 *
 * Since we may be calling before_each_for and after_each_for
 * callbacks, we record the current inverse schedule in the build.
 *
 * We consider three builds,
 * "build" is the one in which the current level is created,
 * "body_build" is the build in which the next level is created,
 * "sub_build" is essentially the same as "body_build", except that
 * the depth has not been increased yet.
 *
 * "build" already contains information (in strides and offsets)
 * about the strides at the current level, but this information is not
 * reflected in the build->domain.
 * We first add this information and the "bounds" to the sub_build->domain.
 * isl_ast_build_set_loop_bounds adds the stride information and
 * checks whether the current dimension attains
 * only a single value and whether this single value can be represented using
 * a single affine expression.
 * In the first case, the current level is considered "degenerate".
 * In the second, sub-case, the current level is considered "eliminated".
 * Eliminated levels don't need to be reflected in the AST since we can
 * simply plug in the affine expression.  For degenerate, but non-eliminated,
 * levels, we do introduce a for node, but mark is as degenerate so that
 * it can be printed as an assignment of the single value to the loop
 * "iterator".
 *
 * If the current level is eliminated, we explicitly plug in the value
 * for the current level found by isl_ast_build_set_loop_bounds in the
 * inverse schedule.  This ensures that if we are working on a slice
 * of the domain based on information available in the inverse schedule
 * and the build domain, that then this information is also reflected
 * in the inverse schedule.  This operation also eliminates the current
 * dimension from the inverse schedule making sure no inner dimensions depend
 * on the current dimension.  Otherwise, we create a for node, marking
 * it degenerate if appropriate.  The initial for node is still incomplete
 * and will be completed in either refine_degenerate or refine_generic.
 *
 * We then generate a sequence of grafts for the next level,
 * create a surrounding graft for the current level and insert
 * the for node we created (if the current level is not eliminated).
 * Before creating a graft for the current level, we first extract
 * hoistable constraints from the child guards and combine them
 * with the pending constraints in the build.  These constraints
 * are used to simplify the child guards and then added to the guard
 * of the current graft to ensure that they will be generated.
 * If the hoisted guard is a disjunction, then we use it directly
 * to gist the guards on the children before intersect it with the
 * pending constraints.  We do so because this disjunction is typically
 * identical to the guards on the children such that these guards
 * can be effectively removed completely.  After the intersection,
 * the gist operation would have a harder time figuring this out.
 *
 * Finally, we set the bounds of the for loop in either
 * refine_degenerate or refine_generic.
 * We do so in a context where the pending constraints of the build
 * have been replaced by the guard of the current graft.
 */
static __isl_give isl_ast_graft *create_node_scaled(
	__isl_take isl_union_map *executed,
	__isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
	__isl_take isl_ast_build *build)
{
	int depth;
	int degenerate;
	isl_bool eliminated;
	isl_basic_set *hull;
	isl_basic_set *enforced;
	isl_set *guard, *hoisted;
	isl_ast_node *node = NULL;
	isl_ast_graft *graft;
	isl_ast_graft_list *children;
	isl_ast_build *sub_build;
	isl_ast_build *body_build;

	domain = isl_ast_build_eliminate_divs(build, domain);
	domain = isl_set_detect_equalities(domain);
	hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
	bounds = isl_basic_set_intersect(bounds, hull);
	build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));

	depth = isl_ast_build_get_depth(build);
	sub_build = isl_ast_build_copy(build);
	bounds = isl_basic_set_remove_redundancies(bounds);
	bounds = isl_ast_build_specialize_basic_set(sub_build, bounds);
	sub_build = isl_ast_build_set_loop_bounds(sub_build,
						isl_basic_set_copy(bounds));
	degenerate = isl_ast_build_has_value(sub_build);
	eliminated = isl_ast_build_has_affine_value(sub_build, depth);
	if (degenerate < 0 || eliminated < 0)
		executed = isl_union_map_free(executed);
	if (!degenerate)
		bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
	sub_build = isl_ast_build_set_pending_generated(sub_build,
						isl_basic_set_copy(bounds));
	if (eliminated)
		executed = plug_in_values(executed, sub_build);
	else
		node = create_for(build, degenerate);

	body_build = isl_ast_build_copy(sub_build);
	body_build = isl_ast_build_increase_depth(body_build);
	if (!eliminated)
		node = before_each_for(node, body_build);
	children = generate_next_level(executed,
				    isl_ast_build_copy(body_build));

	enforced = extract_shared_enforced(children, build);
	guard = extract_pending(sub_build, enforced);
	hoisted = isl_ast_graft_list_extract_hoistable_guard(children, build);
	if (isl_set_n_basic_set(hoisted) > 1)
		children = isl_ast_graft_list_gist_guards(children,
						    isl_set_copy(hoisted));
	guard = isl_set_intersect(guard, hoisted);
	if (!eliminated)
		guard = add_implied_guards(guard, degenerate, bounds, build);

	graft = isl_ast_graft_alloc_from_children(children,
			    isl_set_copy(guard), enforced, build, sub_build);

	if (!eliminated) {
		isl_ast_build *for_build;

		graft = isl_ast_graft_insert_for(graft, node);
		for_build = isl_ast_build_copy(build);
		for_build = isl_ast_build_replace_pending_by_guard(for_build,
							isl_set_copy(guard));
		if (degenerate)
			graft = refine_degenerate(graft, for_build, sub_build);
		else
			graft = refine_generic(graft, bounds,
					domain, for_build);
		isl_ast_build_free(for_build);
	}
	isl_set_free(guard);
	if (!eliminated)
		graft = after_each_for(graft, body_build);

	isl_ast_build_free(body_build);
	isl_ast_build_free(sub_build);
	isl_ast_build_free(build);
	isl_basic_set_free(bounds);
	isl_set_free(domain);

	return graft;
}

/* Internal data structure for checking if all constraints involving
 * the input dimension "depth" are such that the other coefficients
 * are multiples of "m", reducing "m" if they are not.
 * If "m" is reduced all the way down to "1", then the check has failed
 * and we break out of the iteration.
 */
struct isl_check_scaled_data {
	int depth;
	isl_val *m;
};

/* If constraint "c" involves the input dimension data->depth,
 * then make sure that all the other coefficients are multiples of data->m,
 * reducing data->m if needed.
 * Break out of the iteration if data->m has become equal to "1".
 */
static isl_stat constraint_check_scaled(__isl_take isl_constraint *c,
	void *user)
{
	struct isl_check_scaled_data *data = user;
	int i, j, n;
	enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
				    isl_dim_div };

	if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
		isl_constraint_free(c);
		return isl_stat_ok;
	}

	for (i = 0; i < 4; ++i) {
		n = isl_constraint_dim(c, t[i]);
		for (j = 0; j < n; ++j) {
			isl_val *d;

			if (t[i] == isl_dim_in && j == data->depth)
				continue;
			if (!isl_constraint_involves_dims(c, t[i], j, 1))
				continue;
			d = isl_constraint_get_coefficient_val(c, t[i], j);
			data->m = isl_val_gcd(data->m, d);
			if (isl_val_is_one(data->m))
				break;
		}
		if (j < n)
			break;
	}

	isl_constraint_free(c);

	return i < 4 ? isl_stat_error : isl_stat_ok;
}

/* For each constraint of "bmap" that involves the input dimension data->depth,
 * make sure that all the other coefficients are multiples of data->m,
 * reducing data->m if needed.
 * Break out of the iteration if data->m has become equal to "1".
 */
static isl_stat basic_map_check_scaled(__isl_take isl_basic_map *bmap,
	void *user)
{
	isl_stat r;

	r = isl_basic_map_foreach_constraint(bmap,
						&constraint_check_scaled, user);
	isl_basic_map_free(bmap);

	return r;
}

/* For each constraint of "map" that involves the input dimension data->depth,
 * make sure that all the other coefficients are multiples of data->m,
 * reducing data->m if needed.
 * Break out of the iteration if data->m has become equal to "1".
 */
static isl_stat map_check_scaled(__isl_take isl_map *map, void *user)
{
	isl_stat r;

	r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
	isl_map_free(map);

	return r;
}

/* Create an AST node for the current dimension based on
 * the schedule domain "bounds" and return the node encapsulated
 * in an isl_ast_graft.
 *
 * "executed" is the current inverse schedule, taking into account
 * the bounds in "bounds"
 * "domain" is the domain of "executed", with inner dimensions projected out.
 *
 *
 * Before moving on to the actual AST node construction in create_node_scaled,
 * we first check if the current dimension is strided and if we can scale
 * down this stride.  Note that we only do this if the ast_build_scale_strides
 * option is set.
 *
 * In particular, let the current dimension take on values
 *
 *	f + s a
 *
 * with a an integer.  We check if we can find an integer m that (obviously)
 * divides both f and s.
 *
 * If so, we check if the current dimension only appears in constraints
 * where the coefficients of the other variables are multiples of m.
 * We perform this extra check to avoid the risk of introducing
 * divisions by scaling down the current dimension.
 *
 * If so, we scale the current dimension down by a factor of m.
 * That is, we plug in
 *
 *	i = m i'							(1)
 *
 * Note that in principle we could always scale down strided loops
 * by plugging in
 *
 *	i = f + s i'
 *
 * but this may result in i' taking on larger values than the original i,
 * due to the shift by "f".
 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
 */
static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
	__isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
	__isl_take isl_ast_build *build)
{
	struct isl_check_scaled_data data;
	isl_ctx *ctx;
	isl_aff *offset;
	isl_val *d;

	ctx = isl_ast_build_get_ctx(build);
	if (!isl_options_get_ast_build_scale_strides(ctx))
		return create_node_scaled(executed, bounds, domain, build);

	data.depth = isl_ast_build_get_depth(build);
	if (!isl_ast_build_has_stride(build, data.depth))
		return create_node_scaled(executed, bounds, domain, build);

	offset = isl_ast_build_get_offset(build, data.depth);
	data.m = isl_ast_build_get_stride(build, data.depth);
	if (!data.m)
		offset = isl_aff_free(offset);
	offset = isl_aff_scale_down_val(offset, isl_val_copy(data.m));
	d = isl_aff_get_denominator_val(offset);
	if (!d)
		executed = isl_union_map_free(executed);

	if (executed && isl_val_is_divisible_by(data.m, d))
		data.m = isl_val_div(data.m, d);
	else {
		data.m = isl_val_set_si(data.m, 1);
		isl_val_free(d);
	}

	if (!isl_val_is_one(data.m)) {
		if (isl_union_map_foreach_map(executed, &map_check_scaled,
						&data) < 0 &&
		    !isl_val_is_one(data.m))
			executed = isl_union_map_free(executed);
	}

	if (!isl_val_is_one(data.m)) {
		isl_space *space;
		isl_multi_aff *ma;
		isl_aff *aff;
		isl_map *map;
		isl_union_map *umap;

		space = isl_ast_build_get_space(build, 1);
		space = isl_space_map_from_set(space);
		ma = isl_multi_aff_identity(space);
		aff = isl_multi_aff_get_aff(ma, data.depth);
		aff = isl_aff_scale_val(aff, isl_val_copy(data.m));
		ma = isl_multi_aff_set_aff(ma, data.depth, aff);

		bounds = isl_basic_set_preimage_multi_aff(bounds,
						isl_multi_aff_copy(ma));
		domain = isl_set_preimage_multi_aff(domain,
						isl_multi_aff_copy(ma));
		map = isl_map_reverse(isl_map_from_multi_aff(ma));
		umap = isl_union_map_from_map(map);
		executed = isl_union_map_apply_domain(executed,
						isl_union_map_copy(umap));
		build = isl_ast_build_scale_down(build, isl_val_copy(data.m),
						umap);
	}
	isl_aff_free(offset);
	isl_val_free(data.m);

	return create_node_scaled(executed, bounds, domain, build);
}

/* Add the basic set to the list that "user" points to.
 */
static isl_stat collect_basic_set(__isl_take isl_basic_set *bset, void *user)
{
	isl_basic_set_list **list = user;

	*list = isl_basic_set_list_add(*list, bset);

	return isl_stat_ok;
}

/* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
 */
static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
	__isl_take isl_set *set)
{
	int n;
	isl_ctx *ctx;
	isl_basic_set_list *list;

	if (!set)
		return NULL;

	ctx = isl_set_get_ctx(set);

	n = isl_set_n_basic_set(set);
	list = isl_basic_set_list_alloc(ctx, n);
	if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
		list = isl_basic_set_list_free(list);

	isl_set_free(set);
	return list;
}

/* Generate code for the schedule domain "bounds"
 * and add the result to "list".
 *
 * We mainly detect strides here and check if the bounds do not
 * conflict with the current build domain
 * and then pass over control to create_node.
 *
 * "bounds" reflects the bounds on the current dimension and possibly
 * some extra conditions on outer dimensions.
 * It does not, however, include any divs involving the current dimension,
 * so it does not capture any stride constraints.
 * We therefore need to compute that part of the schedule domain that
 * intersects with "bounds" and derive the strides from the result.
 */
static __isl_give isl_ast_graft_list *add_node(
	__isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
	__isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
{
	isl_ast_graft *graft;
	isl_set *domain = NULL;
	isl_union_set *uset;
	int empty, disjoint;

	uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
	executed = isl_union_map_intersect_domain(executed, uset);
	empty = isl_union_map_is_empty(executed);
	if (empty < 0)
		goto error;
	if (empty)
		goto done;

	uset = isl_union_map_domain(isl_union_map_copy(executed));
	domain = isl_set_from_union_set(uset);
	domain = isl_ast_build_specialize(build, domain);

	domain = isl_set_compute_divs(domain);
	domain = isl_ast_build_eliminate_inner(build, domain);
	disjoint = isl_set_is_disjoint(domain, build->domain);
	if (disjoint < 0)
		goto error;
	if (disjoint)
		goto done;

	build = isl_ast_build_detect_strides(build, isl_set_copy(domain));

	graft = create_node(executed, bounds, domain,
				isl_ast_build_copy(build));
	list = isl_ast_graft_list_add(list, graft);
	isl_ast_build_free(build);
	return list;
error:
	list = isl_ast_graft_list_free(list);
done:
	isl_set_free(domain);
	isl_basic_set_free(bounds);
	isl_union_map_free(executed);
	isl_ast_build_free(build);
	return list;
}

/* Does any element of i follow or coincide with any element of j
 * at the current depth for equal values of the outer dimensions?
 */
static isl_bool domain_follows_at_depth(__isl_keep isl_basic_set *i,
	__isl_keep isl_basic_set *j, void *user)
{
	int depth = *(int *) user;
	isl_basic_map *test;
	isl_bool empty;
	int l;

	test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
						    isl_basic_set_copy(j));
	for (l = 0; l < depth; ++l)
		test = isl_basic_map_equate(test, isl_dim_in, l,
						isl_dim_out, l);
	test = isl_basic_map_order_ge(test, isl_dim_in, depth,
					isl_dim_out, depth);
	empty = isl_basic_map_is_empty(test);
	isl_basic_map_free(test);

	return empty < 0 ? isl_bool_error : !empty;
}

/* Split up each element of "list" into a part that is related to "bset"
 * according to "gt" and a part that is not.
 * Return a list that consist of "bset" and all the pieces.
 */
static __isl_give isl_basic_set_list *add_split_on(
	__isl_take isl_basic_set_list *list, __isl_take isl_basic_set *bset,
	__isl_keep isl_basic_map *gt)
{
	int i, n;
	isl_basic_set_list *res;

	if (!list)
		bset = isl_basic_set_free(bset);

	gt = isl_basic_map_copy(gt);
	gt = isl_basic_map_intersect_domain(gt, isl_basic_set_copy(bset));
	n = isl_basic_set_list_n_basic_set(list);
	res = isl_basic_set_list_from_basic_set(bset);
	for (i = 0; res && i < n; ++i) {
		isl_basic_set *bset;
		isl_set *set1, *set2;
		isl_basic_map *bmap;
		int empty;

		bset = isl_basic_set_list_get_basic_set(list, i);
		bmap = isl_basic_map_copy(gt);
		bmap = isl_basic_map_intersect_range(bmap, bset);
		bset = isl_basic_map_range(bmap);
		empty = isl_basic_set_is_empty(bset);
		if (empty < 0)
			res = isl_basic_set_list_free(res);
		if (empty)  {
			isl_basic_set_free(bset);
			bset = isl_basic_set_list_get_basic_set(list, i);
			res = isl_basic_set_list_add(res, bset);
			continue;
		}

		res = isl_basic_set_list_add(res, isl_basic_set_copy(bset));
		set1 = isl_set_from_basic_set(bset);
		bset = isl_basic_set_list_get_basic_set(list, i);
		set2 = isl_set_from_basic_set(bset);
		set1 = isl_set_subtract(set2, set1);
		set1 = isl_set_make_disjoint(set1);

		res = isl_basic_set_list_concat(res,
					    isl_basic_set_list_from_set(set1));
	}
	isl_basic_map_free(gt);
	isl_basic_set_list_free(list);
	return res;
}

static __isl_give isl_ast_graft_list *generate_sorted_domains(
	__isl_keep isl_basic_set_list *domain_list,
	__isl_keep isl_union_map *executed,
	__isl_keep isl_ast_build *build);

/* Internal data structure for add_nodes.
 *
 * "executed" and "build" are extra arguments to be passed to add_node.
 * "list" collects the results.
 */
struct isl_add_nodes_data {
	isl_union_map *executed;
	isl_ast_build *build;

	isl_ast_graft_list *list;
};

/* Generate code for the schedule domains in "scc"
 * and add the results to "list".
 *
 * The domains in "scc" form a strongly connected component in the ordering.
 * If the number of domains in "scc" is larger than 1, then this means
 * that we cannot determine a valid ordering for the domains in the component.
 * This should be fairly rare because the individual domains
 * have been made disjoint first.
 * The problem is that the domains may be integrally disjoint but not
 * rationally disjoint.  For example, we may have domains
 *
 *	{ [i,i] : 0 <= i <= 1 }		and	{ [i,1-i] : 0 <= i <= 1 }
 *
 * These two domains have an empty intersection, but their rational
 * relaxations do intersect.  It is impossible to order these domains
 * in the second dimension because the first should be ordered before
 * the second for outer dimension equal to 0, while it should be ordered
 * after for outer dimension equal to 1.
 *
 * This may happen in particular in case of unrolling since the domain
 * of each slice is replaced by its simple hull.
 *
 * For each basic set i in "scc" and for each of the following basic sets j,
 * we split off that part of the basic set i that shares the outer dimensions
 * with j and lies before j in the current dimension.
 * We collect all the pieces in a new list that replaces "scc".
 *
 * While the elements in "scc" should be disjoint, we double-check
 * this property to avoid running into an infinite recursion in case
 * they intersect due to some internal error.
 */
static isl_stat add_nodes(__isl_take isl_basic_set_list *scc, void *user)
{
	struct isl_add_nodes_data *data = user;
	int i, n, depth;
	isl_basic_set *bset, *first;
	isl_basic_set_list *list;
	isl_space *space;
	isl_basic_map *gt;

	n = isl_basic_set_list_n_basic_set(scc);
	bset = isl_basic_set_list_get_basic_set(scc, 0);
	if (n == 1) {
		isl_basic_set_list_free(scc);
		data->list = add_node(data->list,
				isl_union_map_copy(data->executed), bset,
				isl_ast_build_copy(data->build));
		return data->list ? isl_stat_ok : isl_stat_error;
	}

	depth = isl_ast_build_get_depth(data->build);
	space = isl_basic_set_get_space(bset);
	space = isl_space_map_from_set(space);
	gt = isl_basic_map_universe(space);
	for (i = 0; i < depth; ++i)
		gt = isl_basic_map_equate(gt, isl_dim_in, i, isl_dim_out, i);
	gt = isl_basic_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth);

	first = isl_basic_set_copy(bset);
	list = isl_basic_set_list_from_basic_set(bset);
	for (i = 1; i < n; ++i) {
		int disjoint;

		bset = isl_basic_set_list_get_basic_set(scc, i);

		disjoint = isl_basic_set_is_disjoint(bset, first);
		if (disjoint < 0)
			list = isl_basic_set_list_free(list);
		else if (!disjoint)
			isl_die(isl_basic_set_list_get_ctx(scc),
				isl_error_internal,
				"basic sets in scc are assumed to be disjoint",
				list = isl_basic_set_list_free(list));

		list = add_split_on(list, bset, gt);
	}
	isl_basic_set_free(first);
	isl_basic_map_free(gt);
	isl_basic_set_list_free(scc);
	scc = list;
	data->list = isl_ast_graft_list_concat(data->list,
		    generate_sorted_domains(scc, data->executed, data->build));
	isl_basic_set_list_free(scc);

	return data->list ? isl_stat_ok : isl_stat_error;
}

/* Sort the domains in "domain_list" according to the execution order
 * at the current depth (for equal values of the outer dimensions),
 * generate code for each of them, collecting the results in a list.
 * If no code is generated (because the intersection of the inverse schedule
 * with the domains turns out to be empty), then an empty list is returned.
 *
 * The caller is responsible for ensuring that the basic sets in "domain_list"
 * are pair-wise disjoint.  It can, however, in principle happen that
 * two basic sets should be ordered one way for one value of the outer
 * dimensions and the other way for some other value of the outer dimensions.
 * We therefore play safe and look for strongly connected components.
 * The function add_nodes takes care of handling non-trivial components.
 */
static __isl_give isl_ast_graft_list *generate_sorted_domains(
	__isl_keep isl_basic_set_list *domain_list,
	__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
{
	isl_ctx *ctx;
	struct isl_add_nodes_data data;
	int depth;
	int n;

	if (!domain_list)
		return NULL;

	ctx = isl_basic_set_list_get_ctx(domain_list);
	n = isl_basic_set_list_n_basic_set(domain_list);
	data.list = isl_ast_graft_list_alloc(ctx, n);
	if (n == 0)
		return data.list;
	if (n == 1)
		return add_node(data.list, isl_union_map_copy(executed),
			isl_basic_set_list_get_basic_set(domain_list, 0),
			isl_ast_build_copy(build));

	depth = isl_ast_build_get_depth(build);
	data.executed = executed;
	data.build = build;
	if (isl_basic_set_list_foreach_scc(domain_list,
					&domain_follows_at_depth, &depth,
					&add_nodes, &data) < 0)
		data.list = isl_ast_graft_list_free(data.list);

	return data.list;
}

/* Do i and j share any values for the outer dimensions?
 */
static isl_bool shared_outer(__isl_keep isl_basic_set *i,
	__isl_keep isl_basic_set *j, void *user)
{
	int depth = *(int *) user;
	isl_basic_map *test;
	isl_bool empty;
	int l;

	test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
						    isl_basic_set_copy(j));
	for (l = 0; l < depth; ++l)
		test = isl_basic_map_equate(test, isl_dim_in, l,
						isl_dim_out, l);
	empty = isl_basic_map_is_empty(test);
	isl_basic_map_free(test);

	return empty < 0 ? isl_bool_error : !empty;
}

/* Internal data structure for generate_sorted_domains_wrap.
 *
 * "n" is the total number of basic sets
 * "executed" and "build" are extra arguments to be passed
 *	to generate_sorted_domains.
 *
 * "single" is set to 1 by generate_sorted_domains_wrap if there
 * is only a single component.
 * "list" collects the results.
 */
struct isl_ast_generate_parallel_domains_data {
	int n;
	isl_union_map *executed;
	isl_ast_build *build;

	int single;
	isl_ast_graft_list *list;
};

/* Call generate_sorted_domains on "scc", fuse the result into a list
 * with either zero or one graft and collect the these single element
 * lists into data->list.
 *
 * If there is only one component, i.e., if the number of basic sets
 * in the current component is equal to the total number of basic sets,
 * then data->single is set to 1 and the result of generate_sorted_domains
 * is not fused.
 */
static isl_stat generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc,
	void *user)
{
	struct isl_ast_generate_parallel_domains_data *data = user;
	isl_ast_graft_list *list;

	list = generate_sorted_domains(scc, data->executed, data->build);
	data->single = isl_basic_set_list_n_basic_set(scc) == data->n;
	if (!data->single)
		list = isl_ast_graft_list_fuse(list, data->build);
	if (!data->list)
		data->list = list;
	else
		data->list = isl_ast_graft_list_concat(data->list, list);

	isl_basic_set_list_free(scc);
	if (!data->list)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Look for any (weakly connected) components in the "domain_list"
 * of domains that share some values of the outer dimensions.
 * That is, domains in different components do not share any values
 * of the outer dimensions.  This means that these components
 * can be freely reordered.
 * Within each of the components, we sort the domains according
 * to the execution order at the current depth.
 *
 * If there is more than one component, then generate_sorted_domains_wrap
 * fuses the result of each call to generate_sorted_domains
 * into a list with either zero or one graft and collects these (at most)
 * single element lists into a bigger list. This means that the elements of the
 * final list can be freely reordered.  In particular, we sort them
 * according to an arbitrary but fixed ordering to ease merging of
 * graft lists from different components.
 */
static __isl_give isl_ast_graft_list *generate_parallel_domains(
	__isl_keep isl_basic_set_list *domain_list,
	__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
{
	int depth;
	struct isl_ast_generate_parallel_domains_data data;

	if (!domain_list)
		return NULL;

	data.n = isl_basic_set_list_n_basic_set(domain_list);
	if (data.n <= 1)
		return generate_sorted_domains(domain_list, executed, build);

	depth = isl_ast_build_get_depth(build);
	data.list = NULL;
	data.executed = executed;
	data.build = build;
	data.single = 0;
	if (isl_basic_set_list_foreach_scc(domain_list, &shared_outer, &depth,
					    &generate_sorted_domains_wrap,
					    &data) < 0)
		data.list = isl_ast_graft_list_free(data.list);

	if (!data.single)
		data.list = isl_ast_graft_list_sort_guard(data.list);

	return data.list;
}

/* Internal data for separate_domain.
 *
 * "explicit" is set if we only want to use explicit bounds.
 *
 * "domain" collects the separated domains.
 */
struct isl_separate_domain_data {
	isl_ast_build *build;
	int explicit;
	isl_set *domain;
};

/* Extract implicit bounds on the current dimension for the executed "map".
 *
 * The domain of "map" may involve inner dimensions, so we
 * need to eliminate them.
 */
static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
	__isl_keep isl_ast_build *build)
{
	isl_set *domain;

	domain = isl_map_domain(map);
	domain = isl_ast_build_eliminate(build, domain);

	return domain;
}

/* Extract explicit bounds on the current dimension for the executed "map".
 *
 * Rather than eliminating the inner dimensions as in implicit_bounds,
 * we simply drop any constraints involving those inner dimensions.
 * The idea is that most bounds that are implied by constraints on the
 * inner dimensions will be enforced by for loops and not by explicit guards.
 * There is then no need to separate along those bounds.
 */
static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
	__isl_keep isl_ast_build *build)
{
	isl_set *domain;
	int depth, dim;

	dim = isl_map_dim(map, isl_dim_out);
	map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);

	domain = isl_map_domain(map);
	depth = isl_ast_build_get_depth(build);
	dim = isl_set_dim(domain, isl_dim_set);
	domain = isl_set_detect_equalities(domain);
	domain = isl_set_drop_constraints_involving_dims(domain,
				isl_dim_set, depth + 1, dim - (depth + 1));
	domain = isl_set_remove_divs_involving_dims(domain,
				isl_dim_set, depth, 1);
	domain = isl_set_remove_unknown_divs(domain);

	return domain;
}

/* Split data->domain into pieces that intersect with the range of "map"
 * and pieces that do not intersect with the range of "map"
 * and then add that part of the range of "map" that does not intersect
 * with data->domain.
 */
static isl_stat separate_domain(__isl_take isl_map *map, void *user)
{
	struct isl_separate_domain_data *data = user;
	isl_set *domain;
	isl_set *d1, *d2;

	if (data->explicit)
		domain = explicit_bounds(map, data->build);
	else
		domain = implicit_bounds(map, data->build);

	domain = isl_set_coalesce(domain);
	domain = isl_set_make_disjoint(domain);
	d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
	d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
	data->domain = isl_set_intersect(data->domain, domain);
	data->domain = isl_set_union(data->domain, d1);
	data->domain = isl_set_union(data->domain, d2);

	return isl_stat_ok;
}

/* Separate the schedule domains of "executed".
 *
 * That is, break up the domain of "executed" into basic sets,
 * such that for each basic set S, every element in S is associated with
 * the same domain spaces.
 *
 * "space" is the (single) domain space of "executed".
 */
static __isl_give isl_set *separate_schedule_domains(
	__isl_take isl_space *space, __isl_take isl_union_map *executed,
	__isl_keep isl_ast_build *build)
{
	struct isl_separate_domain_data data = { build };
	isl_ctx *ctx;

	ctx = isl_ast_build_get_ctx(build);
	data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
				    ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
	data.domain = isl_set_empty(space);
	if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
		data.domain = isl_set_free(data.domain);

	isl_union_map_free(executed);
	return data.domain;
}

/* Temporary data used during the search for a lower bound for unrolling.
 *
 * "build" is the build in which the unrolling will be performed
 * "domain" is the original set for which to find a lower bound
 * "depth" is the dimension for which to find a lower boudn
 * "expansion" is the expansion that needs to be applied to "domain"
 * in the unrolling that will be performed
 *
 * "lower" is the best lower bound found so far.  It is NULL if we have not
 * found any yet.
 * "n" is the corresponding size.  If lower is NULL, then the value of n
 * is undefined.
 * "n_div" is the maximal number of integer divisions in the first
 * unrolled iteration (after expansion).  It is set to -1 if it hasn't
 * been computed yet.
 */
struct isl_find_unroll_data {
	isl_ast_build *build;
	isl_set *domain;
	int depth;
	isl_basic_map *expansion;

	isl_aff *lower;
	int *n;
	int n_div;
};

/* Return the constraint
 *
 *	i_"depth" = aff + offset
 */
static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff,
	int offset)
{
	aff = isl_aff_copy(aff);
	aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
	aff = isl_aff_add_constant_si(aff, offset);
	return isl_equality_from_aff(aff);
}

/* Update *user to the number of integer divsions in the first element
 * of "ma", if it is larger than the current value.
 */
static isl_stat update_n_div(__isl_take isl_set *set,
	__isl_take isl_multi_aff *ma, void *user)
{
	isl_aff *aff;
	int *n = user;
	int n_div;

	aff = isl_multi_aff_get_aff(ma, 0);
	n_div = isl_aff_dim(aff, isl_dim_div);
	isl_aff_free(aff);
	isl_multi_aff_free(ma);
	isl_set_free(set);

	if (n_div > *n)
		*n = n_div;

	return aff ? isl_stat_ok : isl_stat_error;
}

/* Get the number of integer divisions in the expression for the iterator
 * value at the first slice in the unrolling based on lower bound "lower",
 * taking into account the expansion that needs to be performed on this slice.
 */
static int get_expanded_n_div(struct isl_find_unroll_data *data,
	__isl_keep isl_aff *lower)
{
	isl_constraint *c;
	isl_set *set;
	isl_map *it_map, *expansion;
	isl_pw_multi_aff *pma;
	int n;

	c = at_offset(data->depth, lower, 0);
	set = isl_set_copy(data->domain);
	set = isl_set_add_constraint(set, c);
	expansion = isl_map_from_basic_map(isl_basic_map_copy(data->expansion));
	set = isl_set_apply(set, expansion);
	it_map = isl_ast_build_map_to_iterator(data->build, set);
	pma = isl_pw_multi_aff_from_map(it_map);
	n = 0;
	if (isl_pw_multi_aff_foreach_piece(pma, &update_n_div, &n) < 0)
		n = -1;
	isl_pw_multi_aff_free(pma);

	return n;
}

/* Is the lower bound "lower" with corresponding iteration count "n"
 * better than the one stored in "data"?
 * If there is no upper bound on the iteration count ("n" is infinity) or
 * if the count is too large, then we cannot use this lower bound.
 * Otherwise, if there was no previous lower bound or
 * if the iteration count of the new lower bound is smaller than
 * the iteration count of the previous lower bound, then we consider
 * the new lower bound to be better.
 * If the iteration count is the same, then compare the number
 * of integer divisions that would be needed to express
 * the iterator value at the first slice in the unrolling
 * according to the lower bound.  If we end up computing this
 * number, then store the lowest value in data->n_div.
 */
static int is_better_lower_bound(struct isl_find_unroll_data *data,
	__isl_keep isl_aff *lower, __isl_keep isl_val *n)
{
	int cmp;
	int n_div;

	if (!n)
		return -1;
	if (isl_val_is_infty(n))
		return 0;
	if (isl_val_cmp_si(n, INT_MAX) > 0)
		return 0;
	if (!data->lower)
		return 1;
	cmp = isl_val_cmp_si(n, *data->n);
	if (cmp < 0)
		return 1;
	if (cmp > 0)
		return 0;
	if (data->n_div < 0)
		data->n_div = get_expanded_n_div(data, data->lower);
	if (data->n_div < 0)
		return -1;
	if (data->n_div == 0)
		return 0;
	n_div = get_expanded_n_div(data, lower);
	if (n_div < 0)
		return -1;
	if (n_div >= data->n_div)
		return 0;
	data->n_div = n_div;

	return 1;
}

/* Check if we can use "c" as a lower bound and if it is better than
 * any previously found lower bound.
 *
 * If "c" does not involve the dimension at the current depth,
 * then we cannot use it.
 * Otherwise, let "c" be of the form
 *
 *	i >= f(j)/a
 *
 * We compute the maximal value of
 *
 *	-ceil(f(j)/a)) + i + 1
 *
 * over the domain.  If there is such a value "n", then we know
 *
 *	-ceil(f(j)/a)) + i + 1 <= n
 *
 * or
 *
 *	i < ceil(f(j)/a)) + n
 *
 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
 * We just need to check if we have found any lower bound before and
 * if the new lower bound is better (smaller n or fewer integer divisions)
 * than the previously found lower bounds.
 */
static isl_stat update_unrolling_lower_bound(struct isl_find_unroll_data *data,
	__isl_keep isl_constraint *c)
{
	isl_aff *aff, *lower;
	isl_val *max;
	int better;

	if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
		return isl_stat_ok;

	lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
	lower = isl_aff_ceil(lower);
	aff = isl_aff_copy(lower);
	aff = isl_aff_neg(aff);
	aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
	aff = isl_aff_add_constant_si(aff, 1);
	max = isl_set_max_val(data->domain, aff);
	isl_aff_free(aff);

	better = is_better_lower_bound(data, lower, max);
	if (better < 0 || !better) {
		isl_val_free(max);
		isl_aff_free(lower);
		return better < 0 ? isl_stat_error : isl_stat_ok;
	}

	isl_aff_free(data->lower);
	data->lower = lower;
	*data->n = isl_val_get_num_si(max);
	isl_val_free(max);

	return isl_stat_ok;
}

/* Check if we can use "c" as a lower bound and if it is better than
 * any previously found lower bound.
 */
static isl_stat constraint_find_unroll(__isl_take isl_constraint *c, void *user)
{
	struct isl_find_unroll_data *data;
	isl_stat r;

	data = (struct isl_find_unroll_data *) user;
	r = update_unrolling_lower_bound(data, c);
	isl_constraint_free(c);

	return r;
}

/* Look for a lower bound l(i) on the dimension at "depth"
 * and a size n such that "domain" is a subset of
 *
 *	{ [i] : l(i) <= i_d < l(i) + n }
 *
 * where d is "depth" and l(i) depends only on earlier dimensions.
 * Furthermore, try and find a lower bound such that n is as small as possible.
 * In particular, "n" needs to be finite.
 * "build" is the build in which the unrolling will be performed.
 * "expansion" is the expansion that needs to be applied to "domain"
 * in the unrolling that will be performed.
 *
 * Inner dimensions have been eliminated from "domain" by the caller.
 *
 * We first construct a collection of lower bounds on the input set
 * by computing its simple hull.  We then iterate through them,
 * discarding those that we cannot use (either because they do not
 * involve the dimension at "depth" or because they have no corresponding
 * upper bound, meaning that "n" would be unbounded) and pick out the
 * best from the remaining ones.
 *
 * If we cannot find a suitable lower bound, then we consider that
 * to be an error.
 */
static __isl_give isl_aff *find_unroll_lower_bound(
	__isl_keep isl_ast_build *build, __isl_keep isl_set *domain,
	int depth, __isl_keep isl_basic_map *expansion, int *n)
{
	struct isl_find_unroll_data data =
			{ build, domain, depth, expansion, NULL, n, -1 };
	isl_basic_set *hull;

	hull = isl_set_simple_hull(isl_set_copy(domain));

	if (isl_basic_set_foreach_constraint(hull,
					    &constraint_find_unroll, &data) < 0)
		goto error;

	isl_basic_set_free(hull);

	if (!data.lower)
		isl_die(isl_set_get_ctx(domain), isl_error_invalid,
			"cannot find lower bound for unrolling", return NULL);

	return data.lower;
error:
	isl_basic_set_free(hull);
	return isl_aff_free(data.lower);
}

/* Call "fn" on each iteration of the current dimension of "domain".
 * If "init" is not NULL, then it is called with the number of
 * iterations before any call to "fn".
 * Return -1 on failure.
 *
 * Since we are going to be iterating over the individual values,
 * we first check if there are any strides on the current dimension.
 * If there is, we rewrite the current dimension i as
 *
 *		i = stride i' + offset
 *
 * and then iterate over individual values of i' instead.
 *
 * We then look for a lower bound on i' and a size such that the domain
 * is a subset of
 *
 *	{ [j,i'] : l(j) <= i' < l(j) + n }
 *
 * and then take slices of the domain at values of i'
 * between l(j) and l(j) + n - 1.
 *
 * We compute the unshifted simple hull of each slice to ensure that
 * we have a single basic set per offset.  The slicing constraint
 * may get simplified away before the unshifted simple hull is taken
 * and may therefore in some rare cases disappear from the result.
 * We therefore explicitly add the constraint back after computing
 * the unshifted simple hull to ensure that the basic sets
 * remain disjoint.  The constraints that are dropped by taking the hull
 * will be taken into account at the next level, as in the case of the
 * atomic option.
 *
 * Finally, we map i' back to i and call "fn".
 */
static int foreach_iteration(__isl_take isl_set *domain,
	__isl_keep isl_ast_build *build, int (*init)(int n, void *user),
	int (*fn)(__isl_take isl_basic_set *bset, void *user), void *user)
{
	int i, n;
	int empty;
	int depth;
	isl_multi_aff *expansion;
	isl_basic_map *bmap;
	isl_aff *lower = NULL;
	isl_ast_build *stride_build;

	depth = isl_ast_build_get_depth(build);

	domain = isl_ast_build_eliminate_inner(build, domain);
	domain = isl_set_intersect(domain, isl_ast_build_get_domain(build));
	stride_build = isl_ast_build_copy(build);
	stride_build = isl_ast_build_detect_strides(stride_build,
							isl_set_copy(domain));
	expansion = isl_ast_build_get_stride_expansion(stride_build);

	domain = isl_set_preimage_multi_aff(domain,
					    isl_multi_aff_copy(expansion));
	domain = isl_ast_build_eliminate_divs(stride_build, domain);
	isl_ast_build_free(stride_build);

	bmap = isl_basic_map_from_multi_aff(expansion);

	empty = isl_set_is_empty(domain);
	if (empty < 0) {
		n = -1;
	} else if (empty) {
		n = 0;
	} else {
		lower = find_unroll_lower_bound(build, domain, depth, bmap, &n);
		if (!lower)
			n = -1;
	}
	if (n >= 0 && init && init(n, user) < 0)
		n = -1;
	for (i = 0; i < n; ++i) {
		isl_set *set;
		isl_basic_set *bset;
		isl_constraint *slice;

		slice = at_offset(depth, lower, i);
		set = isl_set_copy(domain);
		set = isl_set_add_constraint(set, isl_constraint_copy(slice));
		bset = isl_set_unshifted_simple_hull(set);
		bset = isl_basic_set_add_constraint(bset, slice);
		bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));

		if (fn(bset, user) < 0)
			break;
	}

	isl_aff_free(lower);
	isl_set_free(domain);
	isl_basic_map_free(bmap);

	return n < 0 || i < n ? -1 : 0;
}

/* Data structure for storing the results and the intermediate objects
 * of compute_domains.
 *
 * "list" is the main result of the function and contains a list
 * of disjoint basic sets for which code should be generated.
 *
 * "executed" and "build" are inputs to compute_domains.
 * "schedule_domain" is the domain of "executed".
 *
 * "option" contains the domains at the current depth that should by
 * atomic, separated or unrolled.  These domains are as specified by
 * the user, except that inner dimensions have been eliminated and
 * that they have been made pair-wise disjoint.
 *
 * "sep_class" contains the user-specified split into separation classes
 * specialized to the current depth.
 * "done" contains the union of the separation domains that have already
 * been handled.
 */
struct isl_codegen_domains {
	isl_basic_set_list *list;

	isl_union_map *executed;
	isl_ast_build *build;
	isl_set *schedule_domain;

	isl_set *option[4];

	isl_map *sep_class;
	isl_set *done;
};

/* Internal data structure for do_unroll.
 *
 * "domains" stores the results of compute_domains.
 * "class_domain" is the original class domain passed to do_unroll.
 * "unroll_domain" collects the unrolled iterations.
 */
struct isl_ast_unroll_data {
	struct isl_codegen_domains *domains;
	isl_set *class_domain;
	isl_set *unroll_domain;
};

/* Given an iteration of an unrolled domain represented by "bset",
 * add it to data->domains->list.
 * Since we may have dropped some constraints, we intersect with
 * the class domain again to ensure that each element in the list
 * is disjoint from the other class domains.
 */
static int do_unroll_iteration(__isl_take isl_basic_set *bset, void *user)
{
	struct isl_ast_unroll_data *data = user;
	isl_set *set;
	isl_basic_set_list *list;

	set = isl_set_from_basic_set(bset);
	data->unroll_domain = isl_set_union(data->unroll_domain,
					    isl_set_copy(set));
	set = isl_set_intersect(set, isl_set_copy(data->class_domain));
	set = isl_set_make_disjoint(set);
	list = isl_basic_set_list_from_set(set);
	data->domains->list = isl_basic_set_list_concat(data->domains->list,
							list);

	return 0;
}

/* Extend domains->list with a list of basic sets, one for each value
 * of the current dimension in "domain" and remove the corresponding
 * sets from the class domain.  Return the updated class domain.
 * The divs that involve the current dimension have not been projected out
 * from this domain.
 *
 * We call foreach_iteration to iterate over the individual values and
 * in do_unroll_iteration we collect the individual basic sets in
 * domains->list and their union in data->unroll_domain, which is then
 * used to update the class domain.
 */
static __isl_give isl_set *do_unroll(struct isl_codegen_domains *domains,
	__isl_take isl_set *domain, __isl_take isl_set *class_domain)
{
	struct isl_ast_unroll_data data;

	if (!domain)
		return isl_set_free(class_domain);
	if (!class_domain)
		return isl_set_free(domain);

	data.domains = domains;
	data.class_domain = class_domain;
	data.unroll_domain = isl_set_empty(isl_set_get_space(domain));

	if (foreach_iteration(domain, domains->build, NULL,
				&do_unroll_iteration, &data) < 0)
		data.unroll_domain = isl_set_free(data.unroll_domain);

	class_domain = isl_set_subtract(class_domain, data.unroll_domain);

	return class_domain;
}

/* Add domains to domains->list for each individual value of the current
 * dimension, for that part of the schedule domain that lies in the
 * intersection of the option domain and the class domain.
 * Remove the corresponding sets from the class domain and
 * return the updated class domain.
 *
 * We first break up the unroll option domain into individual pieces
 * and then handle each of them separately.  The unroll option domain
 * has been made disjoint in compute_domains_init_options,
 *
 * Note that we actively want to combine different pieces of the
 * schedule domain that have the same value at the current dimension.
 * We therefore need to break up the unroll option domain before
 * intersecting with class and schedule domain, hoping that the
 * unroll option domain specified by the user is relatively simple.
 */
static __isl_give isl_set *compute_unroll_domains(
	struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
{
	isl_set *unroll_domain;
	isl_basic_set_list *unroll_list;
	int i, n;
	int empty;

	empty = isl_set_is_empty(domains->option[isl_ast_loop_unroll]);
	if (empty < 0)
		return isl_set_free(class_domain);
	if (empty)
		return class_domain;

	unroll_domain = isl_set_copy(domains->option[isl_ast_loop_unroll]);
	unroll_list = isl_basic_set_list_from_set(unroll_domain);

	n = isl_basic_set_list_n_basic_set(unroll_list);
	for (i = 0; i < n; ++i) {
		isl_basic_set *bset;

		bset = isl_basic_set_list_get_basic_set(unroll_list, i);
		unroll_domain = isl_set_from_basic_set(bset);
		unroll_domain = isl_set_intersect(unroll_domain,
						    isl_set_copy(class_domain));
		unroll_domain = isl_set_intersect(unroll_domain,
					isl_set_copy(domains->schedule_domain));

		empty = isl_set_is_empty(unroll_domain);
		if (empty >= 0 && empty) {
			isl_set_free(unroll_domain);
			continue;
		}

		class_domain = do_unroll(domains, unroll_domain, class_domain);
	}

	isl_basic_set_list_free(unroll_list);

	return class_domain;
}

/* Try and construct a single basic set that includes the intersection of
 * the schedule domain, the atomic option domain and the class domain.
 * Add the resulting basic set(s) to domains->list and remove them
 * from class_domain.  Return the updated class domain.
 *
 * We construct a single domain rather than trying to combine
 * the schedule domains of individual domains because we are working
 * within a single component so that non-overlapping schedule domains
 * should already have been separated.
 * We do however need to make sure that this single domains is a subset
 * of the class domain so that it would not intersect with any other
 * class domains.  This means that we may end up splitting up the atomic
 * domain in case separation classes are being used.
 *
 * "domain" is the intersection of the schedule domain and the class domain,
 * with inner dimensions projected out.
 */
static __isl_give isl_set *compute_atomic_domain(
	struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
{
	isl_basic_set *bset;
	isl_basic_set_list *list;
	isl_set *domain, *atomic_domain;
	int empty;

	domain = isl_set_copy(domains->option[isl_ast_loop_atomic]);
	domain = isl_set_intersect(domain, isl_set_copy(class_domain));
	domain = isl_set_intersect(domain,
				isl_set_copy(domains->schedule_domain));
	empty = isl_set_is_empty(domain);
	if (empty < 0)
		class_domain = isl_set_free(class_domain);
	if (empty) {
		isl_set_free(domain);
		return class_domain;
	}

	domain = isl_ast_build_eliminate(domains->build, domain);
	domain = isl_set_coalesce_preserve(domain);
	bset = isl_set_unshifted_simple_hull(domain);
	domain = isl_set_from_basic_set(bset);
	atomic_domain = isl_set_copy(domain);
	domain = isl_set_intersect(domain, isl_set_copy(class_domain));
	class_domain = isl_set_subtract(class_domain, atomic_domain);
	domain = isl_set_make_disjoint(domain);
	list = isl_basic_set_list_from_set(domain);
	domains->list = isl_basic_set_list_concat(domains->list, list);

	return class_domain;
}

/* Split up the schedule domain into uniform basic sets,
 * in the sense that each element in a basic set is associated to
 * elements of the same domains, and add the result to domains->list.
 * Do this for that part of the schedule domain that lies in the
 * intersection of "class_domain" and the separate option domain.
 *
 * "class_domain" may or may not include the constraints
 * of the schedule domain, but this does not make a difference
 * since we are going to intersect it with the domain of the inverse schedule.
 * If it includes schedule domain constraints, then they may involve
 * inner dimensions, but we will eliminate them in separation_domain.
 */
static int compute_separate_domain(struct isl_codegen_domains *domains,
	__isl_keep isl_set *class_domain)
{
	isl_space *space;
	isl_set *domain;
	isl_union_map *executed;
	isl_basic_set_list *list;
	int empty;

	domain = isl_set_copy(domains->option[isl_ast_loop_separate]);
	domain = isl_set_intersect(domain, isl_set_copy(class_domain));
	executed = isl_union_map_copy(domains->executed);
	executed = isl_union_map_intersect_domain(executed,
				    isl_union_set_from_set(domain));
	empty = isl_union_map_is_empty(executed);
	if (empty < 0 || empty) {
		isl_union_map_free(executed);
		return empty < 0 ? -1 : 0;
	}

	space = isl_set_get_space(class_domain);
	domain = separate_schedule_domains(space, executed, domains->build);

	list = isl_basic_set_list_from_set(domain);
	domains->list = isl_basic_set_list_concat(domains->list, list);

	return 0;
}

/* Split up the domain at the current depth into disjoint
 * basic sets for which code should be generated separately
 * for the given separation class domain.
 *
 * If any separation classes have been defined, then "class_domain"
 * is the domain of the current class and does not refer to inner dimensions.
 * Otherwise, "class_domain" is the universe domain.
 *
 * We first make sure that the class domain is disjoint from
 * previously considered class domains.
 *
 * The separate domains can be computed directly from the "class_domain".
 *
 * The unroll, atomic and remainder domains need the constraints
 * from the schedule domain.
 *
 * For unrolling, the actual schedule domain is needed (with divs that
 * may refer to the current dimension) so that stride detection can be
 * performed.
 *
 * For atomic and remainder domains, inner dimensions and divs involving
 * the current dimensions should be eliminated.
 * In case we are working within a separation class, we need to intersect
 * the result with the current "class_domain" to ensure that the domains
 * are disjoint from those generated from other class domains.
 *
 * The domain that has been made atomic may be larger than specified
 * by the user since it needs to be representable as a single basic set.
 * This possibly larger domain is removed from class_domain by
 * compute_atomic_domain.  It is computed first so that the extended domain
 * would not overlap with any domains computed before.
 * Similary, the unrolled domains may have some constraints removed and
 * may therefore also be larger than specified by the user.
 *
 * If anything is left after handling separate, unroll and atomic,
 * we split it up into basic sets and append the basic sets to domains->list.
 */
static isl_stat compute_partial_domains(struct isl_codegen_domains *domains,
	__isl_take isl_set *class_domain)
{
	isl_basic_set_list *list;
	isl_set *domain;

	class_domain = isl_set_subtract(class_domain,
					isl_set_copy(domains->done));
	domains->done = isl_set_union(domains->done,
					isl_set_copy(class_domain));

	class_domain = compute_atomic_domain(domains, class_domain);
	class_domain = compute_unroll_domains(domains, class_domain);

	domain = isl_set_copy(class_domain);

	if (compute_separate_domain(domains, domain) < 0)
		goto error;
	domain = isl_set_subtract(domain,
			isl_set_copy(domains->option[isl_ast_loop_separate]));

	domain = isl_set_intersect(domain,
				isl_set_copy(domains->schedule_domain));

	domain = isl_ast_build_eliminate(domains->build, domain);
	domain = isl_set_intersect(domain, isl_set_copy(class_domain));

	domain = isl_set_coalesce_preserve(domain);
	domain = isl_set_make_disjoint(domain);

	list = isl_basic_set_list_from_set(domain);
	domains->list = isl_basic_set_list_concat(domains->list, list);

	isl_set_free(class_domain);

	return isl_stat_ok;
error:
	isl_set_free(domain);
	isl_set_free(class_domain);
	return isl_stat_error;
}

/* Split up the domain at the current depth into disjoint
 * basic sets for which code should be generated separately
 * for the separation class identified by "pnt".
 *
 * We extract the corresponding class domain from domains->sep_class,
 * eliminate inner dimensions and pass control to compute_partial_domains.
 */
static isl_stat compute_class_domains(__isl_take isl_point *pnt, void *user)
{
	struct isl_codegen_domains *domains = user;
	isl_set *class_set;
	isl_set *domain;
	int disjoint;

	class_set = isl_set_from_point(pnt);
	domain = isl_map_domain(isl_map_intersect_range(
				isl_map_copy(domains->sep_class), class_set));
	domain = isl_ast_build_compute_gist(domains->build, domain);
	domain = isl_ast_build_eliminate(domains->build, domain);

	disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
	if (disjoint < 0)
		return isl_stat_error;
	if (disjoint) {
		isl_set_free(domain);
		return isl_stat_ok;
	}

	return compute_partial_domains(domains, domain);
}

/* Extract the domains at the current depth that should be atomic,
 * separated or unrolled and store them in option.
 *
 * The domains specified by the user might overlap, so we make
 * them disjoint by subtracting earlier domains from later domains.
 */
static void compute_domains_init_options(isl_set *option[4],
	__isl_keep isl_ast_build *build)
{
	enum isl_ast_loop_type type, type2;
	isl_set *unroll;

	for (type = isl_ast_loop_atomic;
	    type <= isl_ast_loop_separate; ++type) {
		option[type] = isl_ast_build_get_option_domain(build, type);
		for (type2 = isl_ast_loop_atomic; type2 < type; ++type2)
			option[type] = isl_set_subtract(option[type],
						isl_set_copy(option[type2]));
	}

	unroll = option[isl_ast_loop_unroll];
	unroll = isl_set_coalesce(unroll);
	unroll = isl_set_make_disjoint(unroll);
	option[isl_ast_loop_unroll] = unroll;
}

/* Split up the domain at the current depth into disjoint
 * basic sets for which code should be generated separately,
 * based on the user-specified options.
 * Return the list of disjoint basic sets.
 *
 * There are three kinds of domains that we need to keep track of.
 * - the "schedule domain" is the domain of "executed"
 * - the "class domain" is the domain corresponding to the currrent
 *	separation class
 * - the "option domain" is the domain corresponding to one of the options
 *	atomic, unroll or separate
 *
 * We first consider the individial values of the separation classes
 * and split up the domain for each of them separately.
 * Finally, we consider the remainder.  If no separation classes were
 * specified, then we call compute_partial_domains with the universe
 * "class_domain".  Otherwise, we take the "schedule_domain" as "class_domain",
 * with inner dimensions removed.  We do this because we want to
 * avoid computing the complement of the class domains (i.e., the difference
 * between the universe and domains->done).
 */
static __isl_give isl_basic_set_list *compute_domains(
	__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
{
	struct isl_codegen_domains domains;
	isl_ctx *ctx;
	isl_set *domain;
	isl_union_set *schedule_domain;
	isl_set *classes;
	isl_space *space;
	int n_param;
	enum isl_ast_loop_type type;
	int empty;

	if (!executed)
		return NULL;

	ctx = isl_union_map_get_ctx(executed);
	domains.list = isl_basic_set_list_alloc(ctx, 0);

	schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
	domain = isl_set_from_union_set(schedule_domain);

	compute_domains_init_options(domains.option, build);

	domains.sep_class = isl_ast_build_get_separation_class(build);
	classes = isl_map_range(isl_map_copy(domains.sep_class));
	n_param = isl_set_dim(classes, isl_dim_param);
	classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);

	space = isl_set_get_space(domain);
	domains.build = build;
	domains.schedule_domain = isl_set_copy(domain);
	domains.executed = executed;
	domains.done = isl_set_empty(space);

	if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
		domains.list = isl_basic_set_list_free(domains.list);
	isl_set_free(classes);

	empty = isl_set_is_empty(domains.done);
	if (empty < 0) {
		domains.list = isl_basic_set_list_free(domains.list);
		domain = isl_set_free(domain);
	} else if (empty) {
		isl_set_free(domain);
		domain = isl_set_universe(isl_set_get_space(domains.done));
	} else {
		domain = isl_ast_build_eliminate(build, domain);
	}
	if (compute_partial_domains(&domains, domain) < 0)
		domains.list = isl_basic_set_list_free(domains.list);

	isl_set_free(domains.schedule_domain);
	isl_set_free(domains.done);
	isl_map_free(domains.sep_class);
	for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type)
		isl_set_free(domains.option[type]);

	return domains.list;
}

/* Generate code for a single component, after shifting (if any)
 * has been applied, in case the schedule was specified as a union map.
 *
 * We first split up the domain at the current depth into disjoint
 * basic sets based on the user-specified options.
 * Then we generated code for each of them and concatenate the results.
 */
static __isl_give isl_ast_graft_list *generate_shifted_component_flat(
	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
{
	isl_basic_set_list *domain_list;
	isl_ast_graft_list *list = NULL;

	domain_list = compute_domains(executed, build);
	list = generate_parallel_domains(domain_list, executed, build);

	isl_basic_set_list_free(domain_list);
	isl_union_map_free(executed);
	isl_ast_build_free(build);

	return list;
}

/* Generate code for a single component, after shifting (if any)
 * has been applied, in case the schedule was specified as a schedule tree
 * and the separate option was specified.
 *
 * We perform separation on the domain of "executed" and then generate
 * an AST for each of the resulting disjoint basic sets.
 */
static __isl_give isl_ast_graft_list *generate_shifted_component_tree_separate(
	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
{
	isl_space *space;
	isl_set *domain;
	isl_basic_set_list *domain_list;
	isl_ast_graft_list *list;

	space = isl_ast_build_get_space(build, 1);
	domain = separate_schedule_domains(space,
					isl_union_map_copy(executed), build);
	domain_list = isl_basic_set_list_from_set(domain);

	list = generate_parallel_domains(domain_list, executed, build);

	isl_basic_set_list_free(domain_list);
	isl_union_map_free(executed);
	isl_ast_build_free(build);

	return list;
}

/* Internal data structure for generate_shifted_component_tree_unroll.
 *
 * "executed" and "build" are inputs to generate_shifted_component_tree_unroll.
 * "list" collects the constructs grafts.
 */
struct isl_ast_unroll_tree_data {
	isl_union_map *executed;
	isl_ast_build *build;
	isl_ast_graft_list *list;
};

/* Initialize data->list to a list of "n" elements.
 */
static int init_unroll_tree(int n, void *user)
{
	struct isl_ast_unroll_tree_data *data = user;
	isl_ctx *ctx;

	ctx = isl_ast_build_get_ctx(data->build);
	data->list = isl_ast_graft_list_alloc(ctx, n);

	return 0;
}

/* Given an iteration of an unrolled domain represented by "bset",
 * generate the corresponding AST and add the result to data->list.
 */
static int do_unroll_tree_iteration(__isl_take isl_basic_set *bset, void *user)
{
	struct isl_ast_unroll_tree_data *data = user;

	data->list = add_node(data->list, isl_union_map_copy(data->executed),
				bset, isl_ast_build_copy(data->build));

	return 0;
}

/* Generate code for a single component, after shifting (if any)
 * has been applied, in case the schedule was specified as a schedule tree
 * and the unroll option was specified.
 *
 * We call foreach_iteration to iterate over the individual values and
 * construct and collect the corresponding grafts in do_unroll_tree_iteration.
 */
static __isl_give isl_ast_graft_list *generate_shifted_component_tree_unroll(
	__isl_take isl_union_map *executed, __isl_take isl_set *domain,
	__isl_take isl_ast_build *build)
{
	struct isl_ast_unroll_tree_data data = { executed, build, NULL };

	if (foreach_iteration(domain, build, &init_unroll_tree,
				&do_unroll_tree_iteration, &data) < 0)
		data.list = isl_ast_graft_list_free(data.list);

	isl_union_map_free(executed);
	isl_ast_build_free(build);

	return data.list;
}

/* Does "domain" involve a disjunction that is purely based on
 * constraints involving only outer dimension?
 *
 * In particular, is there a disjunction such that the constraints
 * involving the current and later dimensions are the same over
 * all the disjuncts?
 */
static isl_bool has_pure_outer_disjunction(__isl_keep isl_set *domain,
	__isl_keep isl_ast_build *build)
{
	isl_basic_set *hull;
	isl_set *shared, *inner;
	isl_bool equal;
	int depth, dim;

	if (isl_set_n_basic_set(domain) <= 1)
		return isl_bool_false;

	inner = isl_set_copy(domain);
	depth = isl_ast_build_get_depth(build);
	dim = isl_set_dim(inner, isl_dim_set);
	inner = isl_set_drop_constraints_not_involving_dims(inner,
					    isl_dim_set, depth, dim - depth);
	hull = isl_set_plain_unshifted_simple_hull(isl_set_copy(inner));
	shared = isl_set_from_basic_set(hull);
	equal = isl_set_plain_is_equal(inner, shared);
	isl_set_free(inner);
	isl_set_free(shared);

	return equal;
}

/* Generate code for a single component, after shifting (if any)
 * has been applied, in case the schedule was specified as a schedule tree.
 * In particular, handle the base case where there is either no isolated
 * set or we are within the isolated set (in which case "isolated" is set)
 * or the iterations that precede or follow the isolated set.
 *
 * The schedule domain is broken up or combined into basic sets
 * according to the AST generation option specified in the current
 * schedule node, which may be either atomic, separate, unroll or
 * unspecified.  If the option is unspecified, then we currently simply
 * split the schedule domain into disjoint basic sets.
 *
 * In case the separate option is specified, the AST generation is
 * handled by generate_shifted_component_tree_separate.
 * In the other cases, we need the global schedule domain.
 * In the unroll case, the AST generation is then handled by
 * generate_shifted_component_tree_unroll which needs the actual
 * schedule domain (with divs that may refer to the current dimension)
 * so that stride detection can be performed.
 * In the atomic or unspecified case, inner dimensions and divs involving
 * the current dimensions should be eliminated.
 * The result is then either combined into a single basic set or
 * split up into disjoint basic sets.
 * Finally an AST is generated for each basic set and the results are
 * concatenated.
 *
 * If the schedule domain involves a disjunction that is purely based on
 * constraints involving only outer dimension, then it is treated as
 * if atomic was specified.  This ensures that only a single loop
 * is generated instead of a sequence of identical loops with
 * different guards.
 */
static __isl_give isl_ast_graft_list *generate_shifted_component_tree_base(
	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
	int isolated)
{
	isl_bool outer_disjunction;
	isl_union_set *schedule_domain;
	isl_set *domain;
	isl_basic_set_list *domain_list;
	isl_ast_graft_list *list;
	enum isl_ast_loop_type type;

	type = isl_ast_build_get_loop_type(build, isolated);
	if (type < 0)
		goto error;

	if (type == isl_ast_loop_separate)
		return generate_shifted_component_tree_separate(executed,
								build);

	schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
	domain = isl_set_from_union_set(schedule_domain);

	if (type == isl_ast_loop_unroll)
		return generate_shifted_component_tree_unroll(executed, domain,
								build);

	domain = isl_ast_build_eliminate(build, domain);
	domain = isl_set_coalesce_preserve(domain);

	outer_disjunction = has_pure_outer_disjunction(domain, build);
	if (outer_disjunction < 0)
		domain = isl_set_free(domain);

	if (outer_disjunction || type == isl_ast_loop_atomic) {
		isl_basic_set *hull;
		hull = isl_set_unshifted_simple_hull(domain);
		domain_list = isl_basic_set_list_from_basic_set(hull);
	} else {
		domain = isl_set_make_disjoint(domain);
		domain_list = isl_basic_set_list_from_set(domain);
	}

	list = generate_parallel_domains(domain_list, executed, build);

	isl_basic_set_list_free(domain_list);
	isl_union_map_free(executed);
	isl_ast_build_free(build);

	return list;
error:
	isl_union_map_free(executed);
	isl_ast_build_free(build);
	return NULL;
}

/* Extract out the disjunction imposed by "domain" on the outer
 * schedule dimensions.
 *
 * In particular, remove all inner dimensions from "domain" (including
 * the current dimension) and then remove the constraints that are shared
 * by all disjuncts in the result.
 */
static __isl_give isl_set *extract_disjunction(__isl_take isl_set *domain,
	__isl_keep isl_ast_build *build)
{
	isl_set *hull;
	int depth, dim;

	domain = isl_ast_build_specialize(build, domain);
	depth = isl_ast_build_get_depth(build);
	dim = isl_set_dim(domain, isl_dim_set);
	domain = isl_set_eliminate(domain, isl_dim_set, depth, dim - depth);
	domain = isl_set_remove_unknown_divs(domain);
	hull = isl_set_copy(domain);
	hull = isl_set_from_basic_set(isl_set_unshifted_simple_hull(hull));
	domain = isl_set_gist(domain, hull);

	return domain;
}

/* Add "guard" to the grafts in "list".
 * "build" is the outer AST build, while "sub_build" includes "guard"
 * in its generated domain.
 *
 * First combine the grafts into a single graft and then add the guard.
 * If the list is empty, or if some error occurred, then simply return
 * the list.
 */
static __isl_give isl_ast_graft_list *list_add_guard(
	__isl_take isl_ast_graft_list *list, __isl_keep isl_set *guard,
	__isl_keep isl_ast_build *build, __isl_keep isl_ast_build *sub_build)
{
	isl_ast_graft *graft;

	list = isl_ast_graft_list_fuse(list, sub_build);

	if (isl_ast_graft_list_n_ast_graft(list) != 1)
		return list;

	graft = isl_ast_graft_list_get_ast_graft(list, 0);
	graft = isl_ast_graft_add_guard(graft, isl_set_copy(guard), build);
	list = isl_ast_graft_list_set_ast_graft(list, 0, graft);

	return list;
}

/* Generate code for a single component, after shifting (if any)
 * has been applied, in case the schedule was specified as a schedule tree.
 * In particular, do so for the specified subset of the schedule domain.
 *
 * If we are outside of the isolated part, then "domain" may include
 * a disjunction.  Explicitly generate this disjunction at this point
 * instead of relying on the disjunction getting hoisted back up
 * to this level.
 */
static __isl_give isl_ast_graft_list *generate_shifted_component_tree_part(
	__isl_keep isl_union_map *executed, __isl_take isl_set *domain,
	__isl_keep isl_ast_build *build, int isolated)
{
	isl_union_set *uset;
	isl_ast_graft_list *list;
	isl_ast_build *sub_build;
	int empty;

	uset = isl_union_set_from_set(isl_set_copy(domain));
	executed = isl_union_map_copy(executed);
	executed = isl_union_map_intersect_domain(executed, uset);
	empty = isl_union_map_is_empty(executed);
	if (empty < 0)
		goto error;
	if (empty) {
		isl_ctx *ctx;
		isl_union_map_free(executed);
		isl_set_free(domain);
		ctx = isl_ast_build_get_ctx(build);
		return isl_ast_graft_list_alloc(ctx, 0);
	}

	sub_build = isl_ast_build_copy(build);
	if (!isolated) {
		domain = extract_disjunction(domain, build);
		sub_build = isl_ast_build_restrict_generated(sub_build,
							isl_set_copy(domain));
	}
	list = generate_shifted_component_tree_base(executed,
				isl_ast_build_copy(sub_build), isolated);
	if (!isolated)
		list = list_add_guard(list, domain, build, sub_build);
	isl_ast_build_free(sub_build);
	isl_set_free(domain);
	return list;
error:
	isl_union_map_free(executed);
	isl_set_free(domain);
	return NULL;
}

/* Generate code for a single component, after shifting (if any)
 * has been applied, in case the schedule was specified as a schedule tree.
 * In particular, do so for the specified sequence of subsets
 * of the schedule domain, "before", "isolated", "after" and "other",
 * where only the "isolated" part is considered to be isolated.
 */
static __isl_give isl_ast_graft_list *generate_shifted_component_parts(
	__isl_take isl_union_map *executed, __isl_take isl_set *before,
	__isl_take isl_set *isolated, __isl_take isl_set *after,
	__isl_take isl_set *other, __isl_take isl_ast_build *build)
{
	isl_ast_graft_list *list, *res;

	res = generate_shifted_component_tree_part(executed, before, build, 0);
	list = generate_shifted_component_tree_part(executed, isolated,
						    build, 1);
	res = isl_ast_graft_list_concat(res, list);
	list = generate_shifted_component_tree_part(executed, after, build, 0);
	res = isl_ast_graft_list_concat(res, list);
	list = generate_shifted_component_tree_part(executed, other, build, 0);
	res = isl_ast_graft_list_concat(res, list);

	isl_union_map_free(executed);
	isl_ast_build_free(build);

	return res;
}

/* Does "set" intersect "first", but not "second"?
 */
static isl_bool only_intersects_first(__isl_keep isl_set *set,
	__isl_keep isl_set *first, __isl_keep isl_set *second)
{
	isl_bool disjoint;

	disjoint = isl_set_is_disjoint(set, first);
	if (disjoint < 0)
		return isl_bool_error;
	if (disjoint)
		return isl_bool_false;

	return isl_set_is_disjoint(set, second);
}

/* Generate code for a single component, after shifting (if any)
 * has been applied, in case the schedule was specified as a schedule tree.
 * In particular, do so in case of isolation where there is
 * only an "isolated" part and an "after" part.
 * "dead1" and "dead2" are freed by this function in order to simplify
 * the caller.
 *
 * The "before" and "other" parts are set to empty sets.
 */
static __isl_give isl_ast_graft_list *generate_shifted_component_only_after(
	__isl_take isl_union_map *executed, __isl_take isl_set *isolated,
	__isl_take isl_set *after, __isl_take isl_ast_build *build,
	__isl_take isl_set *dead1, __isl_take isl_set *dead2)
{
	isl_set *empty;

	empty = isl_set_empty(isl_set_get_space(after));
	isl_set_free(dead1);
	isl_set_free(dead2);
	return generate_shifted_component_parts(executed, isl_set_copy(empty),
						isolated, after, empty, build);
}

/* Generate code for a single component, after shifting (if any)
 * has been applied, in case the schedule was specified as a schedule tree.
 *
 * We first check if the user has specified an isolated schedule domain
 * and that we are not already outside of this isolated schedule domain.
 * If so, we break up the schedule domain into iterations that
 * precede the isolated domain, the isolated domain itself,
 * the iterations that follow the isolated domain and
 * the remaining iterations (those that are incomparable
 * to the isolated domain).
 * We generate an AST for each piece and concatenate the results.
 *
 * If the isolated domain is not convex, then it is replaced
 * by a convex superset to ensure that the sets of preceding and
 * following iterations are properly defined and, in particular,
 * that there are no intermediate iterations that do not belong
 * to the isolated domain.
 *
 * In the special case where at least one element of the schedule
 * domain that does not belong to the isolated domain needs
 * to be scheduled after this isolated domain, but none of those
 * elements need to be scheduled before, break up the schedule domain
 * in only two parts, the isolated domain, and a part that will be
 * scheduled after the isolated domain.
 *
 * If no isolated set has been specified, then we generate an
 * AST for the entire inverse schedule.
 */
static __isl_give isl_ast_graft_list *generate_shifted_component_tree(
	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
{
	int i, depth;
	int empty, has_isolate;
	isl_space *space;
	isl_union_set *schedule_domain;
	isl_set *domain;
	isl_basic_set *hull;
	isl_set *isolated, *before, *after, *test;
	isl_map *gt, *lt;
	isl_bool pure;

	build = isl_ast_build_extract_isolated(build);
	has_isolate = isl_ast_build_has_isolated(build);
	if (has_isolate < 0)
		executed = isl_union_map_free(executed);
	else if (!has_isolate)
		return generate_shifted_component_tree_base(executed, build, 0);

	schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
	domain = isl_set_from_union_set(schedule_domain);

	isolated = isl_ast_build_get_isolated(build);
	isolated = isl_set_intersect(isolated, isl_set_copy(domain));
	test = isl_ast_build_specialize(build, isl_set_copy(isolated));
	empty = isl_set_is_empty(test);
	isl_set_free(test);
	if (empty < 0)
		goto error;
	if (empty) {
		isl_set_free(isolated);
		isl_set_free(domain);
		return generate_shifted_component_tree_base(executed, build, 0);
	}
	isolated = isl_ast_build_eliminate(build, isolated);
	hull = isl_set_unshifted_simple_hull(isolated);
	isolated = isl_set_from_basic_set(hull);

	depth = isl_ast_build_get_depth(build);
	space = isl_space_map_from_set(isl_set_get_space(isolated));
	gt = isl_map_universe(space);
	for (i = 0; i < depth; ++i)
		gt = isl_map_equate(gt, isl_dim_in, i, isl_dim_out, i);
	gt = isl_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth);
	lt = isl_map_reverse(isl_map_copy(gt));
	before = isl_set_apply(isl_set_copy(isolated), gt);
	after = isl_set_apply(isl_set_copy(isolated), lt);

	domain = isl_set_subtract(domain, isl_set_copy(isolated));
	pure = only_intersects_first(domain, after, before);
	if (pure < 0)
		executed = isl_union_map_free(executed);
	else if (pure)
		return generate_shifted_component_only_after(executed, isolated,
						domain, build, before, after);
	domain = isl_set_subtract(domain, isl_set_copy(before));
	domain = isl_set_subtract(domain, isl_set_copy(after));
	after = isl_set_subtract(after, isl_set_copy(isolated));
	after = isl_set_subtract(after, isl_set_copy(before));
	before = isl_set_subtract(before, isl_set_copy(isolated));

	return generate_shifted_component_parts(executed, before, isolated,
						after, domain, build);
error:
	isl_set_free(domain);
	isl_set_free(isolated);
	isl_union_map_free(executed);
	isl_ast_build_free(build);
	return NULL;
}

/* Generate code for a single component, after shifting (if any)
 * has been applied.
 *
 * Call generate_shifted_component_tree or generate_shifted_component_flat
 * depending on whether the schedule was specified as a schedule tree.
 */
static __isl_give isl_ast_graft_list *generate_shifted_component(
	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
{
	if (isl_ast_build_has_schedule_node(build))
		return generate_shifted_component_tree(executed, build);
	else
		return generate_shifted_component_flat(executed, build);
}

struct isl_set_map_pair {
	isl_set *set;
	isl_map *map;
};

/* Given an array "domain" of isl_set_map_pairs and an array "order"
 * of indices into the "domain" array,
 * return the union of the "map" fields of the elements
 * indexed by the first "n" elements of "order".
 */
static __isl_give isl_union_map *construct_component_executed(
	struct isl_set_map_pair *domain, int *order, int n)
{
	int i;
	isl_map *map;
	isl_union_map *executed;

	map = isl_map_copy(domain[order[0]].map);
	executed = isl_union_map_from_map(map);
	for (i = 1; i < n; ++i) {
		map = isl_map_copy(domain[order[i]].map);
		executed = isl_union_map_add_map(executed, map);
	}

	return executed;
}

/* Generate code for a single component, after shifting (if any)
 * has been applied.
 *
 * The component inverse schedule is specified as the "map" fields
 * of the elements of "domain" indexed by the first "n" elements of "order".
 */
static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
	struct isl_set_map_pair *domain, int *order, int n,
	__isl_take isl_ast_build *build)
{
	isl_union_map *executed;

	executed = construct_component_executed(domain, order, n);
	return generate_shifted_component(executed, build);
}

/* Does set dimension "pos" of "set" have an obviously fixed value?
 */
static int dim_is_fixed(__isl_keep isl_set *set, int pos)
{
	int fixed;
	isl_val *v;

	v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, pos);
	if (!v)
		return -1;
	fixed = !isl_val_is_nan(v);
	isl_val_free(v);

	return fixed;
}

/* Given an array "domain" of isl_set_map_pairs and an array "order"
 * of indices into the "domain" array,
 * do all (except for at most one) of the "set" field of the elements
 * indexed by the first "n" elements of "order" have a fixed value
 * at position "depth"?
 */
static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
	int *order, int n, int depth)
{
	int i;
	int non_fixed = -1;

	for (i = 0; i < n; ++i) {
		int f;

		f = dim_is_fixed(domain[order[i]].set, depth);
		if (f < 0)
			return -1;
		if (f)
			continue;
		if (non_fixed >= 0)
			return 0;
		non_fixed = i;
	}

	return 1;
}

/* Given an array "domain" of isl_set_map_pairs and an array "order"
 * of indices into the "domain" array,
 * eliminate the inner dimensions from the "set" field of the elements
 * indexed by the first "n" elements of "order", provided the current
 * dimension does not have a fixed value.
 *
 * Return the index of the first element in "order" with a corresponding
 * "set" field that does not have an (obviously) fixed value.
 */
static int eliminate_non_fixed(struct isl_set_map_pair *domain,
	int *order, int n, int depth, __isl_keep isl_ast_build *build)
{
	int i;
	int base = -1;

	for (i = n - 1; i >= 0; --i) {
		int f;
		f = dim_is_fixed(domain[order[i]].set, depth);
		if (f < 0)
			return -1;
		if (f)
			continue;
		domain[order[i]].set = isl_ast_build_eliminate_inner(build,
							domain[order[i]].set);
		base = i;
	}

	return base;
}

/* Given an array "domain" of isl_set_map_pairs and an array "order"
 * of indices into the "domain" array,
 * find the element of "domain" (amongst those indexed by the first "n"
 * elements of "order") with the "set" field that has the smallest
 * value for the current iterator.
 *
 * Note that the domain with the smallest value may depend on the parameters
 * and/or outer loop dimension.  Since the result of this function is only
 * used as heuristic, we only make a reasonable attempt at finding the best
 * domain, one that should work in case a single domain provides the smallest
 * value for the current dimension over all values of the parameters
 * and outer dimensions.
 *
 * In particular, we compute the smallest value of the first domain
 * and replace it by that of any later domain if that later domain
 * has a smallest value that is smaller for at least some value
 * of the parameters and outer dimensions.
 */
static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
	__isl_keep isl_ast_build *build)
{
	int i;
	isl_map *min_first;
	int first = 0;

	min_first = isl_ast_build_map_to_iterator(build,
					isl_set_copy(domain[order[0]].set));
	min_first = isl_map_lexmin(min_first);

	for (i = 1; i < n; ++i) {
		isl_map *min, *test;
		int empty;

		min = isl_ast_build_map_to_iterator(build,
					isl_set_copy(domain[order[i]].set));
		min = isl_map_lexmin(min);
		test = isl_map_copy(min);
		test = isl_map_apply_domain(isl_map_copy(min_first), test);
		test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
		empty = isl_map_is_empty(test);
		isl_map_free(test);
		if (empty >= 0 && !empty) {
			isl_map_free(min_first);
			first = i;
			min_first = min;
		} else
			isl_map_free(min);

		if (empty < 0)
			break;
	}

	isl_map_free(min_first);

	return i < n ? -1 : first;
}

/* Construct a shifted inverse schedule based on the original inverse schedule,
 * the stride and the offset.
 *
 * The original inverse schedule is specified as the "map" fields
 * of the elements of "domain" indexed by the first "n" elements of "order".
 *
 * "stride" and "offset" are such that the difference
 * between the values of the current dimension of domain "i"
 * and the values of the current dimension for some reference domain are
 * equal to
 *
 *	stride * integer + offset[i]
 *
 * Moreover, 0 <= offset[i] < stride.
 *
 * For each domain, we create a map
 *
 *	{ [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
 *
 * where j refers to the current dimension and the other dimensions are
 * unchanged, and apply this map to the original schedule domain.
 *
 * For example, for the original schedule
 *
 *	{ A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
 *
 * and assuming the offset is 0 for the A domain and 1 for the B domain,
 * we apply the mapping
 *
 *	{ [j] -> [j, 0] }
 *
 * to the schedule of the "A" domain and the mapping
 *
 *	{ [j - 1] -> [j, 1] }
 *
 * to the schedule of the "B" domain.
 *
 *
 * Note that after the transformation, the differences between pairs
 * of values of the current dimension over all domains are multiples
 * of stride and that we have therefore exposed the stride.
 *
 *
 * To see that the mapping preserves the lexicographic order,
 * first note that each of the individual maps above preserves the order.
 * If the value of the current iterator is j1 in one domain and j2 in another,
 * then if j1 = j2, we know that the same map is applied to both domains
 * and the order is preserved.
 * Otherwise, let us assume, without loss of generality, that j1 < j2.
 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
 *
 *	j1 - c1 < j2 - c2
 *
 * and the order is preserved.
 * If c1 < c2, then we know
 *
 *	0 <= c2 - c1 < s
 *
 * We also have
 *
 *	j2 - j1 = n * s + r
 *
 * with n >= 0 and 0 <= r < s.
 * In other words, r = c2 - c1.
 * If n > 0, then
 *
 *	j1 - c1 < j2 - c2
 *
 * If n = 0, then
 *
 *	j1 - c1 = j2 - c2
 *
 * and so
 *
 *	(j1 - c1, c1) << (j2 - c2, c2)
 *
 * with "<<" the lexicographic order, proving that the order is preserved
 * in all cases.
 */
static __isl_give isl_union_map *construct_shifted_executed(
	struct isl_set_map_pair *domain, int *order, int n,
	__isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
	__isl_take isl_ast_build *build)
{
	int i;
	isl_union_map *executed;
	isl_space *space;
	isl_map *map;
	int depth;
	isl_constraint *c;

	depth = isl_ast_build_get_depth(build);
	space = isl_ast_build_get_space(build, 1);
	executed = isl_union_map_empty(isl_space_copy(space));
	space = isl_space_map_from_set(space);
	map = isl_map_identity(isl_space_copy(space));
	map = isl_map_eliminate(map, isl_dim_out, depth, 1);
	map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
	space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);

	c = isl_constraint_alloc_equality(isl_local_space_from_space(space));
	c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
	c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);

	for (i = 0; i < n; ++i) {
		isl_map *map_i;
		isl_val *v;

		v = isl_multi_val_get_val(offset, i);
		if (!v)
			break;
		map_i = isl_map_copy(map);
		map_i = isl_map_fix_val(map_i, isl_dim_out, depth + 1,
					isl_val_copy(v));
		v = isl_val_neg(v);
		c = isl_constraint_set_constant_val(c, v);
		map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));

		map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
						map_i);
		executed = isl_union_map_add_map(executed, map_i);
	}

	isl_constraint_free(c);
	isl_map_free(map);

	if (i < n)
		executed = isl_union_map_free(executed);

	return executed;
}

/* Generate code for a single component, after exposing the stride,
 * given that the schedule domain is "shifted strided".
 *
 * The component inverse schedule is specified as the "map" fields
 * of the elements of "domain" indexed by the first "n" elements of "order".
 *
 * The schedule domain being "shifted strided" means that the differences
 * between the values of the current dimension of domain "i"
 * and the values of the current dimension for some reference domain are
 * equal to
 *
 *	stride * integer + offset[i]
 *
 * We first look for the domain with the "smallest" value for the current
 * dimension and adjust the offsets such that the offset of the "smallest"
 * domain is equal to zero.  The other offsets are reduced modulo stride.
 *
 * Based on this information, we construct a new inverse schedule in
 * construct_shifted_executed that exposes the stride.
 * Since this involves the introduction of a new schedule dimension,
 * the build needs to be changed accordingly.
 * After computing the AST, the newly introduced dimension needs
 * to be removed again from the list of grafts.  We do this by plugging
 * in a mapping that represents the new schedule domain in terms of the
 * old schedule domain.
 */
static __isl_give isl_ast_graft_list *generate_shift_component(
	struct isl_set_map_pair *domain, int *order, int n,
	__isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
	__isl_take isl_ast_build *build)
{
	isl_ast_graft_list *list;
	int first;
	int depth;
	isl_val *val;
	isl_multi_val *mv;
	isl_space *space;
	isl_multi_aff *ma, *zero;
	isl_union_map *executed;

	depth = isl_ast_build_get_depth(build);

	first = first_offset(domain, order, n, build);
	if (first < 0)
		goto error;

	mv = isl_multi_val_copy(offset);
	val = isl_multi_val_get_val(offset, first);
	val = isl_val_neg(val);
	mv = isl_multi_val_add_val(mv, val);
	mv = isl_multi_val_mod_val(mv, isl_val_copy(stride));

	executed = construct_shifted_executed(domain, order, n, stride, mv,
						build);
	space = isl_ast_build_get_space(build, 1);
	space = isl_space_map_from_set(space);
	ma = isl_multi_aff_identity(isl_space_copy(space));
	space = isl_space_from_domain(isl_space_domain(space));
	space = isl_space_add_dims(space, isl_dim_out, 1);
	zero = isl_multi_aff_zero(space);
	ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
	build = isl_ast_build_insert_dim(build, depth + 1);
	list = generate_shifted_component(executed, build);

	list = isl_ast_graft_list_preimage_multi_aff(list, ma);

	isl_multi_val_free(mv);

	return list;
error:
	isl_ast_build_free(build);
	return NULL;
}

/* Does any node in the schedule tree rooted at the current schedule node
 * of "build" depend on outer schedule nodes?
 */
static int has_anchored_subtree(__isl_keep isl_ast_build *build)
{
	isl_schedule_node *node;
	int dependent = 0;

	node = isl_ast_build_get_schedule_node(build);
	dependent = isl_schedule_node_is_subtree_anchored(node);
	isl_schedule_node_free(node);

	return dependent;
}

/* Generate code for a single component.
 *
 * The component inverse schedule is specified as the "map" fields
 * of the elements of "domain" indexed by the first "n" elements of "order".
 *
 * This function may modify the "set" fields of "domain".
 *
 * Before proceeding with the actual code generation for the component,
 * we first check if there are any "shifted" strides, meaning that
 * the schedule domains of the individual domains are all strided,
 * but that they have different offsets, resulting in the union
 * of schedule domains not being strided anymore.
 *
 * The simplest example is the schedule
 *
 *	{ A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
 *
 * Both schedule domains are strided, but their union is not.
 * This function detects such cases and then rewrites the schedule to
 *
 *	{ A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
 *
 * In the new schedule, the schedule domains have the same offset (modulo
 * the stride), ensuring that the union of schedule domains is also strided.
 *
 *
 * If there is only a single domain in the component, then there is
 * nothing to do.   Similarly, if the current schedule dimension has
 * a fixed value for almost all domains then there is nothing to be done.
 * In particular, we need at least two domains where the current schedule
 * dimension does not have a fixed value.
 * Finally, in case of a schedule map input,
 * if any of the options refer to the current schedule dimension,
 * then we bail out as well.  It would be possible to reformulate the options
 * in terms of the new schedule domain, but that would introduce constraints
 * that separate the domains in the options and that is something we would
 * like to avoid.
 * In the case of a schedule tree input, we bail out if any of
 * the descendants of the current schedule node refer to outer
 * schedule nodes in any way.
 *
 *
 * To see if there is any shifted stride, we look at the differences
 * between the values of the current dimension in pairs of domains
 * for equal values of outer dimensions.  These differences should be
 * of the form
 *
 *	m x + r
 *
 * with "m" the stride and "r" a constant.  Note that we cannot perform
 * this analysis on individual domains as the lower bound in each domain
 * may depend on parameters or outer dimensions and so the current dimension
 * itself may not have a fixed remainder on division by the stride.
 *
 * In particular, we compare the first domain that does not have an
 * obviously fixed value for the current dimension to itself and all
 * other domains and collect the offsets and the gcd of the strides.
 * If the gcd becomes one, then we failed to find shifted strides.
 * If the gcd is zero, then the differences were all fixed, meaning
 * that some domains had non-obviously fixed values for the current dimension.
 * If all the offsets are the same (for those domains that do not have
 * an obviously fixed value for the current dimension), then we do not
 * apply the transformation.
 * If none of the domains were skipped, then there is nothing to do.
 * If some of them were skipped, then if we apply separation, the schedule
 * domain should get split in pieces with a (non-shifted) stride.
 *
 * Otherwise, we apply a shift to expose the stride in
 * generate_shift_component.
 */
static __isl_give isl_ast_graft_list *generate_component(
	struct isl_set_map_pair *domain, int *order, int n,
	__isl_take isl_ast_build *build)
{
	int i, d;
	int depth;
	isl_ctx *ctx;
	isl_map *map;
	isl_set *deltas;
	isl_val *gcd = NULL;
	isl_multi_val *mv;
	int fixed, skip;
	int base;
	isl_ast_graft_list *list;
	int res = 0;

	depth = isl_ast_build_get_depth(build);

	skip = n == 1;
	if (skip >= 0 && !skip)
		skip = at_most_one_non_fixed(domain, order, n, depth);
	if (skip >= 0 && !skip) {
		if (isl_ast_build_has_schedule_node(build))
			skip = has_anchored_subtree(build);
		else
			skip = isl_ast_build_options_involve_depth(build);
	}
	if (skip < 0)
		goto error;
	if (skip)
		return generate_shifted_component_from_list(domain,
							    order, n, build);

	base = eliminate_non_fixed(domain, order, n, depth, build);
	if (base < 0)
		goto error;

	ctx = isl_ast_build_get_ctx(build);

	mv = isl_multi_val_zero(isl_space_set_alloc(ctx, 0, n));

	fixed = 1;
	for (i = 0; i < n; ++i) {
		isl_val *r, *m;

		map = isl_map_from_domain_and_range(
					isl_set_copy(domain[order[base]].set),
					isl_set_copy(domain[order[i]].set));
		for (d = 0; d < depth; ++d)
			map = isl_map_equate(map, isl_dim_in, d,
						    isl_dim_out, d);
		deltas = isl_map_deltas(map);
		res = isl_set_dim_residue_class_val(deltas, depth, &m, &r);
		isl_set_free(deltas);
		if (res < 0)
			break;

		if (i == 0)
			gcd = m;
		else
			gcd = isl_val_gcd(gcd, m);
		if (isl_val_is_one(gcd)) {
			isl_val_free(r);
			break;
		}
		mv = isl_multi_val_set_val(mv, i, r);

		res = dim_is_fixed(domain[order[i]].set, depth);
		if (res < 0)
			break;
		if (res)
			continue;

		if (fixed && i > base) {
			isl_val *a, *b;
			a = isl_multi_val_get_val(mv, i);
			b = isl_multi_val_get_val(mv, base);
			if (isl_val_ne(a, b))
				fixed = 0;
			isl_val_free(a);
			isl_val_free(b);
		}
	}

	if (res < 0 || !gcd) {
		isl_ast_build_free(build);
		list = NULL;
	} else if (i < n || fixed || isl_val_is_zero(gcd)) {
		list = generate_shifted_component_from_list(domain,
							    order, n, build);
	} else {
		list = generate_shift_component(domain, order, n, gcd, mv,
						build);
	}

	isl_val_free(gcd);
	isl_multi_val_free(mv);

	return list;
error:
	isl_ast_build_free(build);
	return NULL;
}

/* Store both "map" itself and its domain in the
 * structure pointed to by *next and advance to the next array element.
 */
static isl_stat extract_domain(__isl_take isl_map *map, void *user)
{
	struct isl_set_map_pair **next = user;

	(*next)->map = isl_map_copy(map);
	(*next)->set = isl_map_domain(map);
	(*next)++;

	return isl_stat_ok;
}

static int after_in_tree(__isl_keep isl_union_map *umap,
	__isl_keep isl_schedule_node *node);

/* Is any domain element of "umap" scheduled after any of
 * the corresponding image elements by the tree rooted at
 * the child of "node"?
 */
static int after_in_child(__isl_keep isl_union_map *umap,
	__isl_keep isl_schedule_node *node)
{
	isl_schedule_node *child;
	int after;

	child = isl_schedule_node_get_child(node, 0);
	after = after_in_tree(umap, child);
	isl_schedule_node_free(child);

	return after;
}

/* Is any domain element of "umap" scheduled after any of
 * the corresponding image elements by the tree rooted at
 * the band node "node"?
 *
 * We first check if any domain element is scheduled after any
 * of the corresponding image elements by the band node itself.
 * If not, we restrict "map" to those pairs of element that
 * are scheduled together by the band node and continue with
 * the child of the band node.
 * If there are no such pairs then the map passed to after_in_child
 * will be empty causing it to return 0.
 */
static int after_in_band(__isl_keep isl_union_map *umap,
	__isl_keep isl_schedule_node *node)
{
	isl_multi_union_pw_aff *mupa;
	isl_union_map *partial, *test, *gt, *universe, *umap1, *umap2;
	isl_union_set *domain, *range;
	isl_space *space;
	int empty;
	int after;

	if (isl_schedule_node_band_n_member(node) == 0)
		return after_in_child(umap, node);

	mupa = isl_schedule_node_band_get_partial_schedule(node);
	space = isl_multi_union_pw_aff_get_space(mupa);
	partial = isl_union_map_from_multi_union_pw_aff(mupa);
	test = isl_union_map_copy(umap);
	test = isl_union_map_apply_domain(test, isl_union_map_copy(partial));
	test = isl_union_map_apply_range(test, isl_union_map_copy(partial));
	gt = isl_union_map_from_map(isl_map_lex_gt(space));
	test = isl_union_map_intersect(test, gt);
	empty = isl_union_map_is_empty(test);
	isl_union_map_free(test);

	if (empty < 0 || !empty) {
		isl_union_map_free(partial);
		return empty < 0 ? -1 : 1;
	}

	universe = isl_union_map_universe(isl_union_map_copy(umap));
	domain = isl_union_map_domain(isl_union_map_copy(universe));
	range = isl_union_map_range(universe);
	umap1 = isl_union_map_copy(partial);
	umap1 = isl_union_map_intersect_domain(umap1, domain);
	umap2 = isl_union_map_intersect_domain(partial, range);
	test = isl_union_map_apply_range(umap1, isl_union_map_reverse(umap2));
	test = isl_union_map_intersect(test, isl_union_map_copy(umap));
	after = after_in_child(test, node);
	isl_union_map_free(test);
	return after;
}

/* Is any domain element of "umap" scheduled after any of
 * the corresponding image elements by the tree rooted at
 * the context node "node"?
 *
 * The context constraints apply to the schedule domain,
 * so we cannot apply them directly to "umap", which contains
 * pairs of statement instances.  Instead, we add them
 * to the range of the prefix schedule for both domain and
 * range of "umap".
 */
static int after_in_context(__isl_keep isl_union_map *umap,
	__isl_keep isl_schedule_node *node)
{
	isl_union_map *prefix, *universe, *umap1, *umap2;
	isl_union_set *domain, *range;
	isl_set *context;
	int after;

	umap = isl_union_map_copy(umap);
	context = isl_schedule_node_context_get_context(node);
	prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
	universe = isl_union_map_universe(isl_union_map_copy(umap));
	domain = isl_union_map_domain(isl_union_map_copy(universe));
	range = isl_union_map_range(universe);
	umap1 = isl_union_map_copy(prefix);
	umap1 = isl_union_map_intersect_domain(umap1, domain);
	umap2 = isl_union_map_intersect_domain(prefix, range);
	umap1 = isl_union_map_intersect_range(umap1,
					    isl_union_set_from_set(context));
	umap1 = isl_union_map_apply_range(umap1, isl_union_map_reverse(umap2));
	umap = isl_union_map_intersect(umap, umap1);

	after = after_in_child(umap, node);

	isl_union_map_free(umap);

	return after;
}

/* Is any domain element of "umap" scheduled after any of
 * the corresponding image elements by the tree rooted at
 * the expansion node "node"?
 *
 * We apply the expansion to domain and range of "umap" and
 * continue with its child.
 */
static int after_in_expansion(__isl_keep isl_union_map *umap,
	__isl_keep isl_schedule_node *node)
{
	isl_union_map *expansion;
	int after;

	expansion = isl_schedule_node_expansion_get_expansion(node);
	umap = isl_union_map_copy(umap);
	umap = isl_union_map_apply_domain(umap, isl_union_map_copy(expansion));
	umap = isl_union_map_apply_range(umap, expansion);

	after = after_in_child(umap, node);

	isl_union_map_free(umap);

	return after;
}

/* Is any domain element of "umap" scheduled after any of
 * the corresponding image elements by the tree rooted at
 * the extension node "node"?
 *
 * Since the extension node may add statement instances before or
 * after the pairs of statement instances in "umap", we return 1
 * to ensure that these pairs are not broken up.
 */
static int after_in_extension(__isl_keep isl_union_map *umap,
	__isl_keep isl_schedule_node *node)
{
	return 1;
}

/* Is any domain element of "umap" scheduled after any of
 * the corresponding image elements by the tree rooted at
 * the filter node "node"?
 *
 * We intersect domain and range of "umap" with the filter and
 * continue with its child.
 */
static int after_in_filter(__isl_keep isl_union_map *umap,
	__isl_keep isl_schedule_node *node)
{
	isl_union_set *filter;
	int after;

	umap = isl_union_map_copy(umap);
	filter = isl_schedule_node_filter_get_filter(node);
	umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(filter));
	umap = isl_union_map_intersect_range(umap, filter);

	after = after_in_child(umap, node);

	isl_union_map_free(umap);

	return after;
}

/* Is any domain element of "umap" scheduled after any of
 * the corresponding image elements by the tree rooted at
 * the set node "node"?
 *
 * This is only the case if this condition holds in any
 * of the (filter) children of the set node.
 * In particular, if the domain and the range of "umap"
 * are contained in different children, then the condition
 * does not hold.
 */
static int after_in_set(__isl_keep isl_union_map *umap,
	__isl_keep isl_schedule_node *node)
{
	int i, n;

	n = isl_schedule_node_n_children(node);
	for (i = 0; i < n; ++i) {
		isl_schedule_node *child;
		int after;

		child = isl_schedule_node_get_child(node, i);
		after = after_in_tree(umap, child);
		isl_schedule_node_free(child);

		if (after < 0 || after)
			return after;
	}

	return 0;
}

/* Return the filter of child "i" of "node".
 */
static __isl_give isl_union_set *child_filter(
	__isl_keep isl_schedule_node *node, int i)
{
	isl_schedule_node *child;
	isl_union_set *filter;

	child = isl_schedule_node_get_child(node, i);
	filter = isl_schedule_node_filter_get_filter(child);
	isl_schedule_node_free(child);

	return filter;
}

/* Is any domain element of "umap" scheduled after any of
 * the corresponding image elements by the tree rooted at
 * the sequence node "node"?
 *
 * This happens in particular if any domain element is
 * contained in a later child than one containing a range element or
 * if the condition holds within a given child in the sequence.
 * The later part of the condition is checked by after_in_set.
 */
static int after_in_sequence(__isl_keep isl_union_map *umap,
	__isl_keep isl_schedule_node *node)
{
	int i, j, n;
	isl_union_map *umap_i;
	int empty, after = 0;

	n = isl_schedule_node_n_children(node);
	for (i = 1; i < n; ++i) {
		isl_union_set *filter_i;

		umap_i = isl_union_map_copy(umap);
		filter_i = child_filter(node, i);
		umap_i = isl_union_map_intersect_domain(umap_i, filter_i);
		empty = isl_union_map_is_empty(umap_i);
		if (empty < 0)
			goto error;
		if (empty) {
			isl_union_map_free(umap_i);
			continue;
		}

		for (j = 0; j < i; ++j) {
			isl_union_set *filter_j;
			isl_union_map *umap_ij;

			umap_ij = isl_union_map_copy(umap_i);
			filter_j = child_filter(node, j);
			umap_ij = isl_union_map_intersect_range(umap_ij,
								filter_j);
			empty = isl_union_map_is_empty(umap_ij);
			isl_union_map_free(umap_ij);

			if (empty < 0)
				goto error;
			if (!empty)
				after = 1;
			if (after)
				break;
		}

		isl_union_map_free(umap_i);
		if (after)
			break;
	}

	if (after < 0 || after)
		return after;

	return after_in_set(umap, node);
error:
	isl_union_map_free(umap_i);
	return -1;
}

/* Is any domain element of "umap" scheduled after any of
 * the corresponding image elements by the tree rooted at "node"?
 *
 * If "umap" is empty, then clearly there is no such element.
 * Otherwise, consider the different types of nodes separately.
 */
static int after_in_tree(__isl_keep isl_union_map *umap,
	__isl_keep isl_schedule_node *node)
{
	int empty;
	enum isl_schedule_node_type type;

	empty = isl_union_map_is_empty(umap);
	if (empty < 0)
		return -1;
	if (empty)
		return 0;
	if (!node)
		return -1;

	type = isl_schedule_node_get_type(node);
	switch (type) {
	case isl_schedule_node_error:
		return -1;
	case isl_schedule_node_leaf:
		return 0;
	case isl_schedule_node_band:
		return after_in_band(umap, node);
	case isl_schedule_node_domain:
		isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
			"unexpected internal domain node", return -1);
	case isl_schedule_node_context:
		return after_in_context(umap, node);
	case isl_schedule_node_expansion:
		return after_in_expansion(umap, node);
	case isl_schedule_node_extension:
		return after_in_extension(umap, node);
	case isl_schedule_node_filter:
		return after_in_filter(umap, node);
	case isl_schedule_node_guard:
	case isl_schedule_node_mark:
		return after_in_child(umap, node);
	case isl_schedule_node_set:
		return after_in_set(umap, node);
	case isl_schedule_node_sequence:
		return after_in_sequence(umap, node);
	}

	return 1;
}

/* Is any domain element of "map1" scheduled after any domain
 * element of "map2" by the subtree underneath the current band node,
 * while at the same time being scheduled together by the current
 * band node, i.e., by "map1" and "map2?
 *
 * If the child of the current band node is a leaf, then
 * no element can be scheduled after any other element.
 *
 * Otherwise, we construct a relation between domain elements
 * of "map1" and domain elements of "map2" that are scheduled
 * together and then check if the subtree underneath the current
 * band node determines their relative order.
 */
static int after_in_subtree(__isl_keep isl_ast_build *build,
	__isl_keep isl_map *map1, __isl_keep isl_map *map2)
{
	isl_schedule_node *node;
	isl_map *map;
	isl_union_map *umap;
	int after;

	node = isl_ast_build_get_schedule_node(build);
	if (!node)
		return -1;
	node = isl_schedule_node_child(node, 0);
	if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf) {
		isl_schedule_node_free(node);
		return 0;
	}
	map = isl_map_copy(map2);
	map = isl_map_apply_domain(map, isl_map_copy(map1));
	umap = isl_union_map_from_map(map);
	after = after_in_tree(umap, node);
	isl_union_map_free(umap);
	isl_schedule_node_free(node);
	return after;
}

/* Internal data for any_scheduled_after.
 *
 * "build" is the build in which the AST is constructed.
 * "depth" is the number of loops that have already been generated
 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
 * "domain" is an array of set-map pairs corresponding to the different
 * iteration domains.  The set is the schedule domain, i.e., the domain
 * of the inverse schedule, while the map is the inverse schedule itself.
 */
struct isl_any_scheduled_after_data {
	isl_ast_build *build;
	int depth;
	int group_coscheduled;
	struct isl_set_map_pair *domain;
};

/* Is any element of domain "i" scheduled after any element of domain "j"
 * (for a common iteration of the first data->depth loops)?
 *
 * data->domain[i].set contains the domain of the inverse schedule
 * for domain "i", i.e., elements in the schedule domain.
 *
 * If we are inside a band of a schedule tree and there is a pair
 * of elements in the two domains that is schedule together by
 * the current band, then we check if any element of "i" may be schedule
 * after element of "j" by the descendants of the band node.
 *
 * If data->group_coscheduled is set, then we also return 1 if there
 * is any pair of elements in the two domains that are scheduled together.
 */
static isl_bool any_scheduled_after(int i, int j, void *user)
{
	struct isl_any_scheduled_after_data *data = user;
	int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
	int pos;

	for (pos = data->depth; pos < dim; ++pos) {
		int follows;

		follows = isl_set_follows_at(data->domain[i].set,
						data->domain[j].set, pos);

		if (follows < -1)
			return isl_bool_error;
		if (follows > 0)
			return isl_bool_true;
		if (follows < 0)
			return isl_bool_false;
	}

	if (isl_ast_build_has_schedule_node(data->build)) {
		int after;

		after = after_in_subtree(data->build, data->domain[i].map,
					    data->domain[j].map);
		if (after < 0 || after)
			return after;
	}

	return data->group_coscheduled;
}

/* Look for independent components at the current depth and generate code
 * for each component separately.  The resulting lists of grafts are
 * merged in an attempt to combine grafts with identical guards.
 *
 * Code for two domains can be generated separately if all the elements
 * of one domain are scheduled before (or together with) all the elements
 * of the other domain.  We therefore consider the graph with as nodes
 * the domains and an edge between two nodes if any element of the first
 * node is scheduled after any element of the second node.
 * If the ast_build_group_coscheduled is set, then we also add an edge if
 * there is any pair of elements in the two domains that are scheduled
 * together.
 * Code is then generated (by generate_component)
 * for each of the strongly connected components in this graph
 * in their topological order.
 *
 * Since the test is performed on the domain of the inverse schedules of
 * the different domains, we precompute these domains and store
 * them in data.domain.
 */
static __isl_give isl_ast_graft_list *generate_components(
	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
{
	int i;
	isl_ctx *ctx = isl_ast_build_get_ctx(build);
	int n = isl_union_map_n_map(executed);
	struct isl_any_scheduled_after_data data;
	struct isl_set_map_pair *next;
	struct isl_tarjan_graph *g = NULL;
	isl_ast_graft_list *list = NULL;
	int n_domain = 0;

	data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
	if (!data.domain)
		goto error;
	n_domain = n;

	next = data.domain;
	if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
		goto error;

	if (!build)
		goto error;
	data.build = build;
	data.depth = isl_ast_build_get_depth(build);
	data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
	g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
	if (!g)
		goto error;

	list = isl_ast_graft_list_alloc(ctx, 0);

	i = 0;
	while (list && n) {
		isl_ast_graft_list *list_c;
		int first = i;

		if (g->order[i] == -1)
			isl_die(ctx, isl_error_internal, "cannot happen",
				goto error);
		++i; --n;
		while (g->order[i] != -1) {
			++i; --n;
		}

		list_c = generate_component(data.domain,
					    g->order + first, i - first,
					    isl_ast_build_copy(build));
		list = isl_ast_graft_list_merge(list, list_c, build);

		++i;
	}

	if (0)
error:		list = isl_ast_graft_list_free(list);
	isl_tarjan_graph_free(g);
	for (i = 0; i < n_domain; ++i) {
		isl_map_free(data.domain[i].map);
		isl_set_free(data.domain[i].set);
	}
	free(data.domain);
	isl_union_map_free(executed);
	isl_ast_build_free(build);

	return list;
}

/* Generate code for the next level (and all inner levels).
 *
 * If "executed" is empty, i.e., no code needs to be generated,
 * then we return an empty list.
 *
 * If we have already generated code for all loop levels, then we pass
 * control to generate_inner_level.
 *
 * If "executed" lives in a single space, i.e., if code needs to be
 * generated for a single domain, then there can only be a single
 * component and we go directly to generate_shifted_component.
 * Otherwise, we call generate_components to detect the components
 * and to call generate_component on each of them separately.
 */
static __isl_give isl_ast_graft_list *generate_next_level(
	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
{
	int depth;

	if (!build || !executed)
		goto error;

	if (isl_union_map_is_empty(executed)) {
		isl_ctx *ctx = isl_ast_build_get_ctx(build);
		isl_union_map_free(executed);
		isl_ast_build_free(build);
		return isl_ast_graft_list_alloc(ctx, 0);
	}

	depth = isl_ast_build_get_depth(build);
	if (depth >= isl_ast_build_dim(build, isl_dim_set))
		return generate_inner_level(executed, build);

	if (isl_union_map_n_map(executed) == 1)
		return generate_shifted_component(executed, build);

	return generate_components(executed, build);
error:
	isl_union_map_free(executed);
	isl_ast_build_free(build);
	return NULL;
}

/* Internal data structure used by isl_ast_build_node_from_schedule_map.
 * internal, executed and build are the inputs to generate_code.
 * list collects the output.
 */
struct isl_generate_code_data {
	int internal;
	isl_union_map *executed;
	isl_ast_build *build;

	isl_ast_graft_list *list;
};

/* Given an inverse schedule in terms of the external build schedule, i.e.,
 *
 *	[E -> S] -> D
 *
 * with E the external build schedule and S the additional schedule "space",
 * reformulate the inverse schedule in terms of the internal schedule domain,
 * i.e., return
 *
 *	[I -> S] -> D
 *
 * We first obtain a mapping
 *
 *	I -> E
 *
 * take the inverse and the product with S -> S, resulting in
 *
 *	[I -> S] -> [E -> S]
 *
 * Applying the map to the input produces the desired result.
 */
static __isl_give isl_union_map *internal_executed(
	__isl_take isl_union_map *executed, __isl_keep isl_space *space,
	__isl_keep isl_ast_build *build)
{
	isl_map *id, *proj;

	proj = isl_ast_build_get_schedule_map(build);
	proj = isl_map_reverse(proj);
	space = isl_space_map_from_set(isl_space_copy(space));
	id = isl_map_identity(space);
	proj = isl_map_product(proj, id);
	executed = isl_union_map_apply_domain(executed,
						isl_union_map_from_map(proj));
	return executed;
}

/* Generate an AST that visits the elements in the range of data->executed
 * in the relative order specified by the corresponding domain element(s)
 * for those domain elements that belong to "set".
 * Add the result to data->list.
 *
 * The caller ensures that "set" is a universe domain.
 * "space" is the space of the additional part of the schedule.
 * It is equal to the space of "set" if build->domain is parametric.
 * Otherwise, it is equal to the range of the wrapped space of "set".
 *
 * If the build space is not parametric and
 * if isl_ast_build_node_from_schedule_map
 * was called from an outside user (data->internal not set), then
 * the (inverse) schedule refers to the external build domain and needs to
 * be transformed to refer to the internal build domain.
 *
 * If the build space is parametric, then we add some of the parameter
 * constraints to the executed relation.  Adding these constraints
 * allows for an earlier detection of conflicts in some cases.
 * However, we do not want to divide the executed relation into
 * more disjuncts than necessary.  We therefore approximate
 * the constraints on the parameters by a single disjunct set.
 *
 * The build is extended to include the additional part of the schedule.
 * If the original build space was not parametric, then the options
 * in data->build refer only to the additional part of the schedule
 * and they need to be adjusted to refer to the complete AST build
 * domain.
 *
 * After having adjusted inverse schedule and build, we start generating
 * code with the outer loop of the current code generation
 * in generate_next_level.
 *
 * If the original build space was not parametric, we undo the embedding
 * on the resulting isl_ast_node_list so that it can be used within
 * the outer AST build.
 */
static isl_stat generate_code_in_space(struct isl_generate_code_data *data,
	__isl_take isl_set *set, __isl_take isl_space *space)
{
	isl_union_map *executed;
	isl_ast_build *build;
	isl_ast_graft_list *list;
	int embed;

	executed = isl_union_map_copy(data->executed);
	executed = isl_union_map_intersect_domain(executed,
						 isl_union_set_from_set(set));

	embed = !isl_set_is_params(data->build->domain);
	if (embed && !data->internal)
		executed = internal_executed(executed, space, data->build);
	if (!embed) {
		isl_set *domain;
		domain = isl_ast_build_get_domain(data->build);
		domain = isl_set_from_basic_set(isl_set_simple_hull(domain));
		executed = isl_union_map_intersect_params(executed, domain);
	}

	build = isl_ast_build_copy(data->build);
	build = isl_ast_build_product(build, space);

	list = generate_next_level(executed, build);

	list = isl_ast_graft_list_unembed(list, embed);

	data->list = isl_ast_graft_list_concat(data->list, list);

	return isl_stat_ok;
}

/* Generate an AST that visits the elements in the range of data->executed
 * in the relative order specified by the corresponding domain element(s)
 * for those domain elements that belong to "set".
 * Add the result to data->list.
 *
 * The caller ensures that "set" is a universe domain.
 *
 * If the build space S is not parametric, then the space of "set"
 * need to be a wrapped relation with S as domain.  That is, it needs
 * to be of the form
 *
 *	[S -> T]
 *
 * Check this property and pass control to generate_code_in_space
 * passing along T.
 * If the build space is not parametric, then T is the space of "set".
 */
static isl_stat generate_code_set(__isl_take isl_set *set, void *user)
{
	struct isl_generate_code_data *data = user;
	isl_space *space, *build_space;
	int is_domain;

	space = isl_set_get_space(set);

	if (isl_set_is_params(data->build->domain))
		return generate_code_in_space(data, set, space);

	build_space = isl_ast_build_get_space(data->build, data->internal);
	space = isl_space_unwrap(space);
	is_domain = isl_space_is_domain(build_space, space);
	isl_space_free(build_space);
	space = isl_space_range(space);

	if (is_domain < 0)
		goto error;
	if (!is_domain)
		isl_die(isl_set_get_ctx(set), isl_error_invalid,
			"invalid nested schedule space", goto error);

	return generate_code_in_space(data, set, space);
error:
	isl_set_free(set);
	isl_space_free(space);
	return isl_stat_error;
}

/* Generate an AST that visits the elements in the range of "executed"
 * in the relative order specified by the corresponding domain element(s).
 *
 * "build" is an isl_ast_build that has either been constructed by
 * isl_ast_build_from_context or passed to a callback set by
 * isl_ast_build_set_create_leaf.
 * In the first case, the space of the isl_ast_build is typically
 * a parametric space, although this is currently not enforced.
 * In the second case, the space is never a parametric space.
 * If the space S is not parametric, then the domain space(s) of "executed"
 * need to be wrapped relations with S as domain.
 *
 * If the domain of "executed" consists of several spaces, then an AST
 * is generated for each of them (in arbitrary order) and the results
 * are concatenated.
 *
 * If "internal" is set, then the domain "S" above refers to the internal
 * schedule domain representation.  Otherwise, it refers to the external
 * representation, as returned by isl_ast_build_get_schedule_space.
 *
 * We essentially run over all the spaces in the domain of "executed"
 * and call generate_code_set on each of them.
 */
static __isl_give isl_ast_graft_list *generate_code(
	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
	int internal)
{
	isl_ctx *ctx;
	struct isl_generate_code_data data = { 0 };
	isl_space *space;
	isl_union_set *schedule_domain;
	isl_union_map *universe;

	if (!build)
		goto error;
	space = isl_ast_build_get_space(build, 1);
	space = isl_space_align_params(space,
				    isl_union_map_get_space(executed));
	space = isl_space_align_params(space,
				    isl_union_map_get_space(build->options));
	build = isl_ast_build_align_params(build, isl_space_copy(space));
	executed = isl_union_map_align_params(executed, space);
	if (!executed || !build)
		goto error;

	ctx = isl_ast_build_get_ctx(build);

	data.internal = internal;
	data.executed = executed;
	data.build = build;
	data.list = isl_ast_graft_list_alloc(ctx, 0);

	universe = isl_union_map_universe(isl_union_map_copy(executed));
	schedule_domain = isl_union_map_domain(universe);
	if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
					&data) < 0)
		data.list = isl_ast_graft_list_free(data.list);

	isl_union_set_free(schedule_domain);
	isl_union_map_free(executed);

	isl_ast_build_free(build);
	return data.list;
error:
	isl_union_map_free(executed);
	isl_ast_build_free(build);
	return NULL;
}

/* Generate an AST that visits the elements in the domain of "schedule"
 * in the relative order specified by the corresponding image element(s).
 *
 * "build" is an isl_ast_build that has either been constructed by
 * isl_ast_build_from_context or passed to a callback set by
 * isl_ast_build_set_create_leaf.
 * In the first case, the space of the isl_ast_build is typically
 * a parametric space, although this is currently not enforced.
 * In the second case, the space is never a parametric space.
 * If the space S is not parametric, then the range space(s) of "schedule"
 * need to be wrapped relations with S as domain.
 *
 * If the range of "schedule" consists of several spaces, then an AST
 * is generated for each of them (in arbitrary order) and the results
 * are concatenated.
 *
 * We first initialize the local copies of the relevant options.
 * We do this here rather than when the isl_ast_build is created
 * because the options may have changed between the construction
 * of the isl_ast_build and the call to isl_generate_code.
 *
 * The main computation is performed on an inverse schedule (with
 * the schedule domain in the domain and the elements to be executed
 * in the range) called "executed".
 */
__isl_give isl_ast_node *isl_ast_build_node_from_schedule_map(
	__isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
{
	isl_ast_graft_list *list;
	isl_ast_node *node;
	isl_union_map *executed;

	build = isl_ast_build_copy(build);
	build = isl_ast_build_set_single_valued(build, 0);
	schedule = isl_union_map_coalesce(schedule);
	schedule = isl_union_map_remove_redundancies(schedule);
	executed = isl_union_map_reverse(schedule);
	list = generate_code(executed, isl_ast_build_copy(build), 0);
	node = isl_ast_node_from_graft_list(list, build);
	isl_ast_build_free(build);

	return node;
}

/* The old name for isl_ast_build_node_from_schedule_map.
 * It is being kept for backward compatibility, but
 * it will be removed in the future.
 */
__isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
	__isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
{
	return isl_ast_build_node_from_schedule_map(build, schedule);
}

/* Generate an AST that visits the elements in the domain of "executed"
 * in the relative order specified by the band node "node" and its descendants.
 *
 * The relation "executed" maps the outer generated loop iterators
 * to the domain elements executed by those iterations.
 *
 * If the band is empty, we continue with its descendants.
 * Otherwise, we extend the build and the inverse schedule with
 * the additional space/partial schedule and continue generating
 * an AST in generate_next_level.
 * As soon as we have extended the inverse schedule with the additional
 * partial schedule, we look for equalities that may exists between
 * the old and the new part.
 */
static __isl_give isl_ast_graft_list *build_ast_from_band(
	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
	__isl_take isl_union_map *executed)
{
	isl_space *space;
	isl_multi_union_pw_aff *extra;
	isl_union_map *extra_umap;
	isl_ast_graft_list *list;
	unsigned n1, n2;

	if (!build || !node || !executed)
		goto error;

	if (isl_schedule_node_band_n_member(node) == 0)
		return build_ast_from_child(build, node, executed);

	extra = isl_schedule_node_band_get_partial_schedule(node);
	extra = isl_multi_union_pw_aff_align_params(extra,
				isl_ast_build_get_space(build, 1));
	space = isl_multi_union_pw_aff_get_space(extra);

	extra_umap = isl_union_map_from_multi_union_pw_aff(extra);
	extra_umap = isl_union_map_reverse(extra_umap);

	executed = isl_union_map_domain_product(executed, extra_umap);
	executed = isl_union_map_detect_equalities(executed);

	n1 = isl_ast_build_dim(build, isl_dim_param);
	build = isl_ast_build_product(build, space);
	n2 = isl_ast_build_dim(build, isl_dim_param);
	if (n2 > n1)
		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
			"band node is not allowed to introduce new parameters",
			build = isl_ast_build_free(build));
	build = isl_ast_build_set_schedule_node(build, node);

	list = generate_next_level(executed, build);

	list = isl_ast_graft_list_unembed(list, 1);

	return list;
error:
	isl_schedule_node_free(node);
	isl_union_map_free(executed);
	isl_ast_build_free(build);
	return NULL;
}

/* Hoist a list of grafts (in practice containing a single graft)
 * from "sub_build" (which includes extra context information)
 * to "build".
 *
 * In particular, project out all additional parameters introduced
 * by the context node from the enforced constraints and the guard
 * of the single graft.
 */
static __isl_give isl_ast_graft_list *hoist_out_of_context(
	__isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build,
	__isl_keep isl_ast_build *sub_build)
{
	isl_ast_graft *graft;
	isl_basic_set *enforced;
	isl_set *guard;
	unsigned n_param, extra_param;

	if (!build || !sub_build)
		return isl_ast_graft_list_free(list);

	n_param = isl_ast_build_dim(build, isl_dim_param);
	extra_param = isl_ast_build_dim(sub_build, isl_dim_param);

	if (extra_param == n_param)
		return list;

	extra_param -= n_param;
	enforced = isl_ast_graft_list_extract_shared_enforced(list, sub_build);
	enforced = isl_basic_set_project_out(enforced, isl_dim_param,
							n_param, extra_param);
	enforced = isl_basic_set_remove_unknown_divs(enforced);
	guard = isl_ast_graft_list_extract_hoistable_guard(list, sub_build);
	guard = isl_set_remove_divs_involving_dims(guard, isl_dim_param,
							n_param, extra_param);
	guard = isl_set_project_out(guard, isl_dim_param, n_param, extra_param);
	guard = isl_set_compute_divs(guard);
	graft = isl_ast_graft_alloc_from_children(list, guard, enforced,
							build, sub_build);
	list = isl_ast_graft_list_from_ast_graft(graft);

	return list;
}

/* Generate an AST that visits the elements in the domain of "executed"
 * in the relative order specified by the context node "node"
 * and its descendants.
 *
 * The relation "executed" maps the outer generated loop iterators
 * to the domain elements executed by those iterations.
 *
 * The context node may introduce additional parameters as well as
 * constraints on the outer schedule dimensions or original parameters.
 *
 * We add the extra parameters to a new build and the context
 * constraints to both the build and (as a single disjunct)
 * to the domain of "executed".  Since the context constraints
 * are specified in terms of the input schedule, we first need
 * to map them to the internal schedule domain.
 *
 * After constructing the AST from the descendants of "node",
 * we combine the list of grafts into a single graft within
 * the new build, in order to be able to exploit the additional
 * context constraints during this combination.
 *
 * Additionally, if the current node is the outermost node in
 * the schedule tree (apart from the root domain node), we generate
 * all pending guards, again to be able to exploit the additional
 * context constraints.  We currently do not do this for internal
 * context nodes since we may still want to hoist conditions
 * to outer AST nodes.
 *
 * If the context node introduced any new parameters, then they
 * are removed from the set of enforced constraints and guard
 * in hoist_out_of_context.
 */
static __isl_give isl_ast_graft_list *build_ast_from_context(
	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
	__isl_take isl_union_map *executed)
{
	isl_set *context;
	isl_space *space;
	isl_multi_aff *internal2input;
	isl_ast_build *sub_build;
	isl_ast_graft_list *list;
	int n, depth;

	depth = isl_schedule_node_get_tree_depth(node);
	space = isl_ast_build_get_space(build, 1);
	context = isl_schedule_node_context_get_context(node);
	context = isl_set_align_params(context, space);
	sub_build = isl_ast_build_copy(build);
	space = isl_set_get_space(context);
	sub_build = isl_ast_build_align_params(sub_build, space);
	internal2input = isl_ast_build_get_internal2input(sub_build);
	context = isl_set_preimage_multi_aff(context, internal2input);
	sub_build = isl_ast_build_restrict_generated(sub_build,
					isl_set_copy(context));
	context = isl_set_from_basic_set(isl_set_simple_hull(context));
	executed = isl_union_map_intersect_domain(executed,
					isl_union_set_from_set(context));

	list = build_ast_from_child(isl_ast_build_copy(sub_build),
						node, executed);
	n = isl_ast_graft_list_n_ast_graft(list);
	if (n < 0)
		list = isl_ast_graft_list_free(list);

	list = isl_ast_graft_list_fuse(list, sub_build);
	if (depth == 1)
		list = isl_ast_graft_list_insert_pending_guard_nodes(list,
								sub_build);
	if (n >= 1)
		list = hoist_out_of_context(list, build, sub_build);

	isl_ast_build_free(build);
	isl_ast_build_free(sub_build);

	return list;
}

/* Generate an AST that visits the elements in the domain of "executed"
 * in the relative order specified by the expansion node "node" and
 * its descendants.
 *
 * The relation "executed" maps the outer generated loop iterators
 * to the domain elements executed by those iterations.
 *
 * We expand the domain elements by the expansion and
 * continue with the descendants of the node.
 */
static __isl_give isl_ast_graft_list *build_ast_from_expansion(
	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
	__isl_take isl_union_map *executed)
{
	isl_union_map *expansion;
	unsigned n1, n2;

	expansion = isl_schedule_node_expansion_get_expansion(node);
	expansion = isl_union_map_align_params(expansion,
				isl_union_map_get_space(executed));

	n1 = isl_union_map_dim(executed, isl_dim_param);
	executed = isl_union_map_apply_range(executed, expansion);
	n2 = isl_union_map_dim(executed, isl_dim_param);
	if (n2 > n1)
		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
			"expansion node is not allowed to introduce "
			"new parameters", goto error);

	return build_ast_from_child(build, node, executed);
error:
	isl_ast_build_free(build);
	isl_schedule_node_free(node);
	isl_union_map_free(executed);
	return NULL;
}

/* Generate an AST that visits the elements in the domain of "executed"
 * in the relative order specified by the extension node "node" and
 * its descendants.
 *
 * The relation "executed" maps the outer generated loop iterators
 * to the domain elements executed by those iterations.
 *
 * Extend the inverse schedule with the extension applied to current
 * set of generated constraints.  Since the extension if formulated
 * in terms of the input schedule, it first needs to be transformed
 * to refer to the internal schedule.
 */
static __isl_give isl_ast_graft_list *build_ast_from_extension(
	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
	__isl_take isl_union_map *executed)
{
	isl_union_set *schedule_domain;
	isl_union_map *extension;
	isl_set *set;

	set = isl_ast_build_get_generated(build);
	set = isl_set_from_basic_set(isl_set_simple_hull(set));
	schedule_domain = isl_union_set_from_set(set);

	extension = isl_schedule_node_extension_get_extension(node);

	extension = isl_union_map_preimage_domain_multi_aff(extension,
			isl_multi_aff_copy(build->internal2input));
	extension = isl_union_map_intersect_domain(extension, schedule_domain);
	extension = isl_ast_build_substitute_values_union_map_domain(build,
								    extension);
	executed = isl_union_map_union(executed, extension);

	return build_ast_from_child(build, node, executed);
}

/* Generate an AST that visits the elements in the domain of "executed"
 * in the relative order specified by the filter node "node" and
 * its descendants.
 *
 * The relation "executed" maps the outer generated loop iterators
 * to the domain elements executed by those iterations.
 *
 * We simply intersect the iteration domain (i.e., the range of "executed")
 * with the filter and continue with the descendants of the node,
 * unless the resulting inverse schedule is empty, in which
 * case we return an empty list.
 *
 * If the result of the intersection is equal to the original "executed"
 * relation, then keep the original representation since the intersection
 * may have unnecessarily broken up the relation into a greater number
 * of disjuncts.
 */
static __isl_give isl_ast_graft_list *build_ast_from_filter(
	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
	__isl_take isl_union_map *executed)
{
	isl_ctx *ctx;
	isl_union_set *filter;
	isl_union_map *orig;
	isl_ast_graft_list *list;
	int empty;
	isl_bool unchanged;
	unsigned n1, n2;

	orig = isl_union_map_copy(executed);
	if (!build || !node || !executed)
		goto error;

	filter = isl_schedule_node_filter_get_filter(node);
	filter = isl_union_set_align_params(filter,
				isl_union_map_get_space(executed));
	n1 = isl_union_map_dim(executed, isl_dim_param);
	executed = isl_union_map_intersect_range(executed, filter);
	n2 = isl_union_map_dim(executed, isl_dim_param);
	if (n2 > n1)
		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
			"filter node is not allowed to introduce "
			"new parameters", goto error);

	unchanged = isl_union_map_is_subset(orig, executed);
	empty = isl_union_map_is_empty(executed);
	if (unchanged < 0 || empty < 0)
		goto error;
	if (unchanged) {
		isl_union_map_free(executed);
		return build_ast_from_child(build, node, orig);
	}
	isl_union_map_free(orig);
	if (!empty)
		return build_ast_from_child(build, node, executed);

	ctx = isl_ast_build_get_ctx(build);
	list = isl_ast_graft_list_alloc(ctx, 0);
	isl_ast_build_free(build);
	isl_schedule_node_free(node);
	isl_union_map_free(executed);
	return list;
error:
	isl_ast_build_free(build);
	isl_schedule_node_free(node);
	isl_union_map_free(executed);
	isl_union_map_free(orig);
	return NULL;
}

/* Generate an AST that visits the elements in the domain of "executed"
 * in the relative order specified by the guard node "node" and
 * its descendants.
 *
 * The relation "executed" maps the outer generated loop iterators
 * to the domain elements executed by those iterations.
 *
 * Ensure that the associated guard is enforced by the outer AST
 * constructs by adding it to the guard of the graft.
 * Since we know that we will enforce the guard, we can also include it
 * in the generated constraints used to construct an AST for
 * the descendant nodes.
 */
static __isl_give isl_ast_graft_list *build_ast_from_guard(
	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
	__isl_take isl_union_map *executed)
{
	isl_space *space;
	isl_set *guard, *hoisted;
	isl_basic_set *enforced;
	isl_ast_build *sub_build;
	isl_ast_graft *graft;
	isl_ast_graft_list *list;
	unsigned n1, n2;

	space = isl_ast_build_get_space(build, 1);
	guard = isl_schedule_node_guard_get_guard(node);
	n1 = isl_space_dim(space, isl_dim_param);
	guard = isl_set_align_params(guard, space);
	n2 = isl_set_dim(guard, isl_dim_param);
	if (n2 > n1)
		isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
			"guard node is not allowed to introduce "
			"new parameters", guard = isl_set_free(guard));
	guard = isl_set_preimage_multi_aff(guard,
			isl_multi_aff_copy(build->internal2input));
	guard = isl_ast_build_specialize(build, guard);
	guard = isl_set_gist(guard, isl_set_copy(build->generated));

	sub_build = isl_ast_build_copy(build);
	sub_build = isl_ast_build_restrict_generated(sub_build,
							isl_set_copy(guard));

	list = build_ast_from_child(isl_ast_build_copy(sub_build),
							node, executed);

	hoisted = isl_ast_graft_list_extract_hoistable_guard(list, sub_build);
	if (isl_set_n_basic_set(hoisted) > 1)
		list = isl_ast_graft_list_gist_guards(list,
						    isl_set_copy(hoisted));
	guard = isl_set_intersect(guard, hoisted);
	enforced = extract_shared_enforced(list, build);
	graft = isl_ast_graft_alloc_from_children(list, guard, enforced,
						    build, sub_build);

	isl_ast_build_free(sub_build);
	isl_ast_build_free(build);
	return isl_ast_graft_list_from_ast_graft(graft);
}

/* Call the before_each_mark callback, if requested by the user.
 *
 * Return 0 on success and -1 on error.
 *
 * The caller is responsible for recording the current inverse schedule
 * in "build".
 */
static isl_stat before_each_mark(__isl_keep isl_id *mark,
	__isl_keep isl_ast_build *build)
{
	if (!build)
		return isl_stat_error;
	if (!build->before_each_mark)
		return isl_stat_ok;
	return build->before_each_mark(mark, build,
					build->before_each_mark_user);
}

/* Call the after_each_mark callback, if requested by the user.
 *
 * The caller is responsible for recording the current inverse schedule
 * in "build".
 */
static __isl_give isl_ast_graft *after_each_mark(
	__isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build)
{
	if (!graft || !build)
		return isl_ast_graft_free(graft);
	if (!build->after_each_mark)
		return graft;
	graft->node = build->after_each_mark(graft->node, build,
						build->after_each_mark_user);
	if (!graft->node)
		return isl_ast_graft_free(graft);
	return graft;
}


/* Generate an AST that visits the elements in the domain of "executed"
 * in the relative order specified by the mark node "node" and
 * its descendants.
 *
 * The relation "executed" maps the outer generated loop iterators
 * to the domain elements executed by those iterations.

 * Since we may be calling before_each_mark and after_each_mark
 * callbacks, we record the current inverse schedule in the build.
 *
 * We generate an AST for the child of the mark node, combine
 * the graft list into a single graft and then insert the mark
 * in the AST of that single graft.
 */
static __isl_give isl_ast_graft_list *build_ast_from_mark(
	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
	__isl_take isl_union_map *executed)
{
	isl_id *mark;
	isl_ast_graft *graft;
	isl_ast_graft_list *list;
	int n;

	build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));

	mark = isl_schedule_node_mark_get_id(node);
	if (before_each_mark(mark, build) < 0)
		node = isl_schedule_node_free(node);

	list = build_ast_from_child(isl_ast_build_copy(build), node, executed);
	list = isl_ast_graft_list_fuse(list, build);
	n = isl_ast_graft_list_n_ast_graft(list);
	if (n < 0)
		list = isl_ast_graft_list_free(list);
	if (n == 0) {
		isl_id_free(mark);
	} else {
		graft = isl_ast_graft_list_get_ast_graft(list, 0);
		graft = isl_ast_graft_insert_mark(graft, mark);
		graft = after_each_mark(graft, build);
		list = isl_ast_graft_list_set_ast_graft(list, 0, graft);
	}
	isl_ast_build_free(build);

	return list;
}

static __isl_give isl_ast_graft_list *build_ast_from_schedule_node(
	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
	__isl_take isl_union_map *executed);

/* Generate an AST that visits the elements in the domain of "executed"
 * in the relative order specified by the sequence (or set) node "node" and
 * its descendants.
 *
 * The relation "executed" maps the outer generated loop iterators
 * to the domain elements executed by those iterations.
 *
 * We simply generate an AST for each of the children and concatenate
 * the results.
 */
static __isl_give isl_ast_graft_list *build_ast_from_sequence(
	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
	__isl_take isl_union_map *executed)
{
	int i, n;
	isl_ctx *ctx;
	isl_ast_graft_list *list;

	ctx = isl_ast_build_get_ctx(build);
	list = isl_ast_graft_list_alloc(ctx, 0);

	n = isl_schedule_node_n_children(node);
	for (i = 0; i < n; ++i) {
		isl_schedule_node *child;
		isl_ast_graft_list *list_i;

		child = isl_schedule_node_get_child(node, i);
		list_i = build_ast_from_schedule_node(isl_ast_build_copy(build),
					child, isl_union_map_copy(executed));
		list = isl_ast_graft_list_concat(list, list_i);
	}
	isl_ast_build_free(build);
	isl_schedule_node_free(node);
	isl_union_map_free(executed);

	return list;
}

/* Generate an AST that visits the elements in the domain of "executed"
 * in the relative order specified by the node "node" and its descendants.
 *
 * The relation "executed" maps the outer generated loop iterators
 * to the domain elements executed by those iterations.
 *
 * If the node is a leaf, then we pass control to generate_inner_level.
 * Note that the current build does not refer to any band node, so
 * that generate_inner_level will not try to visit the child of
 * the leaf node.
 *
 * The other node types are handled in separate functions.
 * Set nodes are currently treated in the same way as sequence nodes.
 * The children of a set node may be executed in any order,
 * including the order of the children.
 */
static __isl_give isl_ast_graft_list *build_ast_from_schedule_node(
	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
	__isl_take isl_union_map *executed)
{
	enum isl_schedule_node_type type;

	type = isl_schedule_node_get_type(node);

	switch (type) {
	case isl_schedule_node_error:
		goto error;
	case isl_schedule_node_leaf:
		isl_schedule_node_free(node);
		return generate_inner_level(executed, build);
	case isl_schedule_node_band:
		return build_ast_from_band(build, node, executed);
	case isl_schedule_node_context:
		return build_ast_from_context(build, node, executed);
	case isl_schedule_node_domain:
		isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported,
			"unexpected internal domain node", goto error);
	case isl_schedule_node_expansion:
		return build_ast_from_expansion(build, node, executed);
	case isl_schedule_node_extension:
		return build_ast_from_extension(build, node, executed);
	case isl_schedule_node_filter:
		return build_ast_from_filter(build, node, executed);
	case isl_schedule_node_guard:
		return build_ast_from_guard(build, node, executed);
	case isl_schedule_node_mark:
		return build_ast_from_mark(build, node, executed);
	case isl_schedule_node_sequence:
	case isl_schedule_node_set:
		return build_ast_from_sequence(build, node, executed);
	}

	isl_die(isl_ast_build_get_ctx(build), isl_error_internal,
		"unhandled type", goto error);
error:
	isl_union_map_free(executed);
	isl_schedule_node_free(node);
	isl_ast_build_free(build);

	return NULL;
}

/* Generate an AST that visits the elements in the domain of "executed"
 * in the relative order specified by the (single) child of "node" and
 * its descendants.
 *
 * The relation "executed" maps the outer generated loop iterators
 * to the domain elements executed by those iterations.
 *
 * This function is never called on a leaf, set or sequence node,
 * so the node always has exactly one child.
 */
static __isl_give isl_ast_graft_list *build_ast_from_child(
	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node,
	__isl_take isl_union_map *executed)
{
	node = isl_schedule_node_child(node, 0);
	return build_ast_from_schedule_node(build, node, executed);
}

/* Generate an AST that visits the elements in the domain of the domain
 * node "node" in the relative order specified by its descendants.
 *
 * An initial inverse schedule is created that maps a zero-dimensional
 * schedule space to the node domain.
 * The input "build" is assumed to have a parametric domain and
 * is replaced by the same zero-dimensional schedule space.
 *
 * We also add some of the parameter constraints in the build domain
 * to the executed relation.  Adding these constraints
 * allows for an earlier detection of conflicts in some cases.
 * However, we do not want to divide the executed relation into
 * more disjuncts than necessary.  We therefore approximate
 * the constraints on the parameters by a single disjunct set.
 */
static __isl_give isl_ast_node *build_ast_from_domain(
	__isl_take isl_ast_build *build, __isl_take isl_schedule_node *node)
{
	isl_ctx *ctx;
	isl_union_set *domain, *schedule_domain;
	isl_union_map *executed;
	isl_space *space;
	isl_set *set;
	isl_ast_graft_list *list;
	isl_ast_node *ast;
	int is_params;

	if (!build)
		goto error;

	ctx = isl_ast_build_get_ctx(build);
	space = isl_ast_build_get_space(build, 1);
	is_params = isl_space_is_params(space);
	isl_space_free(space);
	if (is_params < 0)
		goto error;
	if (!is_params)
		isl_die(ctx, isl_error_unsupported,
			"expecting parametric initial context", goto error);

	domain = isl_schedule_node_domain_get_domain(node);
	domain = isl_union_set_coalesce(domain);

	space = isl_union_set_get_space(domain);
	space = isl_space_set_from_params(space);
	build = isl_ast_build_product(build, space);

	set = isl_ast_build_get_domain(build);
	set = isl_set_from_basic_set(isl_set_simple_hull(set));
	schedule_domain = isl_union_set_from_set(set);

	executed = isl_union_map_from_domain_and_range(schedule_domain, domain);
	list = build_ast_from_child(isl_ast_build_copy(build), node, executed);
	ast = isl_ast_node_from_graft_list(list, build);
	isl_ast_build_free(build);

	return ast;
error:
	isl_schedule_node_free(node);
	isl_ast_build_free(build);
	return NULL;
}

/* Generate an AST that visits the elements in the domain of "schedule"
 * in the relative order specified by the schedule tree.
 *
 * "build" is an isl_ast_build that has been created using
 * isl_ast_build_alloc or isl_ast_build_from_context based
 * on a parametric set.
 *
 * The construction starts at the root node of the schedule,
 * which is assumed to be a domain node.
 */
__isl_give isl_ast_node *isl_ast_build_node_from_schedule(
	__isl_keep isl_ast_build *build, __isl_take isl_schedule *schedule)
{
	isl_ctx *ctx;
	isl_schedule_node *node;

	if (!build || !schedule)
		goto error;

	ctx = isl_ast_build_get_ctx(build);

	node = isl_schedule_get_root(schedule);
	if (!node)
		goto error;
	isl_schedule_free(schedule);

	build = isl_ast_build_copy(build);
	build = isl_ast_build_set_single_valued(build, 0);
	if (isl_schedule_node_get_type(node) != isl_schedule_node_domain)
		isl_die(ctx, isl_error_unsupported,
			"expecting root domain node",
			build = isl_ast_build_free(build));
	return build_ast_from_domain(build, node);
error:
	isl_schedule_free(schedule);
	return NULL;
}