1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
| =head1 Introduction
C<isl> is a thread-safe C library for manipulating
sets and relations of integer points bounded by affine constraints.
The descriptions of the sets and relations may involve
both parameters and existentially quantified variables.
All computations are performed in exact integer arithmetic
using C<GMP> or C<imath>.
The C<isl> library offers functionality that is similar
to that offered by the C<Omega> and C<Omega+> libraries,
but the underlying algorithms are in most cases completely different.
The library is by no means complete and some fairly basic
functionality is still missing.
Still, even in its current form, the library has been successfully
used as a backend polyhedral library for the polyhedral
scanner C<CLooG> and as part of an equivalence checker of
static affine programs.
For bug reports, feature requests and questions,
visit the discussion group at
L<http://groups.google.com/group/isl-development>.
=head2 Backward Incompatible Changes
=head3 Changes since isl-0.02
=over
=item * The old printing functions have been deprecated
and replaced by C<isl_printer> functions, see L<Input and Output>.
=item * Most functions related to dependence analysis have acquired
an extra C<must> argument. To obtain the old behavior, this argument
should be given the value 1. See L<Dependence Analysis>.
=back
=head3 Changes since isl-0.03
=over
=item * The function C<isl_pw_qpolynomial_fold_add> has been
renamed to C<isl_pw_qpolynomial_fold_fold>.
Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
renamed to C<isl_union_pw_qpolynomial_fold_fold>.
=back
=head3 Changes since isl-0.04
=over
=item * All header files have been renamed from C<isl_header.h>
to C<isl/header.h>.
=back
=head3 Changes since isl-0.05
=over
=item * The functions C<isl_printer_print_basic_set> and
C<isl_printer_print_basic_map> no longer print a newline.
=item * The functions C<isl_flow_get_no_source>
and C<isl_union_map_compute_flow> now return
the accesses for which no source could be found instead of
the iterations where those accesses occur.
=item * The functions C<isl_basic_map_identity> and
C<isl_map_identity> now take a B<map> space as input. An old call
C<isl_map_identity(space)> can be rewritten to
C<isl_map_identity(isl_space_map_from_set(space))>.
=item * The function C<isl_map_power> no longer takes
a parameter position as input. Instead, the exponent
is now expressed as the domain of the resulting relation.
=back
=head3 Changes since isl-0.06
=over
=item * The format of C<isl_printer_print_qpolynomial>'s
C<ISL_FORMAT_ISL> output has changed.
Use C<ISL_FORMAT_C> to obtain the old output.
=item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
Some of the old names have been kept for backward compatibility,
but they will be removed in the future.
=back
=head3 Changes since isl-0.07
=over
=item * The function C<isl_pw_aff_max> has been renamed to
C<isl_pw_aff_union_max>.
Similarly, the function C<isl_pw_aff_add> has been renamed to
C<isl_pw_aff_union_add>.
=item * The C<isl_dim> type has been renamed to C<isl_space>
along with the associated functions.
Some of the old names have been kept for backward compatibility,
but they will be removed in the future.
=item * Spaces of maps, sets and parameter domains are now
treated differently. The distinction between map spaces and set spaces
has always been made on a conceptual level, but proper use of such spaces
was never checked. Furthermore, up until isl-0.07 there was no way
of explicitly creating a parameter space. These can now be created
directly using C<isl_space_params_alloc> or from other spaces using
C<isl_space_params>.
=item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
objects live is now a map space
instead of a set space. This means, for example, that the dimensions
of the domain of an C<isl_aff> are now considered to be of type
C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
added to obtain the domain space. Some of the constructors still
take a domain space and have therefore been renamed.
=item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
now take an C<isl_local_space> instead of an C<isl_space>.
An C<isl_local_space> can be created from an C<isl_space>
using C<isl_local_space_from_space>.
=item * The C<isl_div> type has been removed. Functions that used
to return an C<isl_div> now return an C<isl_aff>.
Note that the space of an C<isl_aff> is that of relation.
When replacing a call to C<isl_div_get_coefficient> by a call to
C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
to be replaced by C<isl_dim_in>.
A call to C<isl_aff_from_div> can be replaced by a call
to C<isl_aff_floor>.
A call to C<isl_qpolynomial_div(div)> call be replaced by
the nested call
isl_qpolynomial_from_aff(isl_aff_floor(div))
The function C<isl_constraint_div> has also been renamed
to C<isl_constraint_get_div>.
=item * The C<nparam> argument has been removed from
C<isl_map_read_from_str> and similar functions.
When reading input in the original PolyLib format,
the result will have no parameters.
If parameters are expected, the caller may want to perform
dimension manipulation on the result.
=back
=head3 Changes since isl-0.09
=over
=item * The C<schedule_split_parallel> option has been replaced
by the C<schedule_split_scaled> option.
=item * The first argument of C<isl_pw_aff_cond> is now
an C<isl_pw_aff> instead of an C<isl_set>.
A call C<isl_pw_aff_cond(a, b, c)> can be replaced by
isl_pw_aff_cond(isl_set_indicator_function(a), b, c)
=back
=head3 Changes since isl-0.10
=over
=item * The functions C<isl_set_dim_has_lower_bound> and
C<isl_set_dim_has_upper_bound> have been renamed to
C<isl_set_dim_has_any_lower_bound> and
C<isl_set_dim_has_any_upper_bound>.
The new C<isl_set_dim_has_lower_bound> and
C<isl_set_dim_has_upper_bound> have slightly different meanings.
=back
=head3 Changes since isl-0.12
=over
=item * C<isl_int> has been replaced by C<isl_val>.
Some of the old functions are still available in C<isl/deprecated/*.h>
but they will be removed in the future.
=item * The functions C<isl_pw_qpolynomial_eval>,
C<isl_union_pw_qpolynomial_eval>, C<isl_pw_qpolynomial_fold_eval>
and C<isl_union_pw_qpolynomial_fold_eval> have been changed to return
an C<isl_val> instead of an C<isl_qpolynomial>.
=item * The function C<isl_band_member_is_zero_distance>
has been removed. Essentially the same functionality is available
through C<isl_band_member_is_coincident>, except that it requires
setting up coincidence constraints.
The option C<schedule_outer_zero_distance> has accordingly been
replaced by the option C<schedule_outer_coincidence>.
=item * The function C<isl_vertex_get_expr> has been changed
to return an C<isl_multi_aff> instead of a rational C<isl_basic_set>.
The function C<isl_vertex_get_domain> has been changed to return
a regular basic set, rather than a rational basic set.
=back
=head3 Changes since isl-0.14
=over
=item * The function C<isl_union_pw_multi_aff_add> now consistently
computes the sum on the shared definition domain.
The function C<isl_union_pw_multi_aff_union_add> has been added
to compute the sum on the union of definition domains.
The original behavior of C<isl_union_pw_multi_aff_add> was
confused and is no longer available.
=item * Band forests have been replaced by schedule trees.
=item * The function C<isl_union_map_compute_flow> has been
replaced by the function C<isl_union_access_info_compute_flow>.
Note that the may dependence relation returned by
C<isl_union_flow_get_may_dependence> is the union of
the two dependence relations returned by
C<isl_union_map_compute_flow>. Similarly for the no source relations.
The function C<isl_union_map_compute_flow> is still available
for backward compatibility, but it will be removed in the future.
=item * The function C<isl_basic_set_drop_constraint> has been
deprecated.
=item * The function C<isl_ast_build_ast_from_schedule> has been
renamed to C<isl_ast_build_node_from_schedule_map>.
The original name is still available
for backward compatibility, but it will be removed in the future.
=item * The C<separation_class> AST generation option has been
deprecated.
=item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
have been renamed to C<isl_constraint_alloc_equality> and
C<isl_constraint_alloc_inequality>. The original names have been
kept for backward compatibility, but they will be removed in the future.
=item * The C<schedule_fuse> option has been replaced
by the C<schedule_serialize_sccs> option. The effect
of setting the C<schedule_fuse> option to C<ISL_SCHEDULE_FUSE_MIN>
is now obtained by turning on the C<schedule_serialize_sccs> option.
=back
=head3 Changes since isl-0.17
=over
=item * The function C<isl_printer_print_ast_expr> no longer prints
in C format by default. To print in C format, the output format
of the printer needs to have been explicitly set to C<ISL_FORMAT_C>.
As a result, the function C<isl_ast_expr_to_str> no longer prints
the expression in C format. Use C<isl_ast_expr_to_C_str> instead.
=item * The functions C<isl_set_align_divs> and C<isl_map_align_divs>
have been deprecated. The function C<isl_set_lift> has an effect
that is similar to C<isl_set_align_divs> and could in some cases
be used as an alternative.
=back
=head3 Changes since isl-0.19
=over
=item * Zero-dimensional objects of type C<isl_multi_pw_aff> or
C<isl_multi_union_pw_aff> can now keep track of an explicit domain.
This explicit domain, if present, is taken into account
by various operations that take such objects as input.
=back
=head1 License
C<isl> is released under the MIT license.
=over
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
=back
Note that by default C<isl> requires C<GMP>, which is released
under the GNU Lesser General Public License (LGPL). This means
that code linked against C<isl> is also linked against LGPL code.
When configuring with C<--with-int=imath> or C<--with-int=imath-32>, C<isl>
will link against C<imath>, a library for exact integer arithmetic released
under the MIT license.
=head1 Installation
The source of C<isl> can be obtained either as a tarball
or from the git repository. Both are available from
L<http://isl.gforge.inria.fr/>.
The installation process depends on how you obtained
the source.
=head2 Installation from the git repository
=over
=item 1 Clone or update the repository
The first time the source is obtained, you need to clone
the repository.
git clone git://repo.or.cz/isl.git
To obtain updates, you need to pull in the latest changes
git pull
=item 2 Optionally get C<imath> submodule
To build C<isl> with C<imath>, you need to obtain the C<imath>
submodule by running in the git source tree of C<isl>
git submodule init
git submodule update
This will fetch the required version of C<imath> in a subdirectory of C<isl>.
=item 2 Generate C<configure>
./autogen.sh
=back
After performing the above steps, continue
with the L<Common installation instructions>.
=head2 Common installation instructions
=over
=item 1 Obtain C<GMP>
By default, building C<isl> requires C<GMP>, including its headers files.
Your distribution may not provide these header files by default
and you may need to install a package called C<gmp-devel> or something
similar. Alternatively, C<GMP> can be built from
source, available from L<http://gmplib.org/>.
C<GMP> is not needed if you build C<isl> with C<imath>.
=item 2 Configure
C<isl> uses the standard C<autoconf> C<configure> script.
To run it, just type
./configure
optionally followed by some configure options.
A complete list of options can be obtained by running
./configure --help
Below we discuss some of the more common options.
=over
=item C<--prefix>
Installation prefix for C<isl>
=item C<--with-int=[gmp|imath|imath-32]>
Select the integer library to be used by C<isl>, the default is C<gmp>.
With C<imath-32>, C<isl> will use 32 bit integers, but fall back to C<imath>
for values out of the 32 bit range. In most applications, C<isl> will run
fastest with the C<imath-32> option, followed by C<gmp> and C<imath>, the
slowest.
=item C<--with-gmp-prefix>
Installation prefix for C<GMP> (architecture-independent files).
=item C<--with-gmp-exec-prefix>
Installation prefix for C<GMP> (architecture-dependent files).
=back
=item 3 Compile
make
=item 4 Install (optional)
make install
=back
=head1 Integer Set Library
=head2 Memory Management
Since a high-level operation on isl objects usually involves
several substeps and since the user is usually not interested in
the intermediate results, most functions that return a new object
will also release all the objects passed as arguments.
If the user still wants to use one or more of these arguments
after the function call, she should pass along a copy of the
object rather than the object itself.
The user is then responsible for making sure that the original
object gets used somewhere else or is explicitly freed.
The arguments and return values of all documented functions are
annotated to make clear which arguments are released and which
arguments are preserved. In particular, the following annotations
are used
=over
=item C<__isl_give>
C<__isl_give> means that a new object is returned.
The user should make sure that the returned pointer is
used exactly once as a value for an C<__isl_take> argument.
In between, it can be used as a value for as many
C<__isl_keep> arguments as the user likes.
There is one exception, and that is the case where the
pointer returned is C<NULL>. Is this case, the user
is free to use it as an C<__isl_take> argument or not.
When applied to a C<char *>, the returned pointer needs to be
freed using C<free>.
=item C<__isl_null>
C<__isl_null> means that a C<NULL> value is returned.
=item C<__isl_take>
C<__isl_take> means that the object the argument points to
is taken over by the function and may no longer be used
by the user as an argument to any other function.
The pointer value must be one returned by a function
returning an C<__isl_give> pointer.
If the user passes in a C<NULL> value, then this will
be treated as an error in the sense that the function will
not perform its usual operation. However, it will still
make sure that all the other C<__isl_take> arguments
are released.
=item C<__isl_keep>
C<__isl_keep> means that the function will only use the object
temporarily. After the function has finished, the user
can still use it as an argument to other functions.
A C<NULL> value will be treated in the same way as
a C<NULL> value for an C<__isl_take> argument.
This annotation may also be used on return values of
type C<const char *>, in which case the returned pointer should
not be freed by the user and is only valid until the object
from which it was derived is updated or freed.
=back
=head2 Initialization
All manipulations of integer sets and relations occur within
the context of an C<isl_ctx>.
A given C<isl_ctx> can only be used within a single thread.
All arguments of a function are required to have been allocated
within the same context.
There are currently no functions available for moving an object
from one C<isl_ctx> to another C<isl_ctx>. This means that
there is currently no way of safely moving an object from one
thread to another, unless the whole C<isl_ctx> is moved.
An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
freed using C<isl_ctx_free>.
All objects allocated within an C<isl_ctx> should be freed
before the C<isl_ctx> itself is freed.
isl_ctx *isl_ctx_alloc();
void isl_ctx_free(isl_ctx *ctx);
The user can impose a bound on the number of low-level I<operations>
that can be performed by an C<isl_ctx>. This bound can be set and
retrieved using the following functions. A bound of zero means that
no bound is imposed. The number of operations performed can be
reset using C<isl_ctx_reset_operations>. Note that the number
of low-level operations needed to perform a high-level computation
may differ significantly across different versions
of C<isl>, but it should be the same across different platforms
for the same version of C<isl>.
Warning: This feature is experimental. C<isl> has good support to abort and
bail out during the computation, but this feature may exercise error code paths
that are normally not used that much. Consequently, it is not unlikely that
hidden bugs will be exposed.
void isl_ctx_set_max_operations(isl_ctx *ctx,
unsigned long max_operations);
unsigned long isl_ctx_get_max_operations(isl_ctx *ctx);
void isl_ctx_reset_operations(isl_ctx *ctx);
In order to be able to create an object in the same context
as another object, most object types (described later in
this document) provide a function to obtain the context
in which the object was created.
#include <isl/val.h>
isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val);
isl_ctx *isl_multi_val_get_ctx(
__isl_keep isl_multi_val *mv);
#include <isl/id.h>
isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
#include <isl/local_space.h>
isl_ctx *isl_local_space_get_ctx(
__isl_keep isl_local_space *ls);
#include <isl/set.h>
isl_ctx *isl_set_list_get_ctx(
__isl_keep isl_set_list *list);
#include <isl/aff.h>
isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
isl_ctx *isl_multi_aff_get_ctx(
__isl_keep isl_multi_aff *maff);
isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pa);
isl_ctx *isl_pw_multi_aff_get_ctx(
__isl_keep isl_pw_multi_aff *pma);
isl_ctx *isl_multi_pw_aff_get_ctx(
__isl_keep isl_multi_pw_aff *mpa);
isl_ctx *isl_union_pw_aff_get_ctx(
__isl_keep isl_union_pw_aff *upa);
isl_ctx *isl_union_pw_multi_aff_get_ctx(
__isl_keep isl_union_pw_multi_aff *upma);
isl_ctx *isl_multi_union_pw_aff_get_ctx(
__isl_keep isl_multi_union_pw_aff *mupa);
#include <isl/id_to_ast_expr.h>
isl_ctx *isl_id_to_ast_expr_get_ctx(
__isl_keep isl_id_to_ast_expr *id2expr);
#include <isl/point.h>
isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
#include <isl/vec.h>
isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
#include <isl/mat.h>
isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
#include <isl/vertices.h>
isl_ctx *isl_vertices_get_ctx(
__isl_keep isl_vertices *vertices);
isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
#include <isl/flow.h>
isl_ctx *isl_restriction_get_ctx(
__isl_keep isl_restriction *restr);
isl_ctx *isl_union_access_info_get_ctx(
__isl_keep isl_union_access_info *access);
isl_ctx *isl_union_flow_get_ctx(
__isl_keep isl_union_flow *flow);
#include <isl/schedule.h>
isl_ctx *isl_schedule_get_ctx(
__isl_keep isl_schedule *sched);
isl_ctx *isl_schedule_constraints_get_ctx(
__isl_keep isl_schedule_constraints *sc);
#include <isl/schedule_node.h>
isl_ctx *isl_schedule_node_get_ctx(
__isl_keep isl_schedule_node *node);
#include <isl/ast_build.h>
isl_ctx *isl_ast_build_get_ctx(
__isl_keep isl_ast_build *build);
#include <isl/ast.h>
isl_ctx *isl_ast_expr_get_ctx(
__isl_keep isl_ast_expr *expr);
isl_ctx *isl_ast_node_get_ctx(
__isl_keep isl_ast_node *node);
#include <isl/stride_info.h>
isl_ctx *isl_stride_info_get_ctx(
__isl_keep isl_stride_info *si);
#include <isl/fixed_box.h>
isl_ctx *isl_fixed_box_get_ctx(
__isl_keep isl_fixed_box *box);
=head2 Return Types
C<isl> uses two special return types for functions that either return
a boolean or that in principle do not return anything.
In particular, the C<isl_bool> type has three possible values:
C<isl_bool_true> (a positive integer value), indicating I<true> or I<yes>;
C<isl_bool_false> (the integer value zero), indicating I<false> or I<no>; and
C<isl_bool_error> (a negative integer value), indicating that something
went wrong. The following function can be used to negate an C<isl_bool>,
where the negation of C<isl_bool_error> is C<isl_bool_error> again.
#include <isl/val.h>
isl_bool isl_bool_not(isl_bool b);
The C<isl_stat> type has two possible values:
C<isl_stat_ok> (the integer value zero), indicating a successful
operation; and
C<isl_stat_error> (a negative integer value), indicating that something
went wrong.
See L</"Error Handling"> for more information on
C<isl_bool_error> and C<isl_stat_error>.
=head2 Values
An C<isl_val> represents an integer value, a rational value
or one of three special values, infinity, negative infinity and NaN.
Some predefined values can be created using the following functions.
#include <isl/val.h>
__isl_give isl_val *isl_val_zero(isl_ctx *ctx);
__isl_give isl_val *isl_val_one(isl_ctx *ctx);
__isl_give isl_val *isl_val_negone(isl_ctx *ctx);
__isl_give isl_val *isl_val_nan(isl_ctx *ctx);
__isl_give isl_val *isl_val_infty(isl_ctx *ctx);
__isl_give isl_val *isl_val_neginfty(isl_ctx *ctx);
Specific integer values can be created using the following functions.
#include <isl/val.h>
__isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx,
long i);
__isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx,
unsigned long u);
__isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx,
size_t n, size_t size, const void *chunks);
The function C<isl_val_int_from_chunks> constructs an C<isl_val>
from the C<n> I<digits>, each consisting of C<size> bytes, stored at C<chunks>.
The least significant digit is assumed to be stored first.
Value objects can be copied and freed using the following functions.
#include <isl/val.h>
__isl_give isl_val *isl_val_copy(__isl_keep isl_val *v);
__isl_null isl_val *isl_val_free(__isl_take isl_val *v);
They can be inspected using the following functions.
#include <isl/val.h>
long isl_val_get_num_si(__isl_keep isl_val *v);
long isl_val_get_den_si(__isl_keep isl_val *v);
__isl_give isl_val *isl_val_get_den_val(
__isl_keep isl_val *v);
double isl_val_get_d(__isl_keep isl_val *v);
size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v,
size_t size);
int isl_val_get_abs_num_chunks(__isl_keep isl_val *v,
size_t size, void *chunks);
C<isl_val_n_abs_num_chunks> returns the number of I<digits>
of C<size> bytes needed to store the absolute value of the
numerator of C<v>.
C<isl_val_get_abs_num_chunks> stores these digits at C<chunks>,
which is assumed to have been preallocated by the caller.
The least significant digit is stored first.
Note that C<isl_val_get_num_si>, C<isl_val_get_den_si>,
C<isl_val_get_d>, C<isl_val_n_abs_num_chunks>
and C<isl_val_get_abs_num_chunks> can only be applied to rational values.
An C<isl_val> can be modified using the following function.
#include <isl/val.h>
__isl_give isl_val *isl_val_set_si(__isl_take isl_val *v,
long i);
The following unary properties are defined on C<isl_val>s.
#include <isl/val.h>
int isl_val_sgn(__isl_keep isl_val *v);
isl_bool isl_val_is_zero(__isl_keep isl_val *v);
isl_bool isl_val_is_one(__isl_keep isl_val *v);
isl_bool isl_val_is_negone(__isl_keep isl_val *v);
isl_bool isl_val_is_nonneg(__isl_keep isl_val *v);
isl_bool isl_val_is_nonpos(__isl_keep isl_val *v);
isl_bool isl_val_is_pos(__isl_keep isl_val *v);
isl_bool isl_val_is_neg(__isl_keep isl_val *v);
isl_bool isl_val_is_int(__isl_keep isl_val *v);
isl_bool isl_val_is_rat(__isl_keep isl_val *v);
isl_bool isl_val_is_nan(__isl_keep isl_val *v);
isl_bool isl_val_is_infty(__isl_keep isl_val *v);
isl_bool isl_val_is_neginfty(__isl_keep isl_val *v);
Note that the sign of NaN is undefined.
The following binary properties are defined on pairs of C<isl_val>s.
#include <isl/val.h>
isl_bool isl_val_lt(__isl_keep isl_val *v1,
__isl_keep isl_val *v2);
isl_bool isl_val_le(__isl_keep isl_val *v1,
__isl_keep isl_val *v2);
isl_bool isl_val_gt(__isl_keep isl_val *v1,
__isl_keep isl_val *v2);
isl_bool isl_val_ge(__isl_keep isl_val *v1,
__isl_keep isl_val *v2);
isl_bool isl_val_eq(__isl_keep isl_val *v1,
__isl_keep isl_val *v2);
isl_bool isl_val_ne(__isl_keep isl_val *v1,
__isl_keep isl_val *v2);
isl_bool isl_val_abs_eq(__isl_keep isl_val *v1,
__isl_keep isl_val *v2);
Comparisons to NaN always return false.
That is, a NaN is not considered to hold any relative position
with respect to any value. In particular, a NaN
is neither considered to be equal to nor to be different from
any value (including another NaN).
The function C<isl_val_abs_eq> checks whether its two arguments
are equal in absolute value.
For integer C<isl_val>s we additionally have the following binary property.
#include <isl/val.h>
isl_bool isl_val_is_divisible_by(__isl_keep isl_val *v1,
__isl_keep isl_val *v2);
An C<isl_val> can also be compared to an integer using the following
functions. The result of C<isl_val_cmp_si> undefined for NaN.
#include <isl/val.h>
isl_bool isl_val_gt_si(__isl_keep isl_val *v, long i);
int isl_val_cmp_si(__isl_keep isl_val *v, long i);
The following unary operations are available on C<isl_val>s.
#include <isl/val.h>
__isl_give isl_val *isl_val_abs(__isl_take isl_val *v);
__isl_give isl_val *isl_val_neg(__isl_take isl_val *v);
__isl_give isl_val *isl_val_floor(__isl_take isl_val *v);
__isl_give isl_val *isl_val_ceil(__isl_take isl_val *v);
__isl_give isl_val *isl_val_trunc(__isl_take isl_val *v);
__isl_give isl_val *isl_val_inv(__isl_take isl_val *v);
The following binary operations are available on C<isl_val>s.
#include <isl/val.h>
__isl_give isl_val *isl_val_min(__isl_take isl_val *v1,
__isl_take isl_val *v2);
__isl_give isl_val *isl_val_max(__isl_take isl_val *v1,
__isl_take isl_val *v2);
__isl_give isl_val *isl_val_add(__isl_take isl_val *v1,
__isl_take isl_val *v2);
__isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1,
unsigned long v2);
__isl_give isl_val *isl_val_sub(__isl_take isl_val *v1,
__isl_take isl_val *v2);
__isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1,
unsigned long v2);
__isl_give isl_val *isl_val_mul(__isl_take isl_val *v1,
__isl_take isl_val *v2);
__isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1,
unsigned long v2);
__isl_give isl_val *isl_val_div(__isl_take isl_val *v1,
__isl_take isl_val *v2);
__isl_give isl_val *isl_val_div_ui(__isl_take isl_val *v1,
unsigned long v2);
On integer values, we additionally have the following operations.
#include <isl/val.h>
__isl_give isl_val *isl_val_pow2(__isl_take isl_val *v);
__isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
__isl_give isl_val *isl_val_mod(__isl_take isl_val *v1,
__isl_take isl_val *v2);
__isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1,
__isl_take isl_val *v2);
__isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1,
__isl_take isl_val *v2, __isl_give isl_val **x,
__isl_give isl_val **y);
C<isl_val_2exp> is an alternative name for C<isl_val_pow2>.
The function C<isl_val_gcdext> returns the greatest common divisor g
of C<v1> and C<v2> as well as two integers C<*x> and C<*y> such
that C<*x> * C<v1> + C<*y> * C<v2> = g.
=head3 GMP specific functions
These functions are only available if C<isl> has been compiled with C<GMP>
support.
Specific integer and rational values can be created from C<GMP> values using
the following functions.
#include <isl/val_gmp.h>
__isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx,
mpz_t z);
__isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx,
const mpz_t n, const mpz_t d);
The numerator and denominator of a rational value can be extracted as
C<GMP> values using the following functions.
#include <isl/val_gmp.h>
int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z);
int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z);
=head2 Sets and Relations
C<isl> uses six types of objects for representing sets and relations,
C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
C<isl_union_set> and C<isl_union_map>.
C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
can be described as a conjunction of affine constraints, while
C<isl_set> and C<isl_map> represent unions of
C<isl_basic_set>s and C<isl_basic_map>s, respectively.
However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
to live in the same space. C<isl_union_set>s and C<isl_union_map>s
represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
where spaces are considered different if they have a different number
of dimensions and/or different names (see L<"Spaces">).
The difference between sets and relations (maps) is that sets have
one set of variables, while relations have two sets of variables,
input variables and output variables.
=head2 Error Handling
C<isl> supports different ways to react in case a runtime error is triggered.
Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
with two maps that have incompatible spaces. There are three possible ways
to react on error: to warn, to continue or to abort.
The default behavior is to warn. In this mode, C<isl> prints a warning, stores
the last error in the corresponding C<isl_ctx> and the function in which the
error was triggered returns a value indicating that some error has
occurred. In case of functions returning a pointer, this value is
C<NULL>. In case of functions returning an C<isl_bool> or an
C<isl_stat>, this value is C<isl_bool_error> or C<isl_stat_error>.
An error does not corrupt internal state,
such that isl can continue to be used. C<isl> also provides functions to
read the last error, including the specific error message,
the isl source file where the error occurred and the line number,
and to reset all information about the last error. The
last error is only stored for information purposes. Its presence does not
change the behavior of C<isl>. Hence, resetting an error is not required to
continue to use isl, but only to observe new errors.
#include <isl/ctx.h>
enum isl_error isl_ctx_last_error(isl_ctx *ctx);
const char *isl_ctx_last_error_msg(isl_ctx *ctx);
const char *isl_ctx_last_error_file(isl_ctx *ctx);
int isl_ctx_last_error_line(isl_ctx *ctx);
void isl_ctx_reset_error(isl_ctx *ctx);
If no error has occurred since the last call to C<isl_ctx_reset_error>,
then the functions C<isl_ctx_last_error_msg> and
C<isl_ctx_last_error_file> return C<NULL>.
Another option is to continue on error. This is similar to warn on error mode,
except that C<isl> does not print any warning. This allows a program to
implement its own error reporting.
The last option is to directly abort the execution of the program from within
the isl library. This makes it obviously impossible to recover from an error,
but it allows to directly spot the error location. By aborting on error,
debuggers break at the location the error occurred and can provide a stack
trace. Other tools that automatically provide stack traces on abort or that do
not want to continue execution after an error was triggered may also prefer to
abort on error.
The on error behavior of isl can be specified by calling
C<isl_options_set_on_error> or by setting the command line option
C<--isl-on-error>. Valid arguments for the function call are
C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
choices for the command line option are C<warn>, C<continue> and C<abort>.
It is also possible to query the current error mode.
#include <isl/options.h>
isl_stat isl_options_set_on_error(isl_ctx *ctx, int val);
int isl_options_get_on_error(isl_ctx *ctx);
=head2 Identifiers
Identifiers are used to identify both individual dimensions
and tuples of dimensions. They consist of an optional name and an optional
user pointer. The name and the user pointer cannot both be C<NULL>, however.
Identifiers with the same name but different pointer values
are considered to be distinct.
Similarly, identifiers with different names but the same pointer value
are also considered to be distinct.
Equal identifiers are represented using the same object.
Pairs of identifiers can therefore be tested for equality using the
C<==> operator.
Identifiers can be constructed, copied, freed, inspected and printed
using the following functions.
#include <isl/id.h>
__isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
__isl_keep const char *name, void *user);
__isl_give isl_id *isl_id_set_free_user(
__isl_take isl_id *id,
void (*free_user)(void *user));
__isl_give isl_id *isl_id_copy(isl_id *id);
__isl_null isl_id *isl_id_free(__isl_take isl_id *id);
void *isl_id_get_user(__isl_keep isl_id *id);
__isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
__isl_give isl_printer *isl_printer_print_id(
__isl_take isl_printer *p, __isl_keep isl_id *id);
The callback set by C<isl_id_set_free_user> is called on the user
pointer when the last reference to the C<isl_id> is freed.
Note that C<isl_id_get_name> returns a pointer to some internal
data structure, so the result can only be used while the
corresponding C<isl_id> is alive.
=head2 Spaces
Whenever a new set, relation or similar object is created from scratch,
the space in which it lives needs to be specified using an C<isl_space>.
Each space involves zero or more parameters and zero, one or two
tuples of set or input/output dimensions. The parameters and dimensions
are identified by an C<isl_dim_type> and a position.
The type C<isl_dim_param> refers to parameters,
the type C<isl_dim_set> refers to set dimensions (for spaces
with a single tuple of dimensions) and the types C<isl_dim_in>
and C<isl_dim_out> refer to input and output dimensions
(for spaces with two tuples of dimensions).
Local spaces (see L</"Local Spaces">) also contain dimensions
of type C<isl_dim_div>.
Note that parameters are only identified by their position within
a given object. Across different objects, parameters are (usually)
identified by their names or identifiers. Only unnamed parameters
are identified by their positions across objects. The use of unnamed
parameters is discouraged.
#include <isl/space.h>
__isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
unsigned nparam, unsigned n_in, unsigned n_out);
__isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
unsigned nparam);
__isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
unsigned nparam, unsigned dim);
__isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
__isl_null isl_space *isl_space_free(__isl_take isl_space *space);
The space used for creating a parameter domain
needs to be created using C<isl_space_params_alloc>.
For other sets, the space
needs to be created using C<isl_space_set_alloc>, while
for a relation, the space
needs to be created using C<isl_space_alloc>.
To check whether a given space is that of a set or a map
or whether it is a parameter space, use these functions:
#include <isl/space.h>
isl_bool isl_space_is_params(__isl_keep isl_space *space);
isl_bool isl_space_is_set(__isl_keep isl_space *space);
isl_bool isl_space_is_map(__isl_keep isl_space *space);
Spaces can be compared using the following functions:
#include <isl/space.h>
isl_bool isl_space_is_equal(__isl_keep isl_space *space1,
__isl_keep isl_space *space2);
isl_bool isl_space_has_equal_params(
__isl_keep isl_space *space1,
__isl_keep isl_space *space2);
isl_bool isl_space_has_equal_tuples(
__isl_keep isl_space *space1,
__isl_keep isl_space *space2);
isl_bool isl_space_is_domain(__isl_keep isl_space *space1,
__isl_keep isl_space *space2);
isl_bool isl_space_is_range(__isl_keep isl_space *space1,
__isl_keep isl_space *space2);
isl_bool isl_space_tuple_is_equal(
__isl_keep isl_space *space1,
enum isl_dim_type type1,
__isl_keep isl_space *space2,
enum isl_dim_type type2);
C<isl_space_is_domain> checks whether the first argument is equal
to the domain of the second argument. This requires in particular that
the first argument is a set space and that the second argument
is a map space. C<isl_space_tuple_is_equal> checks whether the given
tuples (C<isl_dim_in>, C<isl_dim_out> or C<isl_dim_set>) of the given
spaces are the same. That is, it checks if they have the same
identifier (if any), the same dimension and the same internal structure
(if any).
The function
C<isl_space_has_equal_params> checks whether two spaces
have the same parameters in the same order.
C<isl_space_has_equal_tuples> check whether two spaces have
the same tuples. In contrast to C<isl_space_is_equal> below,
it does not check the
parameters. This is useful because many C<isl> functions align the
parameters before they perform their operations, such that equivalence
is not necessary.
C<isl_space_is_equal> checks whether two spaces are identical,
meaning that they have the same parameters and the same tuples.
That is, it checks whether both C<isl_space_has_equal_params> and
C<isl_space_has_equal_tuples> hold.
It is often useful to create objects that live in the
same space as some other object. This can be accomplished
by creating the new objects
(see L</"Creating New Sets and Relations"> or
L</"Functions">) based on the space
of the original object.
#include <isl/set.h>
__isl_give isl_space *isl_basic_set_get_space(
__isl_keep isl_basic_set *bset);
__isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
#include <isl/union_set.h>
__isl_give isl_space *isl_union_set_get_space(
__isl_keep isl_union_set *uset);
#include <isl/map.h>
__isl_give isl_space *isl_basic_map_get_space(
__isl_keep isl_basic_map *bmap);
__isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
#include <isl/union_map.h>
__isl_give isl_space *isl_union_map_get_space(
__isl_keep isl_union_map *umap);
#include <isl/constraint.h>
__isl_give isl_space *isl_constraint_get_space(
__isl_keep isl_constraint *constraint);
#include <isl/polynomial.h>
__isl_give isl_space *isl_qpolynomial_get_domain_space(
__isl_keep isl_qpolynomial *qp);
__isl_give isl_space *isl_qpolynomial_get_space(
__isl_keep isl_qpolynomial *qp);
__isl_give isl_space *
isl_qpolynomial_fold_get_domain_space(
__isl_keep isl_qpolynomial_fold *fold);
__isl_give isl_space *isl_qpolynomial_fold_get_space(
__isl_keep isl_qpolynomial_fold *fold);
__isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
__isl_keep isl_pw_qpolynomial *pwqp);
__isl_give isl_space *isl_pw_qpolynomial_get_space(
__isl_keep isl_pw_qpolynomial *pwqp);
__isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
__isl_keep isl_pw_qpolynomial_fold *pwf);
__isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
__isl_keep isl_pw_qpolynomial_fold *pwf);
__isl_give isl_space *isl_union_pw_qpolynomial_get_space(
__isl_keep isl_union_pw_qpolynomial *upwqp);
__isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
__isl_keep isl_union_pw_qpolynomial_fold *upwf);
#include <isl/val.h>
__isl_give isl_space *isl_multi_val_get_space(
__isl_keep isl_multi_val *mv);
#include <isl/aff.h>
__isl_give isl_space *isl_aff_get_domain_space(
__isl_keep isl_aff *aff);
__isl_give isl_space *isl_aff_get_space(
__isl_keep isl_aff *aff);
__isl_give isl_space *isl_pw_aff_get_domain_space(
__isl_keep isl_pw_aff *pwaff);
__isl_give isl_space *isl_pw_aff_get_space(
__isl_keep isl_pw_aff *pwaff);
__isl_give isl_space *isl_multi_aff_get_domain_space(
__isl_keep isl_multi_aff *maff);
__isl_give isl_space *isl_multi_aff_get_space(
__isl_keep isl_multi_aff *maff);
__isl_give isl_space *isl_pw_multi_aff_get_domain_space(
__isl_keep isl_pw_multi_aff *pma);
__isl_give isl_space *isl_pw_multi_aff_get_space(
__isl_keep isl_pw_multi_aff *pma);
__isl_give isl_space *isl_union_pw_aff_get_space(
__isl_keep isl_union_pw_aff *upa);
__isl_give isl_space *isl_union_pw_multi_aff_get_space(
__isl_keep isl_union_pw_multi_aff *upma);
__isl_give isl_space *isl_multi_pw_aff_get_domain_space(
__isl_keep isl_multi_pw_aff *mpa);
__isl_give isl_space *isl_multi_pw_aff_get_space(
__isl_keep isl_multi_pw_aff *mpa);
__isl_give isl_space *
isl_multi_union_pw_aff_get_domain_space(
__isl_keep isl_multi_union_pw_aff *mupa);
__isl_give isl_space *
isl_multi_union_pw_aff_get_space(
__isl_keep isl_multi_union_pw_aff *mupa);
#include <isl/point.h>
__isl_give isl_space *isl_point_get_space(
__isl_keep isl_point *pnt);
#include <isl/fixed_box.h>
__isl_give isl_space *isl_fixed_box_get_space(
__isl_keep isl_fixed_box *box);
The number of dimensions of a given type of space
may be read off from a space or an object that lives
in a space using the following functions.
In case of C<isl_space_dim>, type may be
C<isl_dim_param>, C<isl_dim_in> (only for relations),
C<isl_dim_out> (only for relations), C<isl_dim_set>
(only for sets) or C<isl_dim_all>.
#include <isl/space.h>
unsigned isl_space_dim(__isl_keep isl_space *space,
enum isl_dim_type type);
#include <isl/local_space.h>
int isl_local_space_dim(__isl_keep isl_local_space *ls,
enum isl_dim_type type);
#include <isl/set.h>
unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
enum isl_dim_type type);
unsigned isl_set_dim(__isl_keep isl_set *set,
enum isl_dim_type type);
#include <isl/union_set.h>
unsigned isl_union_set_dim(__isl_keep isl_union_set *uset,
enum isl_dim_type type);
#include <isl/map.h>
unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
enum isl_dim_type type);
unsigned isl_map_dim(__isl_keep isl_map *map,
enum isl_dim_type type);
#include <isl/union_map.h>
unsigned isl_union_map_dim(__isl_keep isl_union_map *umap,
enum isl_dim_type type);
#include <isl/val.h>
unsigned isl_multi_val_dim(__isl_keep isl_multi_val *mv,
enum isl_dim_type type);
#include <isl/aff.h>
int isl_aff_dim(__isl_keep isl_aff *aff,
enum isl_dim_type type);
unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
enum isl_dim_type type);
unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
enum isl_dim_type type);
unsigned isl_pw_multi_aff_dim(
__isl_keep isl_pw_multi_aff *pma,
enum isl_dim_type type);
unsigned isl_multi_pw_aff_dim(
__isl_keep isl_multi_pw_aff *mpa,
enum isl_dim_type type);
unsigned isl_union_pw_aff_dim(
__isl_keep isl_union_pw_aff *upa,
enum isl_dim_type type);
unsigned isl_union_pw_multi_aff_dim(
__isl_keep isl_union_pw_multi_aff *upma,
enum isl_dim_type type);
unsigned isl_multi_union_pw_aff_dim(
__isl_keep isl_multi_union_pw_aff *mupa,
enum isl_dim_type type);
#include <isl/polynomial.h>
unsigned isl_union_pw_qpolynomial_dim(
__isl_keep isl_union_pw_qpolynomial *upwqp,
enum isl_dim_type type);
unsigned isl_union_pw_qpolynomial_fold_dim(
__isl_keep isl_union_pw_qpolynomial_fold *upwf,
enum isl_dim_type type);
Note that an C<isl_union_set>, an C<isl_union_map>,
an C<isl_union_pw_multi_aff>,
an C<isl_union_pw_qpolynomial> and
an C<isl_union_pw_qpolynomial_fold>
only have parameters.
Additional parameters can be added to a space using the following function.
#include <isl/space.h>
__isl_give isl_space *isl_space_add_param_id(
__isl_take isl_space *space,
__isl_take isl_id *id);
If a parameter with the given identifier already appears in the space,
then it is not added again.
The identifiers or names of the individual dimensions of spaces
may be set or read off using the following functions on spaces
or objects that live in spaces.
These functions are mostly useful to obtain the identifiers, positions
or names of the parameters. Identifiers of individual dimensions are
essentially only useful for printing. They are ignored by all other
operations and may not be preserved across those operations.
#include <isl/space.h>
__isl_give isl_space *isl_space_set_dim_id(
__isl_take isl_space *space,
enum isl_dim_type type, unsigned pos,
__isl_take isl_id *id);
isl_bool isl_space_has_dim_id(__isl_keep isl_space *space,
enum isl_dim_type type, unsigned pos);
__isl_give isl_id *isl_space_get_dim_id(
__isl_keep isl_space *space,
enum isl_dim_type type, unsigned pos);
__isl_give isl_space *isl_space_set_dim_name(
__isl_take isl_space *space,
enum isl_dim_type type, unsigned pos,
__isl_keep const char *name);
isl_bool isl_space_has_dim_name(__isl_keep isl_space *space,
enum isl_dim_type type, unsigned pos);
__isl_keep const char *isl_space_get_dim_name(
__isl_keep isl_space *space,
enum isl_dim_type type, unsigned pos);
#include <isl/local_space.h>
__isl_give isl_local_space *isl_local_space_set_dim_id(
__isl_take isl_local_space *ls,
enum isl_dim_type type, unsigned pos,
__isl_take isl_id *id);
isl_bool isl_local_space_has_dim_id(
__isl_keep isl_local_space *ls,
enum isl_dim_type type, unsigned pos);
__isl_give isl_id *isl_local_space_get_dim_id(
__isl_keep isl_local_space *ls,
enum isl_dim_type type, unsigned pos);
__isl_give isl_local_space *isl_local_space_set_dim_name(
__isl_take isl_local_space *ls,
enum isl_dim_type type, unsigned pos, const char *s);
isl_bool isl_local_space_has_dim_name(
__isl_keep isl_local_space *ls,
enum isl_dim_type type, unsigned pos)
const char *isl_local_space_get_dim_name(
__isl_keep isl_local_space *ls,
enum isl_dim_type type, unsigned pos);
#include <isl/constraint.h>
const char *isl_constraint_get_dim_name(
__isl_keep isl_constraint *constraint,
enum isl_dim_type type, unsigned pos);
#include <isl/set.h>
__isl_give isl_id *isl_basic_set_get_dim_id(
__isl_keep isl_basic_set *bset,
enum isl_dim_type type, unsigned pos);
__isl_give isl_set *isl_set_set_dim_id(
__isl_take isl_set *set, enum isl_dim_type type,
unsigned pos, __isl_take isl_id *id);
isl_bool isl_set_has_dim_id(__isl_keep isl_set *set,
enum isl_dim_type type, unsigned pos);
__isl_give isl_id *isl_set_get_dim_id(
__isl_keep isl_set *set, enum isl_dim_type type,
unsigned pos);
const char *isl_basic_set_get_dim_name(
__isl_keep isl_basic_set *bset,
enum isl_dim_type type, unsigned pos);
isl_bool isl_set_has_dim_name(__isl_keep isl_set *set,
enum isl_dim_type type, unsigned pos);
const char *isl_set_get_dim_name(
__isl_keep isl_set *set,
enum isl_dim_type type, unsigned pos);
#include <isl/map.h>
__isl_give isl_map *isl_map_set_dim_id(
__isl_take isl_map *map, enum isl_dim_type type,
unsigned pos, __isl_take isl_id *id);
isl_bool isl_basic_map_has_dim_id(
__isl_keep isl_basic_map *bmap,
enum isl_dim_type type, unsigned pos);
isl_bool isl_map_has_dim_id(__isl_keep isl_map *map,
enum isl_dim_type type, unsigned pos);
__isl_give isl_id *isl_map_get_dim_id(
__isl_keep isl_map *map, enum isl_dim_type type,
unsigned pos);
__isl_give isl_id *isl_union_map_get_dim_id(
__isl_keep isl_union_map *umap,
enum isl_dim_type type, unsigned pos);
const char *isl_basic_map_get_dim_name(
__isl_keep isl_basic_map *bmap,
enum isl_dim_type type, unsigned pos);
isl_bool isl_map_has_dim_name(__isl_keep isl_map *map,
enum isl_dim_type type, unsigned pos);
const char *isl_map_get_dim_name(
__isl_keep isl_map *map,
enum isl_dim_type type, unsigned pos);
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_set_dim_id(
__isl_take isl_multi_val *mv,
enum isl_dim_type type, unsigned pos,
__isl_take isl_id *id);
__isl_give isl_id *isl_multi_val_get_dim_id(
__isl_keep isl_multi_val *mv,
enum isl_dim_type type, unsigned pos);
__isl_give isl_multi_val *isl_multi_val_set_dim_name(
__isl_take isl_multi_val *mv,
enum isl_dim_type type, unsigned pos, const char *s);
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_set_dim_id(
__isl_take isl_aff *aff, enum isl_dim_type type,
unsigned pos, __isl_take isl_id *id);
__isl_give isl_multi_aff *isl_multi_aff_set_dim_id(
__isl_take isl_multi_aff *maff,
enum isl_dim_type type, unsigned pos,
__isl_take isl_id *id);
__isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
__isl_take isl_pw_aff *pma,
enum isl_dim_type type, unsigned pos,
__isl_take isl_id *id);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_set_dim_id(
__isl_take isl_multi_pw_aff *mpa,
enum isl_dim_type type, unsigned pos,
__isl_take isl_id *id);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_set_dim_id(
__isl_take isl_multi_union_pw_aff *mupa,
enum isl_dim_type type, unsigned pos,
__isl_take isl_id *id);
__isl_give isl_id *isl_multi_aff_get_dim_id(
__isl_keep isl_multi_aff *ma,
enum isl_dim_type type, unsigned pos);
isl_bool isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
enum isl_dim_type type, unsigned pos);
__isl_give isl_id *isl_pw_aff_get_dim_id(
__isl_keep isl_pw_aff *pa,
enum isl_dim_type type, unsigned pos);
__isl_give isl_id *isl_pw_multi_aff_get_dim_id(
__isl_keep isl_pw_multi_aff *pma,
enum isl_dim_type type, unsigned pos);
__isl_give isl_id *isl_multi_pw_aff_get_dim_id(
__isl_keep isl_multi_pw_aff *mpa,
enum isl_dim_type type, unsigned pos);
__isl_give isl_id *isl_multi_union_pw_aff_get_dim_id(
__isl_keep isl_multi_union_pw_aff *mupa,
enum isl_dim_type type, unsigned pos);
__isl_give isl_aff *isl_aff_set_dim_name(
__isl_take isl_aff *aff, enum isl_dim_type type,
unsigned pos, const char *s);
__isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
__isl_take isl_multi_aff *maff,
enum isl_dim_type type, unsigned pos, const char *s);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_set_dim_name(
__isl_take isl_multi_pw_aff *mpa,
enum isl_dim_type type, unsigned pos, const char *s);
__isl_give isl_union_pw_aff *
isl_union_pw_aff_set_dim_name(
__isl_take isl_union_pw_aff *upa,
enum isl_dim_type type, unsigned pos,
const char *s);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_set_dim_name(
__isl_take isl_union_pw_multi_aff *upma,
enum isl_dim_type type, unsigned pos,
const char *s);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_set_dim_name(
__isl_take isl_multi_union_pw_aff *mupa,
enum isl_dim_type type, unsigned pos,
const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
enum isl_dim_type type, unsigned pos);
const char *isl_pw_aff_get_dim_name(
__isl_keep isl_pw_aff *pa,
enum isl_dim_type type, unsigned pos);
const char *isl_pw_multi_aff_get_dim_name(
__isl_keep isl_pw_multi_aff *pma,
enum isl_dim_type type, unsigned pos);
#include <isl/polynomial.h>
__isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
__isl_take isl_qpolynomial *qp,
enum isl_dim_type type, unsigned pos,
const char *s);
__isl_give isl_pw_qpolynomial *
isl_pw_qpolynomial_set_dim_name(
__isl_take isl_pw_qpolynomial *pwqp,
enum isl_dim_type type, unsigned pos,
const char *s);
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_set_dim_name(
__isl_take isl_pw_qpolynomial_fold *pwf,
enum isl_dim_type type, unsigned pos,
const char *s);
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_set_dim_name(
__isl_take isl_union_pw_qpolynomial *upwqp,
enum isl_dim_type type, unsigned pos,
const char *s);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_set_dim_name(
__isl_take isl_union_pw_qpolynomial_fold *upwf,
enum isl_dim_type type, unsigned pos,
const char *s);
Note that C<isl_space_get_name> returns a pointer to some internal
data structure, so the result can only be used while the
corresponding C<isl_space> is alive.
Also note that every function that operates on two sets or relations
requires that both arguments have the same parameters. This also
means that if one of the arguments has named parameters, then the
other needs to have named parameters too and the names need to match.
Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
arguments may have different parameters (as long as they are named),
in which case the result will have as parameters the union of the parameters of
the arguments.
Given the identifier or name of a dimension (typically a parameter),
its position can be obtained from the following functions.
#include <isl/space.h>
int isl_space_find_dim_by_id(__isl_keep isl_space *space,
enum isl_dim_type type, __isl_keep isl_id *id);
int isl_space_find_dim_by_name(__isl_keep isl_space *space,
enum isl_dim_type type, const char *name);
#include <isl/local_space.h>
int isl_local_space_find_dim_by_name(
__isl_keep isl_local_space *ls,
enum isl_dim_type type, const char *name);
#include <isl/val.h>
int isl_multi_val_find_dim_by_id(
__isl_keep isl_multi_val *mv,
enum isl_dim_type type, __isl_keep isl_id *id);
int isl_multi_val_find_dim_by_name(
__isl_keep isl_multi_val *mv,
enum isl_dim_type type, const char *name);
#include <isl/set.h>
int isl_set_find_dim_by_id(__isl_keep isl_set *set,
enum isl_dim_type type, __isl_keep isl_id *id);
int isl_set_find_dim_by_name(__isl_keep isl_set *set,
enum isl_dim_type type, const char *name);
#include <isl/map.h>
int isl_map_find_dim_by_id(__isl_keep isl_map *map,
enum isl_dim_type type, __isl_keep isl_id *id);
int isl_basic_map_find_dim_by_name(
__isl_keep isl_basic_map *bmap,
enum isl_dim_type type, const char *name);
int isl_map_find_dim_by_name(__isl_keep isl_map *map,
enum isl_dim_type type, const char *name);
int isl_union_map_find_dim_by_name(
__isl_keep isl_union_map *umap,
enum isl_dim_type type, const char *name);
#include <isl/aff.h>
int isl_multi_aff_find_dim_by_id(
__isl_keep isl_multi_aff *ma,
enum isl_dim_type type, __isl_keep isl_id *id);
int isl_multi_pw_aff_find_dim_by_id(
__isl_keep isl_multi_pw_aff *mpa,
enum isl_dim_type type, __isl_keep isl_id *id);
int isl_multi_union_pw_aff_find_dim_by_id(
__isl_keep isl_union_multi_pw_aff *mupa,
enum isl_dim_type type, __isl_keep isl_id *id);
int isl_aff_find_dim_by_name(__isl_keep isl_aff *aff,
enum isl_dim_type type, const char *name);
int isl_multi_aff_find_dim_by_name(
__isl_keep isl_multi_aff *ma,
enum isl_dim_type type, const char *name);
int isl_pw_aff_find_dim_by_name(__isl_keep isl_pw_aff *pa,
enum isl_dim_type type, const char *name);
int isl_multi_pw_aff_find_dim_by_name(
__isl_keep isl_multi_pw_aff *mpa,
enum isl_dim_type type, const char *name);
int isl_pw_multi_aff_find_dim_by_name(
__isl_keep isl_pw_multi_aff *pma,
enum isl_dim_type type, const char *name);
int isl_union_pw_aff_find_dim_by_name(
__isl_keep isl_union_pw_aff *upa,
enum isl_dim_type type, const char *name);
int isl_union_pw_multi_aff_find_dim_by_name(
__isl_keep isl_union_pw_multi_aff *upma,
enum isl_dim_type type, const char *name);
int isl_multi_union_pw_aff_find_dim_by_name(
__isl_keep isl_multi_union_pw_aff *mupa,
enum isl_dim_type type, const char *name);
#include <isl/polynomial.h>
int isl_pw_qpolynomial_find_dim_by_name(
__isl_keep isl_pw_qpolynomial *pwqp,
enum isl_dim_type type, const char *name);
int isl_pw_qpolynomial_fold_find_dim_by_name(
__isl_keep isl_pw_qpolynomial_fold *pwf,
enum isl_dim_type type, const char *name);
int isl_union_pw_qpolynomial_find_dim_by_name(
__isl_keep isl_union_pw_qpolynomial *upwqp,
enum isl_dim_type type, const char *name);
int isl_union_pw_qpolynomial_fold_find_dim_by_name(
__isl_keep isl_union_pw_qpolynomial_fold *upwf,
enum isl_dim_type type, const char *name);
The identifiers or names of entire spaces may be set or read off
using the following functions.
#include <isl/space.h>
__isl_give isl_space *isl_space_set_tuple_id(
__isl_take isl_space *space,
enum isl_dim_type type, __isl_take isl_id *id);
__isl_give isl_space *isl_space_reset_tuple_id(
__isl_take isl_space *space, enum isl_dim_type type);
isl_bool isl_space_has_tuple_id(
__isl_keep isl_space *space,
enum isl_dim_type type);
__isl_give isl_id *isl_space_get_tuple_id(
__isl_keep isl_space *space, enum isl_dim_type type);
__isl_give isl_space *isl_space_set_tuple_name(
__isl_take isl_space *space,
enum isl_dim_type type, const char *s);
isl_bool isl_space_has_tuple_name(
__isl_keep isl_space *space,
enum isl_dim_type type);
__isl_keep const char *isl_space_get_tuple_name(
__isl_keep isl_space *space,
enum isl_dim_type type);
#include <isl/local_space.h>
__isl_give isl_local_space *isl_local_space_set_tuple_id(
__isl_take isl_local_space *ls,
enum isl_dim_type type, __isl_take isl_id *id);
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_set_tuple_id(
__isl_take isl_basic_set *bset,
__isl_take isl_id *id);
__isl_give isl_set *isl_set_set_tuple_id(
__isl_take isl_set *set, __isl_take isl_id *id);
__isl_give isl_set *isl_set_reset_tuple_id(
__isl_take isl_set *set);
isl_bool isl_set_has_tuple_id(__isl_keep isl_set *set);
__isl_give isl_id *isl_set_get_tuple_id(
__isl_keep isl_set *set);
__isl_give isl_basic_set *isl_basic_set_set_tuple_name(
__isl_take isl_basic_set *set, const char *s);
__isl_give isl_set *isl_set_set_tuple_name(
__isl_take isl_set *set, const char *s);
const char *isl_basic_set_get_tuple_name(
__isl_keep isl_basic_set *bset);
isl_bool isl_set_has_tuple_name(__isl_keep isl_set *set);
const char *isl_set_get_tuple_name(
__isl_keep isl_set *set);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_set_tuple_id(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type, __isl_take isl_id *id);
__isl_give isl_map *isl_map_set_tuple_id(
__isl_take isl_map *map, enum isl_dim_type type,
__isl_take isl_id *id);
__isl_give isl_map *isl_map_reset_tuple_id(
__isl_take isl_map *map, enum isl_dim_type type);
isl_bool isl_map_has_tuple_id(__isl_keep isl_map *map,
enum isl_dim_type type);
__isl_give isl_id *isl_map_get_tuple_id(
__isl_keep isl_map *map, enum isl_dim_type type);
__isl_give isl_map *isl_map_set_tuple_name(
__isl_take isl_map *map,
enum isl_dim_type type, const char *s);
const char *isl_basic_map_get_tuple_name(
__isl_keep isl_basic_map *bmap,
enum isl_dim_type type);
__isl_give isl_basic_map *isl_basic_map_set_tuple_name(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type, const char *s);
isl_bool isl_map_has_tuple_name(__isl_keep isl_map *map,
enum isl_dim_type type);
const char *isl_map_get_tuple_name(
__isl_keep isl_map *map,
enum isl_dim_type type);
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_set_tuple_id(
__isl_take isl_multi_val *mv,
enum isl_dim_type type, __isl_take isl_id *id);
__isl_give isl_multi_val *isl_multi_val_reset_tuple_id(
__isl_take isl_multi_val *mv,
enum isl_dim_type type);
isl_bool isl_multi_val_has_tuple_id(
__isl_keep isl_multi_val *mv,
enum isl_dim_type type);
__isl_give isl_id *isl_multi_val_get_tuple_id(
__isl_keep isl_multi_val *mv,
enum isl_dim_type type);
__isl_give isl_multi_val *isl_multi_val_set_tuple_name(
__isl_take isl_multi_val *mv,
enum isl_dim_type type, const char *s);
const char *isl_multi_val_get_tuple_name(
__isl_keep isl_multi_val *mv,
enum isl_dim_type type);
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_set_tuple_id(
__isl_take isl_aff *aff,
enum isl_dim_type type, __isl_take isl_id *id);
__isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
__isl_take isl_multi_aff *maff,
enum isl_dim_type type, __isl_take isl_id *id);
__isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
__isl_take isl_pw_aff *pwaff,
enum isl_dim_type type, __isl_take isl_id *id);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
__isl_take isl_pw_multi_aff *pma,
enum isl_dim_type type, __isl_take isl_id *id);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_set_tuple_id(
__isl_take isl_multi_union_pw_aff *mupa,
enum isl_dim_type type, __isl_take isl_id *id);
__isl_give isl_multi_aff *isl_multi_aff_reset_tuple_id(
__isl_take isl_multi_aff *ma,
enum isl_dim_type type);
__isl_give isl_pw_aff *isl_pw_aff_reset_tuple_id(
__isl_take isl_pw_aff *pa,
enum isl_dim_type type);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_reset_tuple_id(
__isl_take isl_multi_pw_aff *mpa,
enum isl_dim_type type);
__isl_give isl_pw_multi_aff *
isl_pw_multi_aff_reset_tuple_id(
__isl_take isl_pw_multi_aff *pma,
enum isl_dim_type type);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_reset_tuple_id(
__isl_take isl_multi_union_pw_aff *mupa,
enum isl_dim_type type);
isl_bool isl_multi_aff_has_tuple_id(
__isl_keep isl_multi_aff *ma,
enum isl_dim_type type);
__isl_give isl_id *isl_multi_aff_get_tuple_id(
__isl_keep isl_multi_aff *ma,
enum isl_dim_type type);
isl_bool isl_pw_aff_has_tuple_id(__isl_keep isl_pw_aff *pa,
enum isl_dim_type type);
__isl_give isl_id *isl_pw_aff_get_tuple_id(
__isl_keep isl_pw_aff *pa,
enum isl_dim_type type);
isl_bool isl_pw_multi_aff_has_tuple_id(
__isl_keep isl_pw_multi_aff *pma,
enum isl_dim_type type);
__isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
__isl_keep isl_pw_multi_aff *pma,
enum isl_dim_type type);
isl_bool isl_multi_pw_aff_has_tuple_id(
__isl_keep isl_multi_pw_aff *mpa,
enum isl_dim_type type);
__isl_give isl_id *isl_multi_pw_aff_get_tuple_id(
__isl_keep isl_multi_pw_aff *mpa,
enum isl_dim_type type);
isl_bool isl_multi_union_pw_aff_has_tuple_id(
__isl_keep isl_multi_union_pw_aff *mupa,
enum isl_dim_type type);
__isl_give isl_id *isl_multi_union_pw_aff_get_tuple_id(
__isl_keep isl_multi_union_pw_aff *mupa,
enum isl_dim_type type);
__isl_give isl_multi_aff *isl_multi_aff_set_tuple_name(
__isl_take isl_multi_aff *maff,
enum isl_dim_type type, const char *s);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_set_tuple_name(
__isl_take isl_multi_pw_aff *mpa,
enum isl_dim_type type, const char *s);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_set_tuple_name(
__isl_take isl_multi_union_pw_aff *mupa,
enum isl_dim_type type, const char *s);
const char *isl_multi_aff_get_tuple_name(
__isl_keep isl_multi_aff *multi,
enum isl_dim_type type);
isl_bool isl_pw_multi_aff_has_tuple_name(
__isl_keep isl_pw_multi_aff *pma,
enum isl_dim_type type);
const char *isl_pw_multi_aff_get_tuple_name(
__isl_keep isl_pw_multi_aff *pma,
enum isl_dim_type type);
const char *isl_multi_union_pw_aff_get_tuple_name(
__isl_keep isl_multi_union_pw_aff *mupa,
enum isl_dim_type type);
The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
or C<isl_dim_set>. As with C<isl_space_get_name>,
the C<isl_space_get_tuple_name> function returns a pointer to some internal
data structure.
Binary operations require the corresponding spaces of their arguments
to have the same name.
To keep the names of all parameters and tuples, but reset the user pointers
of all the corresponding identifiers, use the following function.
#include <isl/space.h>
__isl_give isl_space *isl_space_reset_user(
__isl_take isl_space *space);
#include <isl/set.h>
__isl_give isl_set *isl_set_reset_user(
__isl_take isl_set *set);
#include <isl/map.h>
__isl_give isl_map *isl_map_reset_user(
__isl_take isl_map *map);
#include <isl/union_set.h>
__isl_give isl_union_set *isl_union_set_reset_user(
__isl_take isl_union_set *uset);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_reset_user(
__isl_take isl_union_map *umap);
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_reset_user(
__isl_take isl_multi_val *mv);
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_reset_user(
__isl_take isl_multi_aff *ma);
__isl_give isl_pw_aff *isl_pw_aff_reset_user(
__isl_take isl_pw_aff *pa);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_reset_user(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_reset_user(
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_union_pw_aff *isl_union_pw_aff_reset_user(
__isl_take isl_union_pw_aff *upa);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_reset_user(
__isl_take isl_multi_union_pw_aff *mupa);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_reset_user(
__isl_take isl_union_pw_multi_aff *upma);
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial *
isl_pw_qpolynomial_reset_user(
__isl_take isl_pw_qpolynomial *pwqp);
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_reset_user(
__isl_take isl_union_pw_qpolynomial *upwqp);
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_reset_user(
__isl_take isl_pw_qpolynomial_fold *pwf);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_reset_user(
__isl_take isl_union_pw_qpolynomial_fold *upwf);
Spaces can be nested. In particular, the domain of a set or
the domain or range of a relation can be a nested relation.
This process is also called I<wrapping>.
The functions for detecting, constructing and deconstructing
such nested spaces can be found in the wrapping properties
of L</"Unary Properties">, the wrapping operations
of L</"Unary Operations"> and the Cartesian product operations
of L</"Basic Operations">.
Spaces can be created from other spaces
using the functions described in L</"Unary Operations">
and L</"Binary Operations">.
=head2 Local Spaces
A local space is essentially a space with
zero or more existentially quantified variables.
The local space of various objects can be obtained
using the following functions.
#include <isl/constraint.h>
__isl_give isl_local_space *isl_constraint_get_local_space(
__isl_keep isl_constraint *constraint);
#include <isl/set.h>
__isl_give isl_local_space *isl_basic_set_get_local_space(
__isl_keep isl_basic_set *bset);
#include <isl/map.h>
__isl_give isl_local_space *isl_basic_map_get_local_space(
__isl_keep isl_basic_map *bmap);
#include <isl/aff.h>
__isl_give isl_local_space *isl_aff_get_domain_local_space(
__isl_keep isl_aff *aff);
__isl_give isl_local_space *isl_aff_get_local_space(
__isl_keep isl_aff *aff);
A new local space can be created from a space using
#include <isl/local_space.h>
__isl_give isl_local_space *isl_local_space_from_space(
__isl_take isl_space *space);
They can be inspected, modified, copied and freed using the following functions.
#include <isl/local_space.h>
isl_bool isl_local_space_is_params(
__isl_keep isl_local_space *ls);
isl_bool isl_local_space_is_set(
__isl_keep isl_local_space *ls);
__isl_give isl_space *isl_local_space_get_space(
__isl_keep isl_local_space *ls);
__isl_give isl_aff *isl_local_space_get_div(
__isl_keep isl_local_space *ls, int pos);
__isl_give isl_local_space *isl_local_space_copy(
__isl_keep isl_local_space *ls);
__isl_null isl_local_space *isl_local_space_free(
__isl_take isl_local_space *ls);
Note that C<isl_local_space_get_div> can only be used on local spaces
of sets.
Two local spaces can be compared using
isl_bool isl_local_space_is_equal(
__isl_keep isl_local_space *ls1,
__isl_keep isl_local_space *ls2);
Local spaces can be created from other local spaces
using the functions described in L</"Unary Operations">
and L</"Binary Operations">.
=head2 Creating New Sets and Relations
C<isl> has functions for creating some standard sets and relations.
=over
=item * Empty sets and relations
__isl_give isl_basic_set *isl_basic_set_empty(
__isl_take isl_space *space);
__isl_give isl_basic_map *isl_basic_map_empty(
__isl_take isl_space *space);
__isl_give isl_set *isl_set_empty(
__isl_take isl_space *space);
__isl_give isl_map *isl_map_empty(
__isl_take isl_space *space);
__isl_give isl_union_set *isl_union_set_empty(
__isl_take isl_space *space);
__isl_give isl_union_map *isl_union_map_empty(
__isl_take isl_space *space);
For C<isl_union_set>s and C<isl_union_map>s, the space
is only used to specify the parameters.
=item * Universe sets and relations
__isl_give isl_basic_set *isl_basic_set_universe(
__isl_take isl_space *space);
__isl_give isl_basic_map *isl_basic_map_universe(
__isl_take isl_space *space);
__isl_give isl_set *isl_set_universe(
__isl_take isl_space *space);
__isl_give isl_map *isl_map_universe(
__isl_take isl_space *space);
__isl_give isl_union_set *isl_union_set_universe(
__isl_take isl_union_set *uset);
__isl_give isl_union_map *isl_union_map_universe(
__isl_take isl_union_map *umap);
The sets and relations constructed by the functions above
contain all integer values, while those constructed by the
functions below only contain non-negative values.
__isl_give isl_basic_set *isl_basic_set_nat_universe(
__isl_take isl_space *space);
__isl_give isl_basic_map *isl_basic_map_nat_universe(
__isl_take isl_space *space);
__isl_give isl_set *isl_set_nat_universe(
__isl_take isl_space *space);
__isl_give isl_map *isl_map_nat_universe(
__isl_take isl_space *space);
=item * Identity relations
__isl_give isl_basic_map *isl_basic_map_identity(
__isl_take isl_space *space);
__isl_give isl_map *isl_map_identity(
__isl_take isl_space *space);
The number of input and output dimensions in C<space> needs
to be the same.
=item * Lexicographic order
__isl_give isl_map *isl_map_lex_lt(
__isl_take isl_space *set_space);
__isl_give isl_map *isl_map_lex_le(
__isl_take isl_space *set_space);
__isl_give isl_map *isl_map_lex_gt(
__isl_take isl_space *set_space);
__isl_give isl_map *isl_map_lex_ge(
__isl_take isl_space *set_space);
__isl_give isl_map *isl_map_lex_lt_first(
__isl_take isl_space *space, unsigned n);
__isl_give isl_map *isl_map_lex_le_first(
__isl_take isl_space *space, unsigned n);
__isl_give isl_map *isl_map_lex_gt_first(
__isl_take isl_space *space, unsigned n);
__isl_give isl_map *isl_map_lex_ge_first(
__isl_take isl_space *space, unsigned n);
The first four functions take a space for a B<set>
and return relations that express that the elements in the domain
are lexicographically less
(C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
than the elements in the range.
The last four functions take a space for a map
and return relations that express that the first C<n> dimensions
in the domain are lexicographically less
(C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
than the first C<n> dimensions in the range.
=back
A basic set or relation can be converted to a set or relation
using the following functions.
__isl_give isl_set *isl_set_from_basic_set(
__isl_take isl_basic_set *bset);
__isl_give isl_map *isl_map_from_basic_map(
__isl_take isl_basic_map *bmap);
Sets and relations can be converted to union sets and relations
using the following functions.
__isl_give isl_union_set *isl_union_set_from_basic_set(
__isl_take isl_basic_set *bset);
__isl_give isl_union_map *isl_union_map_from_basic_map(
__isl_take isl_basic_map *bmap);
__isl_give isl_union_set *isl_union_set_from_set(
__isl_take isl_set *set);
__isl_give isl_union_map *isl_union_map_from_map(
__isl_take isl_map *map);
The inverse conversions below can only be used if the input
union set or relation is known to contain elements in exactly one
space.
__isl_give isl_set *isl_set_from_union_set(
__isl_take isl_union_set *uset);
__isl_give isl_map *isl_map_from_union_map(
__isl_take isl_union_map *umap);
Sets and relations can be copied and freed again using the following
functions.
__isl_give isl_basic_set *isl_basic_set_copy(
__isl_keep isl_basic_set *bset);
__isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
__isl_give isl_union_set *isl_union_set_copy(
__isl_keep isl_union_set *uset);
__isl_give isl_basic_map *isl_basic_map_copy(
__isl_keep isl_basic_map *bmap);
__isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
__isl_give isl_union_map *isl_union_map_copy(
__isl_keep isl_union_map *umap);
__isl_null isl_basic_set *isl_basic_set_free(
__isl_take isl_basic_set *bset);
__isl_null isl_set *isl_set_free(__isl_take isl_set *set);
__isl_null isl_union_set *isl_union_set_free(
__isl_take isl_union_set *uset);
__isl_null isl_basic_map *isl_basic_map_free(
__isl_take isl_basic_map *bmap);
__isl_null isl_map *isl_map_free(__isl_take isl_map *map);
__isl_null isl_union_map *isl_union_map_free(
__isl_take isl_union_map *umap);
Other sets and relations can be constructed by starting
from a universe set or relation, adding equality and/or
inequality constraints and then projecting out the
existentially quantified variables, if any.
Constraints can be constructed, manipulated and
added to (or removed from) (basic) sets and relations
using the following functions.
#include <isl/constraint.h>
__isl_give isl_constraint *isl_constraint_alloc_equality(
__isl_take isl_local_space *ls);
__isl_give isl_constraint *isl_constraint_alloc_inequality(
__isl_take isl_local_space *ls);
__isl_give isl_constraint *isl_constraint_set_constant_si(
__isl_take isl_constraint *constraint, int v);
__isl_give isl_constraint *isl_constraint_set_constant_val(
__isl_take isl_constraint *constraint,
__isl_take isl_val *v);
__isl_give isl_constraint *isl_constraint_set_coefficient_si(
__isl_take isl_constraint *constraint,
enum isl_dim_type type, int pos, int v);
__isl_give isl_constraint *
isl_constraint_set_coefficient_val(
__isl_take isl_constraint *constraint,
enum isl_dim_type type, int pos,
__isl_take isl_val *v);
__isl_give isl_basic_map *isl_basic_map_add_constraint(
__isl_take isl_basic_map *bmap,
__isl_take isl_constraint *constraint);
__isl_give isl_basic_set *isl_basic_set_add_constraint(
__isl_take isl_basic_set *bset,
__isl_take isl_constraint *constraint);
__isl_give isl_map *isl_map_add_constraint(
__isl_take isl_map *map,
__isl_take isl_constraint *constraint);
__isl_give isl_set *isl_set_add_constraint(
__isl_take isl_set *set,
__isl_take isl_constraint *constraint);
For example, to create a set containing the even integers
between 10 and 42, you would use the following code.
isl_space *space;
isl_local_space *ls;
isl_constraint *c;
isl_basic_set *bset;
space = isl_space_set_alloc(ctx, 0, 2);
bset = isl_basic_set_universe(isl_space_copy(space));
ls = isl_local_space_from_space(space);
c = isl_constraint_alloc_equality(isl_local_space_copy(ls));
c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
bset = isl_basic_set_add_constraint(bset, c);
c = isl_constraint_alloc_inequality(isl_local_space_copy(ls));
c = isl_constraint_set_constant_si(c, -10);
c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
bset = isl_basic_set_add_constraint(bset, c);
c = isl_constraint_alloc_inequality(ls);
c = isl_constraint_set_constant_si(c, 42);
c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
bset = isl_basic_set_add_constraint(bset, c);
bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
Or, alternatively,
isl_basic_set *bset;
bset = isl_basic_set_read_from_str(ctx,
"{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
A basic set or relation can also be constructed from two matrices
describing the equalities and the inequalities.
__isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
__isl_take isl_space *space,
__isl_take isl_mat *eq, __isl_take isl_mat *ineq,
enum isl_dim_type c1,
enum isl_dim_type c2, enum isl_dim_type c3,
enum isl_dim_type c4);
__isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
__isl_take isl_space *space,
__isl_take isl_mat *eq, __isl_take isl_mat *ineq,
enum isl_dim_type c1,
enum isl_dim_type c2, enum isl_dim_type c3,
enum isl_dim_type c4, enum isl_dim_type c5);
The C<isl_dim_type> arguments indicate the order in which
different kinds of variables appear in the input matrices
and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
C<isl_dim_set> and C<isl_dim_div> for sets and
of C<isl_dim_cst>, C<isl_dim_param>,
C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
A (basic or union) set or relation can also be constructed from a
(union) (piecewise) (multiple) affine expression
or a list of affine expressions
(See L</"Functions">), provided these affine expressions do not
involve any NaN.
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_from_multi_aff(
__isl_take isl_multi_aff *ma);
__isl_give isl_set *isl_set_from_multi_aff(
__isl_take isl_multi_aff *ma);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_from_aff(
__isl_take isl_aff *aff);
__isl_give isl_map *isl_map_from_aff(
__isl_take isl_aff *aff);
__isl_give isl_basic_map *isl_basic_map_from_aff_list(
__isl_take isl_space *domain_space,
__isl_take isl_aff_list *list);
__isl_give isl_basic_map *isl_basic_map_from_multi_aff(
__isl_take isl_multi_aff *maff)
__isl_give isl_map *isl_map_from_multi_aff(
__isl_take isl_multi_aff *maff)
#include <isl/aff.h>
__isl_give isl_set *isl_set_from_pw_aff(
__isl_take isl_pw_aff *pwaff);
__isl_give isl_map *isl_map_from_pw_aff(
__isl_take isl_pw_aff *pwaff);
__isl_give isl_set *isl_set_from_pw_multi_aff(
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_map *isl_map_from_pw_multi_aff(
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_set *isl_set_from_multi_pw_aff(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_map *isl_map_from_multi_pw_aff(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_union_map *isl_union_map_from_union_pw_aff(
__isl_take isl_union_pw_aff *upa);
__isl_give isl_union_map *
isl_union_map_from_union_pw_multi_aff(
__isl_take isl_union_pw_multi_aff *upma);
__isl_give isl_union_map *
isl_union_map_from_multi_union_pw_aff(
__isl_take isl_multi_union_pw_aff *mupa);
The C<domain_space> argument describes the domain of the resulting
basic relation. It is required because the C<list> may consist
of zero affine expressions.
The C<mupa> passed to C<isl_union_map_from_multi_union_pw_aff>
is not allowed to be zero-dimensional. The domain of the result
is the shared domain of the union piecewise affine elements.
=head2 Inspecting Sets and Relations
Usually, the user should not have to care about the actual constraints
of the sets and maps, but should instead apply the abstract operations
explained in the following sections.
Occasionally, however, it may be required to inspect the individual
coefficients of the constraints. This section explains how to do so.
In these cases, it may also be useful to have C<isl> compute
an explicit representation of the existentially quantified variables.
__isl_give isl_set *isl_set_compute_divs(
__isl_take isl_set *set);
__isl_give isl_map *isl_map_compute_divs(
__isl_take isl_map *map);
__isl_give isl_union_set *isl_union_set_compute_divs(
__isl_take isl_union_set *uset);
__isl_give isl_union_map *isl_union_map_compute_divs(
__isl_take isl_union_map *umap);
This explicit representation defines the existentially quantified
variables as integer divisions of the other variables, possibly
including earlier existentially quantified variables.
An explicitly represented existentially quantified variable therefore
has a unique value when the values of the other variables are known.
Alternatively, the existentially quantified variables can be removed
using the following functions, which compute an overapproximation.
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_remove_divs(
__isl_take isl_basic_set *bset);
__isl_give isl_set *isl_set_remove_divs(
__isl_take isl_set *set);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_remove_divs(
__isl_take isl_basic_map *bmap);
__isl_give isl_map *isl_map_remove_divs(
__isl_take isl_map *map);
#include <isl/union_set.h>
__isl_give isl_union_set *isl_union_set_remove_divs(
__isl_take isl_union_set *bset);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_remove_divs(
__isl_take isl_union_map *bmap);
It is also possible to only remove those divs that are defined
in terms of a given range of dimensions or only those for which
no explicit representation is known.
__isl_give isl_basic_set *
isl_basic_set_remove_divs_involving_dims(
__isl_take isl_basic_set *bset,
enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_basic_map *
isl_basic_map_remove_divs_involving_dims(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_set *isl_set_remove_divs_involving_dims(
__isl_take isl_set *set, enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_map *isl_map_remove_divs_involving_dims(
__isl_take isl_map *map, enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_basic_set *
isl_basic_set_remove_unknown_divs(
__isl_take isl_basic_set *bset);
__isl_give isl_set *isl_set_remove_unknown_divs(
__isl_take isl_set *set);
__isl_give isl_map *isl_map_remove_unknown_divs(
__isl_take isl_map *map);
To iterate over all the sets or maps in a union set or map, use
#include <isl/union_set.h>
isl_stat isl_union_set_foreach_set(
__isl_keep isl_union_set *uset,
isl_stat (*fn)(__isl_take isl_set *set, void *user),
void *user);
#include <isl/union_map.h>
isl_stat isl_union_map_foreach_map(
__isl_keep isl_union_map *umap,
isl_stat (*fn)(__isl_take isl_map *map, void *user),
void *user);
isl_bool isl_union_map_every_map(
__isl_keep isl_union_map *umap,
isl_bool (*test)(__isl_keep isl_map *map,
void *user),
void *user);
These functions call the callback function once for each
(pair of) space(s) for which there are elements in the input.
The argument to the callback contains all elements in the input
with that (pair of) space(s).
The C<isl_union_map_every_map> variant check whether each
call to the callback returns true and stops checking as soon as one
of these calls returns false.
The number of sets or maps in a union set or map can be obtained
from
int isl_union_set_n_set(__isl_keep isl_union_set *uset);
int isl_union_map_n_map(__isl_keep isl_union_map *umap);
To extract the set or map in a given space from a union, use
__isl_give isl_set *isl_union_set_extract_set(
__isl_keep isl_union_set *uset,
__isl_take isl_space *space);
__isl_give isl_map *isl_union_map_extract_map(
__isl_keep isl_union_map *umap,
__isl_take isl_space *space);
To iterate over all the basic sets or maps in a set or map, use
isl_stat isl_set_foreach_basic_set(__isl_keep isl_set *set,
isl_stat (*fn)(__isl_take isl_basic_set *bset,
void *user),
void *user);
isl_stat isl_map_foreach_basic_map(__isl_keep isl_map *map,
isl_stat (*fn)(__isl_take isl_basic_map *bmap,
void *user),
void *user);
The callback function C<fn> should return C<isl_stat_ok> if successful and
C<isl_stat_error> if an error occurs. In the latter case, or if any other error
occurs, the above functions will return C<isl_stat_error>.
It should be noted that C<isl> does not guarantee that
the basic sets or maps passed to C<fn> are disjoint.
If this is required, then the user should call one of
the following functions first.
__isl_give isl_set *isl_set_make_disjoint(
__isl_take isl_set *set);
__isl_give isl_map *isl_map_make_disjoint(
__isl_take isl_map *map);
The number of basic sets in a set can be obtained
or the number of basic maps in a map can be obtained
from
#include <isl/set.h>
int isl_set_n_basic_set(__isl_keep isl_set *set);
#include <isl/map.h>
int isl_map_n_basic_map(__isl_keep isl_map *map);
It is also possible to obtain a list of (basic) sets from a set
or union set, a list of basic maps from a map and a list of maps from a union
map.
#include <isl/set.h>
__isl_give isl_basic_set_list *isl_set_get_basic_set_list(
__isl_keep isl_set *set);
#include <isl/union_set.h>
__isl_give isl_basic_set_list *
isl_union_set_get_basic_set_list(
__isl_keep isl_union_set *uset);
__isl_give isl_set_list *isl_union_set_get_set_list(
__isl_keep isl_union_set *uset);
#include <isl/map.h>
__isl_give isl_basic_map_list *isl_map_get_basic_map_list(
__isl_keep isl_map *map);
#include <isl/union_map.h>
__isl_give isl_map_list *isl_union_map_get_map_list(
__isl_keep isl_union_map *umap);
The returned list can be manipulated using the functions in L<"Lists">.
To iterate over the constraints of a basic set or map, use
#include <isl/constraint.h>
int isl_basic_set_n_constraint(
__isl_keep isl_basic_set *bset);
isl_stat isl_basic_set_foreach_constraint(
__isl_keep isl_basic_set *bset,
isl_stat (*fn)(__isl_take isl_constraint *c,
void *user),
void *user);
int isl_basic_map_n_constraint(
__isl_keep isl_basic_map *bmap);
isl_stat isl_basic_map_foreach_constraint(
__isl_keep isl_basic_map *bmap,
isl_stat (*fn)(__isl_take isl_constraint *c,
void *user),
void *user);
__isl_null isl_constraint *isl_constraint_free(
__isl_take isl_constraint *c);
Again, the callback function C<fn> should return C<isl_stat_ok>
if successful and
C<isl_stat_error> if an error occurs. In the latter case, or if any other error
occurs, the above functions will return C<isl_stat_error>.
The constraint C<c> represents either an equality or an inequality.
Use the following function to find out whether a constraint
represents an equality. If not, it represents an inequality.
isl_bool isl_constraint_is_equality(
__isl_keep isl_constraint *constraint);
It is also possible to obtain a list of constraints from a basic
map or set
#include <isl/constraint.h>
__isl_give isl_constraint_list *
isl_basic_map_get_constraint_list(
__isl_keep isl_basic_map *bmap);
__isl_give isl_constraint_list *
isl_basic_set_get_constraint_list(
__isl_keep isl_basic_set *bset);
These functions require that all existentially quantified variables
have an explicit representation.
The returned list can be manipulated using the functions in L<"Lists">.
The coefficients of the constraints can be inspected using
the following functions.
isl_bool isl_constraint_is_lower_bound(
__isl_keep isl_constraint *constraint,
enum isl_dim_type type, unsigned pos);
isl_bool isl_constraint_is_upper_bound(
__isl_keep isl_constraint *constraint,
enum isl_dim_type type, unsigned pos);
__isl_give isl_val *isl_constraint_get_constant_val(
__isl_keep isl_constraint *constraint);
__isl_give isl_val *isl_constraint_get_coefficient_val(
__isl_keep isl_constraint *constraint,
enum isl_dim_type type, int pos);
The explicit representations of the existentially quantified
variables can be inspected using the following function.
Note that the user is only allowed to use this function
if the inspected set or map is the result of a call
to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
The existentially quantified variable is equal to the floor
of the returned affine expression. The affine expression
itself can be inspected using the functions in
L</"Functions">.
__isl_give isl_aff *isl_constraint_get_div(
__isl_keep isl_constraint *constraint, int pos);
To obtain the constraints of a basic set or map in matrix
form, use the following functions.
__isl_give isl_mat *isl_basic_set_equalities_matrix(
__isl_keep isl_basic_set *bset,
enum isl_dim_type c1, enum isl_dim_type c2,
enum isl_dim_type c3, enum isl_dim_type c4);
__isl_give isl_mat *isl_basic_set_inequalities_matrix(
__isl_keep isl_basic_set *bset,
enum isl_dim_type c1, enum isl_dim_type c2,
enum isl_dim_type c3, enum isl_dim_type c4);
__isl_give isl_mat *isl_basic_map_equalities_matrix(
__isl_keep isl_basic_map *bmap,
enum isl_dim_type c1,
enum isl_dim_type c2, enum isl_dim_type c3,
enum isl_dim_type c4, enum isl_dim_type c5);
__isl_give isl_mat *isl_basic_map_inequalities_matrix(
__isl_keep isl_basic_map *bmap,
enum isl_dim_type c1,
enum isl_dim_type c2, enum isl_dim_type c3,
enum isl_dim_type c4, enum isl_dim_type c5);
The C<isl_dim_type> arguments dictate the order in which
different kinds of variables appear in the resulting matrix.
For set inputs, they should be a permutation of
C<isl_dim_cst>, C<isl_dim_param>, C<isl_dim_set> and C<isl_dim_div>.
For map inputs, they should be a permutation of
C<isl_dim_cst>, C<isl_dim_param>,
C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
=head2 Points
Points are elements of a set. They can be used to construct
simple sets (boxes) or they can be used to represent the
individual elements of a set.
The zero point (the origin) can be created using
__isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
The coordinates of a point can be inspected, set and changed
using
__isl_give isl_val *isl_point_get_coordinate_val(
__isl_keep isl_point *pnt,
enum isl_dim_type type, int pos);
__isl_give isl_point *isl_point_set_coordinate_val(
__isl_take isl_point *pnt,
enum isl_dim_type type, int pos,
__isl_take isl_val *v);
__isl_give isl_point *isl_point_add_ui(
__isl_take isl_point *pnt,
enum isl_dim_type type, int pos, unsigned val);
__isl_give isl_point *isl_point_sub_ui(
__isl_take isl_point *pnt,
enum isl_dim_type type, int pos, unsigned val);
Points can be copied or freed using
__isl_give isl_point *isl_point_copy(
__isl_keep isl_point *pnt);
__isl_null isl_point *isl_point_free(
__isl_take isl_point *pnt);
A singleton set can be created from a point using
__isl_give isl_basic_set *isl_basic_set_from_point(
__isl_take isl_point *pnt);
__isl_give isl_set *isl_set_from_point(
__isl_take isl_point *pnt);
__isl_give isl_union_set *isl_union_set_from_point(
__isl_take isl_point *pnt);
and a box can be created from two opposite extremal points using
__isl_give isl_basic_set *isl_basic_set_box_from_points(
__isl_take isl_point *pnt1,
__isl_take isl_point *pnt2);
__isl_give isl_set *isl_set_box_from_points(
__isl_take isl_point *pnt1,
__isl_take isl_point *pnt2);
All elements of a B<bounded> (union) set can be enumerated using
the following functions.
isl_stat isl_set_foreach_point(__isl_keep isl_set *set,
isl_stat (*fn)(__isl_take isl_point *pnt,
void *user),
void *user);
isl_stat isl_union_set_foreach_point(
__isl_keep isl_union_set *uset,
isl_stat (*fn)(__isl_take isl_point *pnt,
void *user),
void *user);
The function C<fn> is called for each integer point in
C<set> with as second argument the last argument of
the C<isl_set_foreach_point> call. The function C<fn>
should return C<isl_stat_ok> on success and C<isl_stat_error> on failure.
In the latter case, C<isl_set_foreach_point> will stop
enumerating and return C<isl_stat_error> as well.
If the enumeration is performed successfully and to completion,
then C<isl_set_foreach_point> returns C<isl_stat_ok>.
To obtain a single point of a (basic or union) set, use
__isl_give isl_point *isl_basic_set_sample_point(
__isl_take isl_basic_set *bset);
__isl_give isl_point *isl_set_sample_point(
__isl_take isl_set *set);
__isl_give isl_point *isl_union_set_sample_point(
__isl_take isl_union_set *uset);
If C<set> does not contain any (integer) points, then the
resulting point will be ``void'', a property that can be
tested using
isl_bool isl_point_is_void(__isl_keep isl_point *pnt);
=head2 Functions
Besides sets and relation, C<isl> also supports various types of functions.
Each of these types is derived from the value type (see L</"Values">)
or from one of two primitive function types
through the application of zero or more type constructors.
We first describe the primitive type and then we describe
the types derived from these primitive types.
=head3 Primitive Functions
C<isl> support two primitive function types, quasi-affine
expressions and quasipolynomials.
A quasi-affine expression is defined either over a parameter
space or over a set and is composed of integer constants,
parameters and set variables, addition, subtraction and
integer division by an integer constant.
For example, the quasi-affine expression
[n] -> { [x] -> [2*floor((4 n + x)/9)] }
maps C<x> to C<2*floor((4 n + x)/9>.
A quasipolynomial is a polynomial expression in quasi-affine
expression. That is, it additionally allows for multiplication.
Note, though, that it is not allowed to construct an integer
division of an expression involving multiplications.
Here is an example of a quasipolynomial that is not
quasi-affine expression
[n] -> { [x] -> (n*floor((4 n + x)/9)) }
Note that the external representations of quasi-affine expressions
and quasipolynomials are different. Quasi-affine expressions
use a notation with square brackets just like binary relations,
while quasipolynomials do not. This might change at some point.
If a primitive function is defined over a parameter space,
then the space of the function itself is that of a set.
If it is defined over a set, then the space of the function
is that of a relation. In both cases, the set space (or
the output space) is single-dimensional, anonymous and unstructured.
To create functions with multiple dimensions or with other kinds
of set or output spaces, use multiple expressions
(see L</"Multiple Expressions">).
=over
=item * Quasi-affine Expressions
Besides the expressions described above, a quasi-affine
expression can also be set to NaN. Such expressions
typically represent a failure to represent a result
as a quasi-affine expression.
The zero quasi affine expression or the quasi affine expression
that is equal to a given value, parameter or
a specified dimension on a given domain can be created using
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_zero_on_domain(
__isl_take isl_local_space *ls);
__isl_give isl_aff *isl_aff_val_on_domain(
__isl_take isl_local_space *ls,
__isl_take isl_val *val);
__isl_give isl_aff *isl_aff_param_on_domain_space_id(
__isl_take isl_space *space,
__isl_take isl_id *id);
__isl_give isl_aff *isl_aff_var_on_domain(
__isl_take isl_local_space *ls,
enum isl_dim_type type, unsigned pos);
__isl_give isl_aff *isl_aff_nan_on_domain(
__isl_take isl_local_space *ls);
The space passed to C<isl_aff_param_on_domain_space_id>
is required to have a parameter with the given identifier.
Quasi affine expressions can be copied and freed using
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_copy(
__isl_keep isl_aff *aff);
__isl_null isl_aff *isl_aff_free(
__isl_take isl_aff *aff);
A (rational) bound on a dimension can be extracted from an C<isl_constraint>
using the following function. The constraint is required to have
a non-zero coefficient for the specified dimension.
#include <isl/constraint.h>
__isl_give isl_aff *isl_constraint_get_bound(
__isl_keep isl_constraint *constraint,
enum isl_dim_type type, int pos);
The entire affine expression of the constraint can also be extracted
using the following function.
#include <isl/constraint.h>
__isl_give isl_aff *isl_constraint_get_aff(
__isl_keep isl_constraint *constraint);
Conversely, an equality constraint equating
the affine expression to zero or an inequality constraint enforcing
the affine expression to be non-negative, can be constructed using
__isl_give isl_constraint *isl_equality_from_aff(
__isl_take isl_aff *aff);
__isl_give isl_constraint *isl_inequality_from_aff(
__isl_take isl_aff *aff);
The coefficients and the integer divisions of an affine expression
can be inspected using the following functions.
#include <isl/aff.h>
__isl_give isl_val *isl_aff_get_constant_val(
__isl_keep isl_aff *aff);
__isl_give isl_val *isl_aff_get_coefficient_val(
__isl_keep isl_aff *aff,
enum isl_dim_type type, int pos);
int isl_aff_coefficient_sgn(__isl_keep isl_aff *aff,
enum isl_dim_type type, int pos);
__isl_give isl_val *isl_aff_get_denominator_val(
__isl_keep isl_aff *aff);
__isl_give isl_aff *isl_aff_get_div(
__isl_keep isl_aff *aff, int pos);
They can be modified using the following functions.
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_set_constant_si(
__isl_take isl_aff *aff, int v);
__isl_give isl_aff *isl_aff_set_constant_val(
__isl_take isl_aff *aff, __isl_take isl_val *v);
__isl_give isl_aff *isl_aff_set_coefficient_si(
__isl_take isl_aff *aff,
enum isl_dim_type type, int pos, int v);
__isl_give isl_aff *isl_aff_set_coefficient_val(
__isl_take isl_aff *aff,
enum isl_dim_type type, int pos,
__isl_take isl_val *v);
__isl_give isl_aff *isl_aff_add_constant_si(
__isl_take isl_aff *aff, int v);
__isl_give isl_aff *isl_aff_add_constant_val(
__isl_take isl_aff *aff, __isl_take isl_val *v);
__isl_give isl_aff *isl_aff_add_constant_num_si(
__isl_take isl_aff *aff, int v);
__isl_give isl_aff *isl_aff_add_coefficient_si(
__isl_take isl_aff *aff,
enum isl_dim_type type, int pos, int v);
__isl_give isl_aff *isl_aff_add_coefficient_val(
__isl_take isl_aff *aff,
enum isl_dim_type type, int pos,
__isl_take isl_val *v);
Note that C<isl_aff_set_constant_si> and C<isl_aff_set_coefficient_si>
set the I<numerator> of the constant or coefficient, while
C<isl_aff_set_constant_val> and C<isl_aff_set_coefficient_val> set
the constant or coefficient as a whole.
The C<add_constant> and C<add_coefficient> functions add an integer
or rational value to
the possibly rational constant or coefficient.
The C<add_constant_num> functions add an integer value to
the numerator.
=item * Quasipolynomials
Some simple quasipolynomials can be created using the following functions.
#include <isl/polynomial.h>
__isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
__isl_take isl_space *domain);
__isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
__isl_take isl_space *domain);
__isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
__isl_take isl_space *domain);
__isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
__isl_take isl_space *domain);
__isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
__isl_take isl_space *domain);
__isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
__isl_take isl_space *domain,
__isl_take isl_val *val);
__isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
__isl_take isl_space *domain,
enum isl_dim_type type, unsigned pos);
__isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
__isl_take isl_aff *aff);
Recall that the space in which a quasipolynomial lives is a map space
with a one-dimensional range. The C<domain> argument in some of
the functions above corresponds to the domain of this map space.
Quasipolynomials can be copied and freed again using the following
functions.
#include <isl/polynomial.h>
__isl_give isl_qpolynomial *isl_qpolynomial_copy(
__isl_keep isl_qpolynomial *qp);
__isl_null isl_qpolynomial *isl_qpolynomial_free(
__isl_take isl_qpolynomial *qp);
The constant term of a quasipolynomial can be extracted using
__isl_give isl_val *isl_qpolynomial_get_constant_val(
__isl_keep isl_qpolynomial *qp);
To iterate over all terms in a quasipolynomial,
use
isl_stat isl_qpolynomial_foreach_term(
__isl_keep isl_qpolynomial *qp,
isl_stat (*fn)(__isl_take isl_term *term,
void *user), void *user);
The terms themselves can be inspected and freed using
these functions
unsigned isl_term_dim(__isl_keep isl_term *term,
enum isl_dim_type type);
__isl_give isl_val *isl_term_get_coefficient_val(
__isl_keep isl_term *term);
int isl_term_get_exp(__isl_keep isl_term *term,
enum isl_dim_type type, unsigned pos);
__isl_give isl_aff *isl_term_get_div(
__isl_keep isl_term *term, unsigned pos);
void isl_term_free(__isl_take isl_term *term);
Each term is a product of parameters, set variables and
integer divisions. The function C<isl_term_get_exp>
returns the exponent of a given dimensions in the given term.
=back
=head3 Reductions
A reduction represents a maximum or a minimum of its
base expressions.
The only reduction type defined by C<isl> is
C<isl_qpolynomial_fold>.
There are currently no functions to directly create such
objects, but they do appear in the piecewise quasipolynomial
reductions returned by the C<isl_pw_qpolynomial_bound> function.
See
L</"Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions">.
Reductions can be copied and freed using
the following functions.
#include <isl/polynomial.h>
__isl_give isl_qpolynomial_fold *
isl_qpolynomial_fold_copy(
__isl_keep isl_qpolynomial_fold *fold);
void isl_qpolynomial_fold_free(
__isl_take isl_qpolynomial_fold *fold);
To iterate over all quasipolynomials in a reduction, use
isl_stat isl_qpolynomial_fold_foreach_qpolynomial(
__isl_keep isl_qpolynomial_fold *fold,
isl_stat (*fn)(__isl_take isl_qpolynomial *qp,
void *user), void *user);
=head3 Multiple Expressions
A multiple expression represents a sequence of zero or
more base expressions, all defined on the same domain space.
The domain space of the multiple expression is the same
as that of the base expressions, but the range space
can be any space. In case the base expressions have
a set space, the corresponding multiple expression
also has a set space.
Objects of the value type do not have an associated space.
The space of a multiple value is therefore always a set space.
Similarly, the space of a multiple union piecewise
affine expression is always a set space.
If the base expressions are not total, then
a corresponding zero-dimensional multiple expression may
have an explicit domain that keeps track of the domain
outside of any base expressions.
The multiple expression types defined by C<isl>
are C<isl_multi_val>, C<isl_multi_aff>, C<isl_multi_pw_aff>,
C<isl_multi_union_pw_aff>.
A multiple expression with the value zero for
each output (or set) dimension can be created
using the following functions.
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_zero(
__isl_take isl_space *space);
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_zero(
__isl_take isl_space *space);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_zero(
__isl_take isl_space *space);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_zero(
__isl_take isl_space *space);
Since there is no canonical way of representing a zero
value of type C<isl_union_pw_aff>, the space passed
to C<isl_multi_union_pw_aff_zero> needs to be zero-dimensional.
An identity function can be created using the following
functions. The space needs to be that of a relation
with the same number of input and output dimensions.
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_identity(
__isl_take isl_space *space);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity(
__isl_take isl_space *space);
A function that performs a projection on a universe
relation or set can be created using the following functions.
See also the corresponding
projection operations in L</"Unary Operations">.
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_domain_map(
__isl_take isl_space *space);
__isl_give isl_multi_aff *isl_multi_aff_range_map(
__isl_take isl_space *space);
__isl_give isl_multi_aff *isl_multi_aff_project_out_map(
__isl_take isl_space *space,
enum isl_dim_type type,
unsigned first, unsigned n);
A multiple expression can be created from a single
base expression using the following functions.
The space of the created multiple expression is the same
as that of the base expression, except for
C<isl_multi_union_pw_aff_from_union_pw_aff> where the input
lives in a parameter space and the output lives
in a single-dimensional set space.
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_from_aff(
__isl_take isl_aff *aff);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff(
__isl_take isl_pw_aff *pa);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_from_union_pw_aff(
__isl_take isl_union_pw_aff *upa);
A multiple expression can be created from a list
of base expression in a specified space.
The domain of this space needs to be the same
as the domains of the base expressions in the list.
If the base expressions have a set space (or no associated space),
then this space also needs to be a set space.
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_from_val_list(
__isl_take isl_space *space,
__isl_take isl_val_list *list);
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
__isl_take isl_space *space,
__isl_take isl_aff_list *list);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_from_pw_aff_list(
__isl_take isl_space *space,
__isl_take isl_pw_aff_list *list);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_from_union_pw_aff_list(
__isl_take isl_space *space,
__isl_take isl_union_pw_aff_list *list);
As a convenience, a multiple piecewise expression can
also be created from a multiple expression.
Each piecewise expression in the result has a single
universe cell.
#include <isl/aff.h>
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_from_multi_aff(
__isl_take isl_multi_aff *ma);
Similarly, a multiple union expression can be
created from a multiple expression.
#include <isl/aff.h>
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_from_multi_aff(
__isl_take isl_multi_aff *ma);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_from_multi_pw_aff(
__isl_take isl_multi_pw_aff *mpa);
A multiple quasi-affine expression can be created from
a multiple value with a given domain space using the following
function.
#include <isl/aff.h>
__isl_give isl_multi_aff *
isl_multi_aff_multi_val_on_space(
__isl_take isl_space *space,
__isl_take isl_multi_val *mv);
Similarly,
a multiple union piecewise affine expression can be created from
a multiple value with a given domain or
a (piecewise) multiple affine expression with a given domain
using the following functions.
#include <isl/aff.h>
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_multi_val_on_domain(
__isl_take isl_union_set *domain,
__isl_take isl_multi_val *mv);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_multi_aff_on_domain(
__isl_take isl_union_set *domain,
__isl_take isl_multi_aff *ma);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_pw_multi_aff_on_domain(
__isl_take isl_union_set *domain,
__isl_take isl_pw_multi_aff *pma);
Multiple expressions can be copied and freed using
the following functions.
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_copy(
__isl_keep isl_multi_val *mv);
__isl_null isl_multi_val *isl_multi_val_free(
__isl_take isl_multi_val *mv);
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_copy(
__isl_keep isl_multi_aff *maff);
__isl_null isl_multi_aff *isl_multi_aff_free(
__isl_take isl_multi_aff *maff);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_copy(
__isl_keep isl_multi_pw_aff *mpa);
__isl_null isl_multi_pw_aff *isl_multi_pw_aff_free(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_copy(
__isl_keep isl_multi_union_pw_aff *mupa);
__isl_null isl_multi_union_pw_aff *
isl_multi_union_pw_aff_free(
__isl_take isl_multi_union_pw_aff *mupa);
The base expression at a given position of a multiple
expression can be extracted using the following functions.
#include <isl/val.h>
__isl_give isl_val *isl_multi_val_get_val(
__isl_keep isl_multi_val *mv, int pos);
#include <isl/aff.h>
__isl_give isl_aff *isl_multi_aff_get_aff(
__isl_keep isl_multi_aff *multi, int pos);
__isl_give isl_pw_aff *isl_multi_pw_aff_get_pw_aff(
__isl_keep isl_multi_pw_aff *mpa, int pos);
__isl_give isl_union_pw_aff *
isl_multi_union_pw_aff_get_union_pw_aff(
__isl_keep isl_multi_union_pw_aff *mupa, int pos);
It can be replaced using the following functions.
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_set_val(
__isl_take isl_multi_val *mv, int pos,
__isl_take isl_val *val);
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_set_aff(
__isl_take isl_multi_aff *multi, int pos,
__isl_take isl_aff *aff);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_set_union_pw_aff(
__isl_take isl_multi_union_pw_aff *mupa, int pos,
__isl_take isl_union_pw_aff *upa);
As a convenience, a sequence of base expressions that have
their domains in a given space can be extracted from a sequence
of union expressions using the following function.
#include <isl/aff.h>
__isl_give isl_multi_pw_aff *
isl_multi_union_pw_aff_extract_multi_pw_aff(
__isl_keep isl_multi_union_pw_aff *mupa,
__isl_take isl_space *space);
Note that there is a difference between C<isl_multi_union_pw_aff>
and C<isl_union_pw_multi_aff> objects. The first is a sequence
of unions of piecewise expressions, while the second is a union
of piecewise sequences. In particular, multiple affine expressions
in an C<isl_union_pw_multi_aff> may live in different spaces,
while there is only a single multiple expression in
an C<isl_multi_union_pw_aff>, which can therefore only live
in a single space. This means that not every
C<isl_union_pw_multi_aff> can be converted to
an C<isl_multi_union_pw_aff>. Conversely, the elements
of an C<isl_multi_union_pw_aff> may be defined over different domains,
while each multiple expression inside an C<isl_union_pw_multi_aff>
has a single domain. The conversion of an C<isl_union_pw_multi_aff>
of dimension greater than one may therefore not be exact.
The following functions can
be used to perform these conversions when they are possible.
#include <isl/aff.h>
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_from_union_pw_multi_aff(
__isl_take isl_union_pw_multi_aff *upma);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_from_multi_union_pw_aff(
__isl_take isl_multi_union_pw_aff *mupa);
=head3 Piecewise Expressions
A piecewise expression is an expression that is described
using zero or more base expression defined over the same
number of cells in the domain space of the base expressions.
All base expressions are defined over the same
domain space and the cells are disjoint.
The space of a piecewise expression is the same as
that of the base expressions.
If the union of the cells is a strict subset of the domain
space, then the value of the piecewise expression outside
this union is different for types derived from quasi-affine
expressions and those derived from quasipolynomials.
Piecewise expressions derived from quasi-affine expressions
are considered to be undefined outside the union of their cells.
Piecewise expressions derived from quasipolynomials
are considered to be zero outside the union of their cells.
Piecewise quasipolynomials are mainly used by the C<barvinok>
library for representing the number of elements in a parametric set or map.
For example, the piecewise quasipolynomial
[n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
represents the number of points in the map
[n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
The piecewise expression types defined by C<isl>
are C<isl_pw_aff>, C<isl_pw_multi_aff>,
C<isl_pw_qpolynomial> and C<isl_pw_qpolynomial_fold>.
A piecewise expression with no cells can be created using
the following functions.
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_aff_empty(
__isl_take isl_space *space);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
__isl_take isl_space *space);
A piecewise expression with a single universe cell can be
created using the following functions.
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_aff_from_aff(
__isl_take isl_aff *aff);
__isl_give isl_pw_multi_aff *
isl_pw_multi_aff_from_multi_aff(
__isl_take isl_multi_aff *ma);
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial *
isl_pw_qpolynomial_from_qpolynomial(
__isl_take isl_qpolynomial *qp);
A piecewise expression with a single specified cell can be
created using the following functions.
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_aff_alloc(
__isl_take isl_set *set, __isl_take isl_aff *aff);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
__isl_take isl_set *set,
__isl_take isl_multi_aff *maff);
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
__isl_take isl_set *set,
__isl_take isl_qpolynomial *qp);
The following convenience functions first create a base expression and
then create a piecewise expression over a universe domain.
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(
__isl_take isl_local_space *ls);
__isl_give isl_pw_aff *isl_pw_aff_var_on_domain(
__isl_take isl_local_space *ls,
enum isl_dim_type type, unsigned pos);
__isl_give isl_pw_aff *isl_pw_aff_nan_on_domain(
__isl_take isl_local_space *ls);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_zero(
__isl_take isl_space *space);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
__isl_take isl_space *space);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_map(
__isl_take isl_space *space);
__isl_give isl_pw_multi_aff *
isl_pw_multi_aff_project_out_map(
__isl_take isl_space *space,
enum isl_dim_type type,
unsigned first, unsigned n);
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
__isl_take isl_space *space);
The following convenience functions first create a base expression and
then create a piecewise expression over a given domain.
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_aff_val_on_domain(
__isl_take isl_set *domain,
__isl_take isl_val *v);
__isl_give isl_pw_multi_aff *
isl_pw_multi_aff_multi_val_on_domain(
__isl_take isl_set *domain,
__isl_take isl_multi_val *mv);
As a convenience, a piecewise multiple expression can
also be created from a piecewise expression.
Each multiple expression in the result is derived
from the corresponding base expression.
#include <isl/aff.h>
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_pw_aff(
__isl_take isl_pw_aff *pa);
Similarly, a piecewise quasipolynomial can be
created from a piecewise quasi-affine expression using
the following function.
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial *
isl_pw_qpolynomial_from_pw_aff(
__isl_take isl_pw_aff *pwaff);
Piecewise expressions can be copied and freed using the following functions.
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_aff_copy(
__isl_keep isl_pw_aff *pwaff);
__isl_null isl_pw_aff *isl_pw_aff_free(
__isl_take isl_pw_aff *pwaff);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
__isl_keep isl_pw_multi_aff *pma);
__isl_null isl_pw_multi_aff *isl_pw_multi_aff_free(
__isl_take isl_pw_multi_aff *pma);
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
__isl_keep isl_pw_qpolynomial *pwqp);
__isl_null isl_pw_qpolynomial *isl_pw_qpolynomial_free(
__isl_take isl_pw_qpolynomial *pwqp);
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_copy(
__isl_keep isl_pw_qpolynomial_fold *pwf);
__isl_null isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_free(
__isl_take isl_pw_qpolynomial_fold *pwf);
To iterate over the different cells of a piecewise expression,
use the following functions.
#include <isl/aff.h>
isl_bool isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
isl_stat isl_pw_aff_foreach_piece(
__isl_keep isl_pw_aff *pwaff,
isl_stat (*fn)(__isl_take isl_set *set,
__isl_take isl_aff *aff,
void *user), void *user);
int isl_pw_multi_aff_n_piece(
__isl_keep isl_pw_multi_aff *pma);
isl_stat isl_pw_multi_aff_foreach_piece(
__isl_keep isl_pw_multi_aff *pma,
isl_stat (*fn)(__isl_take isl_set *set,
__isl_take isl_multi_aff *maff,
void *user), void *user);
#include <isl/polynomial.h>
int isl_pw_qpolynomial_n_piece(
__isl_keep isl_pw_qpolynomial *pwqp);
isl_stat isl_pw_qpolynomial_foreach_piece(
__isl_keep isl_pw_qpolynomial *pwqp,
isl_stat (*fn)(__isl_take isl_set *set,
__isl_take isl_qpolynomial *qp,
void *user), void *user);
isl_stat isl_pw_qpolynomial_foreach_lifted_piece(
__isl_keep isl_pw_qpolynomial *pwqp,
isl_stat (*fn)(__isl_take isl_set *set,
__isl_take isl_qpolynomial *qp,
void *user), void *user);
int isl_pw_qpolynomial_fold_n_piece(
__isl_keep isl_pw_qpolynomial_fold *pwf);
isl_stat isl_pw_qpolynomial_fold_foreach_piece(
__isl_keep isl_pw_qpolynomial_fold *pwf,
isl_stat (*fn)(__isl_take isl_set *set,
__isl_take isl_qpolynomial_fold *fold,
void *user), void *user);
isl_stat isl_pw_qpolynomial_fold_foreach_lifted_piece(
__isl_keep isl_pw_qpolynomial_fold *pwf,
isl_stat (*fn)(__isl_take isl_set *set,
__isl_take isl_qpolynomial_fold *fold,
void *user), void *user);
As usual, the function C<fn> should return C<isl_stat_ok> on success
and C<isl_stat_error> on failure. The difference between
C<isl_pw_qpolynomial_foreach_piece> and
C<isl_pw_qpolynomial_foreach_lifted_piece> is that
C<isl_pw_qpolynomial_foreach_lifted_piece> will first
compute unique representations for all existentially quantified
variables and then turn these existentially quantified variables
into extra set variables, adapting the associated quasipolynomial
accordingly. This means that the C<set> passed to C<fn>
will not have any existentially quantified variables, but that
the dimensions of the sets may be different for different
invocations of C<fn>.
Similarly for C<isl_pw_qpolynomial_fold_foreach_piece>
and C<isl_pw_qpolynomial_fold_foreach_lifted_piece>.
A piecewise expression consisting of the expressions at a given
position of a piecewise multiple expression can be extracted
using the following function.
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
__isl_keep isl_pw_multi_aff *pma, int pos);
These expressions can be replaced using the following function.
#include <isl/aff.h>
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
__isl_take isl_pw_multi_aff *pma, unsigned pos,
__isl_take isl_pw_aff *pa);
Note that there is a difference between C<isl_multi_pw_aff> and
C<isl_pw_multi_aff> objects. The first is a sequence of piecewise
affine expressions, while the second is a piecewise sequence
of affine expressions. In particular, each of the piecewise
affine expressions in an C<isl_multi_pw_aff> may have a different
domain, while all multiple expressions associated to a cell
in an C<isl_pw_multi_aff> have the same domain.
It is possible to convert between the two, but when converting
an C<isl_multi_pw_aff> to an C<isl_pw_multi_aff>, the domain
of the result is the intersection of the domains of the input.
The reverse conversion is exact.
#include <isl/aff.h>
__isl_give isl_pw_multi_aff *
isl_pw_multi_aff_from_multi_pw_aff(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_from_pw_multi_aff(
__isl_take isl_pw_multi_aff *pma);
=head3 Union Expressions
A union expression collects base expressions defined
over different domains. The space of a union expression
is that of the shared parameter space.
The union expression types defined by C<isl>
are C<isl_union_pw_aff>, C<isl_union_pw_multi_aff>,
C<isl_union_pw_qpolynomial> and C<isl_union_pw_qpolynomial_fold>.
In case of
C<isl_union_pw_aff>,
C<isl_union_pw_qpolynomial> and C<isl_union_pw_qpolynomial_fold>,
there can be at most one base expression for a given domain space.
In case of
C<isl_union_pw_multi_aff>,
there can be multiple such expressions for a given domain space,
but the domains of these expressions need to be disjoint.
An empty union expression can be created using the following functions.
#include <isl/aff.h>
__isl_give isl_union_pw_aff *isl_union_pw_aff_empty(
__isl_take isl_space *space);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_empty(
__isl_take isl_space *space);
#include <isl/polynomial.h>
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_zero(
__isl_take isl_space *space);
A union expression containing a single base expression
can be created using the following functions.
#include <isl/aff.h>
__isl_give isl_union_pw_aff *
isl_union_pw_aff_from_pw_aff(
__isl_take isl_pw_aff *pa);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_from_aff(
__isl_take isl_aff *aff);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_from_pw_multi_aff(
__isl_take isl_pw_multi_aff *pma);
#include <isl/polynomial.h>
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_from_pw_qpolynomial(
__isl_take isl_pw_qpolynomial *pwqp);
The following functions create a base expression on each
of the sets in the union set and collect the results.
#include <isl/aff.h>
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_from_union_pw_aff(
__isl_take isl_union_pw_aff *upa);
__isl_give isl_union_pw_aff *
isl_union_pw_multi_aff_get_union_pw_aff(
__isl_keep isl_union_pw_multi_aff *upma, int pos);
__isl_give isl_union_pw_aff *
isl_union_pw_aff_val_on_domain(
__isl_take isl_union_set *domain,
__isl_take isl_val *v);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_multi_val_on_domain(
__isl_take isl_union_set *domain,
__isl_take isl_multi_val *mv);
__isl_give isl_union_pw_aff *
isl_union_pw_aff_param_on_domain_id(
__isl_take isl_union_set *domain,
__isl_take isl_id *id);
The C<id> argument of C<isl_union_pw_aff_param_on_domain_id>
is the identifier of a parameter that may or may not already
be present in C<domain>.
An C<isl_union_pw_aff> that is equal to a (parametric) affine
or piecewise affine
expression on a given domain can be created using the following
functions.
#include <isl/aff.h>
__isl_give isl_union_pw_aff *
isl_union_pw_aff_aff_on_domain(
__isl_take isl_union_set *domain,
__isl_take isl_aff *aff);
__isl_give isl_union_pw_aff *
isl_union_pw_aff_pw_aff_on_domain(
__isl_take isl_union_set *domain,
__isl_take isl_pw_aff *pa);
A base expression can be added to a union expression using
the following functions.
#include <isl/aff.h>
__isl_give isl_union_pw_aff *
isl_union_pw_aff_add_pw_aff(
__isl_take isl_union_pw_aff *upa,
__isl_take isl_pw_aff *pa);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_add_pw_multi_aff(
__isl_take isl_union_pw_multi_aff *upma,
__isl_take isl_pw_multi_aff *pma);
#include <isl/polynomial.h>
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_add_pw_qpolynomial(
__isl_take isl_union_pw_qpolynomial *upwqp,
__isl_take isl_pw_qpolynomial *pwqp);
Union expressions can be copied and freed using
the following functions.
#include <isl/aff.h>
__isl_give isl_union_pw_aff *isl_union_pw_aff_copy(
__isl_keep isl_union_pw_aff *upa);
__isl_null isl_union_pw_aff *isl_union_pw_aff_free(
__isl_take isl_union_pw_aff *upa);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_copy(
__isl_keep isl_union_pw_multi_aff *upma);
__isl_null isl_union_pw_multi_aff *
isl_union_pw_multi_aff_free(
__isl_take isl_union_pw_multi_aff *upma);
#include <isl/polynomial.h>
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_copy(
__isl_keep isl_union_pw_qpolynomial *upwqp);
__isl_null isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_free(
__isl_take isl_union_pw_qpolynomial *upwqp);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_copy(
__isl_keep isl_union_pw_qpolynomial_fold *upwf);
__isl_null isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_free(
__isl_take isl_union_pw_qpolynomial_fold *upwf);
To iterate over the base expressions in a union expression,
use the following functions.
#include <isl/aff.h>
int isl_union_pw_aff_n_pw_aff(
__isl_keep isl_union_pw_aff *upa);
isl_stat isl_union_pw_aff_foreach_pw_aff(
__isl_keep isl_union_pw_aff *upa,
isl_stat (*fn)(__isl_take isl_pw_aff *pa,
void *user), void *user);
int isl_union_pw_multi_aff_n_pw_multi_aff(
__isl_keep isl_union_pw_multi_aff *upma);
isl_stat isl_union_pw_multi_aff_foreach_pw_multi_aff(
__isl_keep isl_union_pw_multi_aff *upma,
isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma,
void *user), void *user);
#include <isl/polynomial.h>
int isl_union_pw_qpolynomial_n_pw_qpolynomial(
__isl_keep isl_union_pw_qpolynomial *upwqp);
isl_stat isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
__isl_keep isl_union_pw_qpolynomial *upwqp,
isl_stat (*fn)(__isl_take isl_pw_qpolynomial *pwqp,
void *user), void *user);
int isl_union_pw_qpolynomial_fold_n_pw_qpolynomial_fold(
__isl_keep isl_union_pw_qpolynomial_fold *upwf);
isl_stat isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
__isl_keep isl_union_pw_qpolynomial_fold *upwf,
isl_stat (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
void *user), void *user);
To extract the base expression in a given space from a union, use
the following functions.
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_union_pw_aff_extract_pw_aff(
__isl_keep isl_union_pw_aff *upa,
__isl_take isl_space *space);
__isl_give isl_pw_multi_aff *
isl_union_pw_multi_aff_extract_pw_multi_aff(
__isl_keep isl_union_pw_multi_aff *upma,
__isl_take isl_space *space);
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial *
isl_union_pw_qpolynomial_extract_pw_qpolynomial(
__isl_keep isl_union_pw_qpolynomial *upwqp,
__isl_take isl_space *space);
It is also possible to obtain a list of the base expressions using
the following functions.
#include <isl/aff.h>
__isl_give isl_pw_aff_list *
isl_union_pw_aff_get_pw_aff_list(
__isl_keep isl_union_pw_aff *upa);
__isl_give isl_pw_multi_aff_list *
isl_union_pw_multi_aff_get_pw_multi_aff_list(
__isl_keep isl_union_pw_multi_aff *upma);
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial_list *
isl_union_pw_qpolynomial_get_pw_qpolynomial_list(
__isl_keep isl_union_pw_qpolynomial *upwqp);
__isl_give isl_pw_qpolynomial_fold_list *
isl_union_pw_qpolynomial_fold_get_pw_qpolynomial_fold_list(
__isl_keep isl_union_pw_qpolynomial_fold *upwf);
The returned list can be manipulated using the functions in L<"Lists">.
=head2 Input and Output
For set and relation,
C<isl> supports its own input/output format, which is similar
to the C<Omega> format, but also supports the C<PolyLib> format
in some cases.
For other object types, typically only an C<isl> format is supported.
=head3 C<isl> format
The C<isl> format is similar to that of C<Omega>, but has a different
syntax for describing the parameters and allows for the definition
of an existentially quantified variable as the integer division
of an affine expression.
For example, the set of integers C<i> between C<0> and C<n>
such that C<i % 10 <= 6> can be described as
[n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
i - 10 a <= 6) }
A set or relation can have several disjuncts, separated
by the keyword C<or>. Each disjunct is either a conjunction
of constraints or a projection (C<exists>) of a conjunction
of constraints. The constraints are separated by the keyword
C<and>.
=head3 C<PolyLib> format
If the represented set is a union, then the first line
contains a single number representing the number of disjuncts.
Otherwise, a line containing the number C<1> is optional.
Each disjunct is represented by a matrix of constraints.
The first line contains two numbers representing
the number of rows and columns,
where the number of rows is equal to the number of constraints
and the number of columns is equal to two plus the number of variables.
The following lines contain the actual rows of the constraint matrix.
In each row, the first column indicates whether the constraint
is an equality (C<0>) or inequality (C<1>). The final column
corresponds to the constant term.
If the set is parametric, then the coefficients of the parameters
appear in the last columns before the constant column.
The coefficients of any existentially quantified variables appear
between those of the set variables and those of the parameters.
=head3 Extended C<PolyLib> format
The extended C<PolyLib> format is nearly identical to the
C<PolyLib> format. The only difference is that the line
containing the number of rows and columns of a constraint matrix
also contains four additional numbers:
the number of output dimensions, the number of input dimensions,
the number of local dimensions (i.e., the number of existentially
quantified variables) and the number of parameters.
For sets, the number of ``output'' dimensions is equal
to the number of set dimensions, while the number of ``input''
dimensions is zero.
=head3 Input
Objects can be read from input using the following functions.
#include <isl/val.h>
__isl_give isl_val *isl_val_read_from_str(isl_ctx *ctx,
const char *str);
__isl_give isl_multi_val *isl_multi_val_read_from_str(
isl_ctx *ctx, const char *str);
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_read_from_file(
isl_ctx *ctx, FILE *input);
__isl_give isl_basic_set *isl_basic_set_read_from_str(
isl_ctx *ctx, const char *str);
__isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
FILE *input);
__isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
const char *str);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_read_from_file(
isl_ctx *ctx, FILE *input);
__isl_give isl_basic_map *isl_basic_map_read_from_str(
isl_ctx *ctx, const char *str);
__isl_give isl_map *isl_map_read_from_file(
isl_ctx *ctx, FILE *input);
__isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
const char *str);
#include <isl/union_set.h>
__isl_give isl_union_set *isl_union_set_read_from_file(
isl_ctx *ctx, FILE *input);
__isl_give isl_union_set *isl_union_set_read_from_str(
isl_ctx *ctx, const char *str);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_read_from_file(
isl_ctx *ctx, FILE *input);
__isl_give isl_union_map *isl_union_map_read_from_str(
isl_ctx *ctx, const char *str);
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_read_from_str(
isl_ctx *ctx, const char *str);
__isl_give isl_multi_aff *isl_multi_aff_read_from_str(
isl_ctx *ctx, const char *str);
__isl_give isl_pw_aff *isl_pw_aff_read_from_str(
isl_ctx *ctx, const char *str);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
isl_ctx *ctx, const char *str);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_read_from_str(
isl_ctx *ctx, const char *str);
__isl_give isl_union_pw_aff *
isl_union_pw_aff_read_from_str(
isl_ctx *ctx, const char *str);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_read_from_str(
isl_ctx *ctx, const char *str);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_read_from_str(
isl_ctx *ctx, const char *str);
#include <isl/polynomial.h>
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_read_from_str(
isl_ctx *ctx, const char *str);
For sets and relations,
the input format is autodetected and may be either the C<PolyLib> format
or the C<isl> format.
=head3 Output
Before anything can be printed, an C<isl_printer> needs to
be created.
__isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
FILE *file);
__isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
__isl_null isl_printer *isl_printer_free(
__isl_take isl_printer *printer);
C<isl_printer_to_file> prints to the given file, while
C<isl_printer_to_str> prints to a string that can be extracted
using the following function.
#include <isl/printer.h>
__isl_give char *isl_printer_get_str(
__isl_keep isl_printer *printer);
The printer can be inspected using the following functions.
FILE *isl_printer_get_file(
__isl_keep isl_printer *printer);
int isl_printer_get_output_format(
__isl_keep isl_printer *p);
int isl_printer_get_yaml_style(__isl_keep isl_printer *p);
The behavior of the printer can be modified in various ways
__isl_give isl_printer *isl_printer_set_output_format(
__isl_take isl_printer *p, int output_format);
__isl_give isl_printer *isl_printer_set_indent(
__isl_take isl_printer *p, int indent);
__isl_give isl_printer *isl_printer_set_indent_prefix(
__isl_take isl_printer *p, const char *prefix);
__isl_give isl_printer *isl_printer_indent(
__isl_take isl_printer *p, int indent);
__isl_give isl_printer *isl_printer_set_prefix(
__isl_take isl_printer *p, const char *prefix);
__isl_give isl_printer *isl_printer_set_suffix(
__isl_take isl_printer *p, const char *suffix);
__isl_give isl_printer *isl_printer_set_yaml_style(
__isl_take isl_printer *p, int yaml_style);
The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
and defaults to C<ISL_FORMAT_ISL>.
Each line in the output is prefixed by C<indent_prefix>,
indented by C<indent> (set by C<isl_printer_set_indent>) spaces
(default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
In the C<PolyLib> format output,
the coefficients of the existentially quantified variables
appear between those of the set variables and those
of the parameters.
The function C<isl_printer_indent> increases the indentation
by the specified amount (which may be negative).
The YAML style may be either C<ISL_YAML_STYLE_BLOCK> or
C<ISL_YAML_STYLE_FLOW> and when we are printing something
in YAML format.
To actually print something, use
#include <isl/printer.h>
__isl_give isl_printer *isl_printer_print_double(
__isl_take isl_printer *p, double d);
#include <isl/val.h>
__isl_give isl_printer *isl_printer_print_val(
__isl_take isl_printer *p, __isl_keep isl_val *v);
#include <isl/set.h>
__isl_give isl_printer *isl_printer_print_basic_set(
__isl_take isl_printer *printer,
__isl_keep isl_basic_set *bset);
__isl_give isl_printer *isl_printer_print_set(
__isl_take isl_printer *printer,
__isl_keep isl_set *set);
#include <isl/map.h>
__isl_give isl_printer *isl_printer_print_basic_map(
__isl_take isl_printer *printer,
__isl_keep isl_basic_map *bmap);
__isl_give isl_printer *isl_printer_print_map(
__isl_take isl_printer *printer,
__isl_keep isl_map *map);
#include <isl/union_set.h>
__isl_give isl_printer *isl_printer_print_union_set(
__isl_take isl_printer *p,
__isl_keep isl_union_set *uset);
#include <isl/union_map.h>
__isl_give isl_printer *isl_printer_print_union_map(
__isl_take isl_printer *p,
__isl_keep isl_union_map *umap);
#include <isl/val.h>
__isl_give isl_printer *isl_printer_print_multi_val(
__isl_take isl_printer *p,
__isl_keep isl_multi_val *mv);
#include <isl/aff.h>
__isl_give isl_printer *isl_printer_print_aff(
__isl_take isl_printer *p, __isl_keep isl_aff *aff);
__isl_give isl_printer *isl_printer_print_multi_aff(
__isl_take isl_printer *p,
__isl_keep isl_multi_aff *maff);
__isl_give isl_printer *isl_printer_print_pw_aff(
__isl_take isl_printer *p,
__isl_keep isl_pw_aff *pwaff);
__isl_give isl_printer *isl_printer_print_pw_multi_aff(
__isl_take isl_printer *p,
__isl_keep isl_pw_multi_aff *pma);
__isl_give isl_printer *isl_printer_print_multi_pw_aff(
__isl_take isl_printer *p,
__isl_keep isl_multi_pw_aff *mpa);
__isl_give isl_printer *isl_printer_print_union_pw_aff(
__isl_take isl_printer *p,
__isl_keep isl_union_pw_aff *upa);
__isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
__isl_take isl_printer *p,
__isl_keep isl_union_pw_multi_aff *upma);
__isl_give isl_printer *
isl_printer_print_multi_union_pw_aff(
__isl_take isl_printer *p,
__isl_keep isl_multi_union_pw_aff *mupa);
#include <isl/polynomial.h>
__isl_give isl_printer *isl_printer_print_qpolynomial(
__isl_take isl_printer *p,
__isl_keep isl_qpolynomial *qp);
__isl_give isl_printer *isl_printer_print_pw_qpolynomial(
__isl_take isl_printer *p,
__isl_keep isl_pw_qpolynomial *pwqp);
__isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
__isl_take isl_printer *p,
__isl_keep isl_union_pw_qpolynomial *upwqp);
__isl_give isl_printer *
isl_printer_print_pw_qpolynomial_fold(
__isl_take isl_printer *p,
__isl_keep isl_pw_qpolynomial_fold *pwf);
__isl_give isl_printer *
isl_printer_print_union_pw_qpolynomial_fold(
__isl_take isl_printer *p,
__isl_keep isl_union_pw_qpolynomial_fold *upwf);
For C<isl_printer_print_qpolynomial>,
C<isl_printer_print_pw_qpolynomial> and
C<isl_printer_print_pw_qpolynomial_fold>,
the output format of the printer
needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
For C<isl_printer_print_union_pw_qpolynomial> and
C<isl_printer_print_union_pw_qpolynomial_fold>, only C<ISL_FORMAT_ISL>
is supported.
In case of printing in C<ISL_FORMAT_C>, the user may want
to set the names of all dimensions first.
C<isl> also provides limited support for printing YAML documents,
just enough for the internal use for printing such documents.
#include <isl/printer.h>
__isl_give isl_printer *isl_printer_yaml_start_mapping(
__isl_take isl_printer *p);
__isl_give isl_printer *isl_printer_yaml_end_mapping(
__isl_take isl_printer *p);
__isl_give isl_printer *isl_printer_yaml_start_sequence(
__isl_take isl_printer *p);
__isl_give isl_printer *isl_printer_yaml_end_sequence(
__isl_take isl_printer *p);
__isl_give isl_printer *isl_printer_yaml_next(
__isl_take isl_printer *p);
A document is started by a call to either
C<isl_printer_yaml_start_mapping> or C<isl_printer_yaml_start_sequence>.
Anything printed to the printer after such a call belong to the
first key of the mapping or the first element in the sequence.
The function C<isl_printer_yaml_next> moves to the value if
we are currently printing a mapping key, the next key if we
are printing a value or the next element if we are printing
an element in a sequence.
Nested mappings and sequences are initiated by the same
C<isl_printer_yaml_start_mapping> or C<isl_printer_yaml_start_sequence>.
Each call to these functions needs to have a corresponding call to
C<isl_printer_yaml_end_mapping> or C<isl_printer_yaml_end_sequence>.
When called on a file printer, the following function flushes
the file. When called on a string printer, the buffer is cleared.
__isl_give isl_printer *isl_printer_flush(
__isl_take isl_printer *p);
The following functions allow the user to attach
notes to a printer in order to keep track of additional state.
#include <isl/printer.h>
isl_bool isl_printer_has_note(__isl_keep isl_printer *p,
__isl_keep isl_id *id);
__isl_give isl_id *isl_printer_get_note(
__isl_keep isl_printer *p, __isl_take isl_id *id);
__isl_give isl_printer *isl_printer_set_note(
__isl_take isl_printer *p,
__isl_take isl_id *id, __isl_take isl_id *note);
C<isl_printer_set_note> associates the given note to the given
identifier in the printer.
C<isl_printer_get_note> retrieves a note associated to an
identifier, while
C<isl_printer_has_note> checks if there is such a note.
C<isl_printer_get_note> fails if the requested note does not exist.
Alternatively, a string representation can be obtained
directly using the following functions, which always print
in isl format.
#include <isl/id.h>
__isl_give char *isl_id_to_str(
__isl_keep isl_id *id);
#include <isl/space.h>
__isl_give char *isl_space_to_str(
__isl_keep isl_space *space);
#include <isl/val.h>
__isl_give char *isl_val_to_str(__isl_keep isl_val *v);
__isl_give char *isl_multi_val_to_str(
__isl_keep isl_multi_val *mv);
#include <isl/set.h>
__isl_give char *isl_basic_set_to_str(
__isl_keep isl_basic_set *bset);
__isl_give char *isl_set_to_str(
__isl_keep isl_set *set);
#include <isl/union_set.h>
__isl_give char *isl_union_set_to_str(
__isl_keep isl_union_set *uset);
#include <isl/map.h>
__isl_give char *isl_basic_map_to_str(
__isl_keep isl_basic_map *bmap);
__isl_give char *isl_map_to_str(
__isl_keep isl_map *map);
#include <isl/union_map.h>
__isl_give char *isl_union_map_to_str(
__isl_keep isl_union_map *umap);
#include <isl/aff.h>
__isl_give char *isl_aff_to_str(__isl_keep isl_aff *aff);
__isl_give char *isl_pw_aff_to_str(
__isl_keep isl_pw_aff *pa);
__isl_give char *isl_multi_aff_to_str(
__isl_keep isl_multi_aff *ma);
__isl_give char *isl_pw_multi_aff_to_str(
__isl_keep isl_pw_multi_aff *pma);
__isl_give char *isl_multi_pw_aff_to_str(
__isl_keep isl_multi_pw_aff *mpa);
__isl_give char *isl_union_pw_aff_to_str(
__isl_keep isl_union_pw_aff *upa);
__isl_give char *isl_union_pw_multi_aff_to_str(
__isl_keep isl_union_pw_multi_aff *upma);
__isl_give char *isl_multi_union_pw_aff_to_str(
__isl_keep isl_multi_union_pw_aff *mupa);
#include <isl/point.h>
__isl_give char *isl_point_to_str(
__isl_keep isl_point *pnt);
#include <isl/polynomial.h>
__isl_give char *isl_pw_qpolynomial_to_str(
__isl_keep isl_pw_qpolynomial *pwqp);
__isl_give char *isl_union_pw_qpolynomial_to_str(
__isl_keep isl_union_pw_qpolynomial *upwqp);
=head2 Properties
=head3 Unary Properties
=over
=item * Emptiness
The following functions test whether the given set or relation
contains any integer points. The ``plain'' variants do not perform
any computations, but simply check if the given set or relation
is already known to be empty.
#include <isl/set.h>
isl_bool isl_basic_set_plain_is_empty(
__isl_keep isl_basic_set *bset);
isl_bool isl_basic_set_is_empty(
__isl_keep isl_basic_set *bset);
isl_bool isl_set_plain_is_empty(
__isl_keep isl_set *set);
isl_bool isl_set_is_empty(__isl_keep isl_set *set);
#include <isl/union_set.h>
isl_bool isl_union_set_is_empty(
__isl_keep isl_union_set *uset);
#include <isl/map.h>
isl_bool isl_basic_map_plain_is_empty(
__isl_keep isl_basic_map *bmap);
isl_bool isl_basic_map_is_empty(
__isl_keep isl_basic_map *bmap);
isl_bool isl_map_plain_is_empty(
__isl_keep isl_map *map);
isl_bool isl_map_is_empty(__isl_keep isl_map *map);
#include <isl/union_map.h>
isl_bool isl_union_map_plain_is_empty(
__isl_keep isl_union_map *umap);
isl_bool isl_union_map_is_empty(
__isl_keep isl_union_map *umap);
=item * Universality
isl_bool isl_basic_set_plain_is_universe(
__isl_keep isl_basic_set *bset);
isl_bool isl_basic_set_is_universe(
__isl_keep isl_basic_set *bset);
isl_bool isl_basic_map_plain_is_universe(
__isl_keep isl_basic_map *bmap);
isl_bool isl_basic_map_is_universe(
__isl_keep isl_basic_map *bmap);
isl_bool isl_set_plain_is_universe(
__isl_keep isl_set *set);
isl_bool isl_map_plain_is_universe(
__isl_keep isl_map *map);
=item * Single-valuedness
#include <isl/set.h>
isl_bool isl_set_is_singleton(__isl_keep isl_set *set);
#include <isl/map.h>
isl_bool isl_basic_map_is_single_valued(
__isl_keep isl_basic_map *bmap);
isl_bool isl_map_plain_is_single_valued(
__isl_keep isl_map *map);
isl_bool isl_map_is_single_valued(__isl_keep isl_map *map);
#include <isl/union_map.h>
isl_bool isl_union_map_is_single_valued(
__isl_keep isl_union_map *umap);
=item * Injectivity
isl_bool isl_map_plain_is_injective(
__isl_keep isl_map *map);
isl_bool isl_map_is_injective(
__isl_keep isl_map *map);
isl_bool isl_union_map_plain_is_injective(
__isl_keep isl_union_map *umap);
isl_bool isl_union_map_is_injective(
__isl_keep isl_union_map *umap);
=item * Bijectivity
isl_bool isl_map_is_bijective(
__isl_keep isl_map *map);
isl_bool isl_union_map_is_bijective(
__isl_keep isl_union_map *umap);
=item * Identity
The following functions test whether the given relation
only maps elements to themselves.
#include <isl/map.h>
isl_bool isl_map_is_identity(
__isl_keep isl_map *map);
#include <isl/union_map.h>
isl_bool isl_union_map_is_identity(
__isl_keep isl_union_map *umap);
=item * Position
__isl_give isl_val *
isl_basic_map_plain_get_val_if_fixed(
__isl_keep isl_basic_map *bmap,
enum isl_dim_type type, unsigned pos);
__isl_give isl_val *isl_set_plain_get_val_if_fixed(
__isl_keep isl_set *set,
enum isl_dim_type type, unsigned pos);
__isl_give isl_val *isl_map_plain_get_val_if_fixed(
__isl_keep isl_map *map,
enum isl_dim_type type, unsigned pos);
If the set or relation obviously lies on a hyperplane where the given dimension
has a fixed value, then return that value.
Otherwise return NaN.
=item * Stride
isl_stat isl_set_dim_residue_class_val(
__isl_keep isl_set *set,
int pos, __isl_give isl_val **modulo,
__isl_give isl_val **residue);
Check if the values of the given set dimension are equal to a fixed
value modulo some integer value. If so, assign the modulo to C<*modulo>
and the fixed value to C<*residue>. If the given dimension attains only
a single value, then assign C<0> to C<*modulo> and the fixed value to
C<*residue>.
If the dimension does not attain only a single value and if no modulo
can be found then assign C<1> to C<*modulo> and C<1> to C<*residue>.
#include <isl/set.h>
__isl_give isl_stride_info *isl_set_get_stride_info(
__isl_keep isl_set *set, int pos);
__isl_give isl_val *isl_set_get_stride(
__isl_keep isl_set *set, int pos);
#include <isl/map.h>
__isl_give isl_stride_info *
isl_map_get_range_stride_info(
__isl_keep isl_map *map, int pos);
Check if the values of the given set dimension are equal to
some affine expression of the other dimensions (the offset)
modulo some integer stride or
check if the values of the given output dimensions are equal to
some affine expression of the input dimensions (the offset)
modulo some integer stride.
If no more specific information can be found, then the stride
is taken to be one and the offset is taken to be the zero expression.
The function C<isl_set_get_stride> performs the same
computation as C<isl_set_get_stride_info> but only returns the stride.
For the other functions,
the stride and offset can be extracted from the returned object
using the following functions.
#include <isl/stride_info.h>
__isl_give isl_val *isl_stride_info_get_stride(
__isl_keep isl_stride_info *si);
__isl_give isl_aff *isl_stride_info_get_offset(
__isl_keep isl_stride_info *si);
The stride info object can be copied and released using the following
functions.
#include <isl/stride_info.h>
__isl_give isl_stride_info *isl_stride_info_copy(
__isl_keep isl_stride_info *si);
__isl_null isl_stride_info *isl_stride_info_free(
__isl_take isl_stride_info *si);
=item * Dependence
To check whether the description of a set, relation or function depends
on one or more given dimensions,
the following functions can be used.
#include <isl/constraint.h>
isl_bool isl_constraint_involves_dims(
__isl_keep isl_constraint *constraint,
enum isl_dim_type type, unsigned first, unsigned n);
#include <isl/set.h>
isl_bool isl_basic_set_involves_dims(
__isl_keep isl_basic_set *bset,
enum isl_dim_type type, unsigned first, unsigned n);
isl_bool isl_set_involves_dims(__isl_keep isl_set *set,
enum isl_dim_type type, unsigned first, unsigned n);
#include <isl/map.h>
isl_bool isl_basic_map_involves_dims(
__isl_keep isl_basic_map *bmap,
enum isl_dim_type type, unsigned first, unsigned n);
isl_bool isl_map_involves_dims(__isl_keep isl_map *map,
enum isl_dim_type type, unsigned first, unsigned n);
#include <isl/union_map.h>
isl_bool isl_union_map_involves_dims(
__isl_keep isl_union_map *umap,
enum isl_dim_type type, unsigned first, unsigned n);
#include <isl/aff.h>
isl_bool isl_aff_involves_dims(__isl_keep isl_aff *aff,
enum isl_dim_type type, unsigned first, unsigned n);
isl_bool isl_pw_aff_involves_dims(
__isl_keep isl_pw_aff *pwaff,
enum isl_dim_type type, unsigned first, unsigned n);
isl_bool isl_multi_aff_involves_dims(
__isl_keep isl_multi_aff *ma,
enum isl_dim_type type, unsigned first, unsigned n);
isl_bool isl_pw_multi_aff_involves_dims(
__isl_keep isl_pw_multi_aff *pma,
enum isl_dim_type type, unsigned first, unsigned n);
isl_bool isl_multi_pw_aff_involves_dims(
__isl_keep isl_multi_pw_aff *mpa,
enum isl_dim_type type, unsigned first, unsigned n);
#include <isl/polynomial.h>
isl_bool isl_qpolynomial_involves_dims(
__isl_keep isl_qpolynomial *qp,
enum isl_dim_type type, unsigned first, unsigned n);
Similarly, the following functions can be used to check whether
a given dimension is involved in any lower or upper bound.
#include <isl/set.h>
isl_bool isl_set_dim_has_any_lower_bound(
__isl_keep isl_set *set,
enum isl_dim_type type, unsigned pos);
isl_bool isl_set_dim_has_any_upper_bound(
__isl_keep isl_set *set,
enum isl_dim_type type, unsigned pos);
Note that these functions return true even if there is a bound on
the dimension on only some of the basic sets of C<set>.
To check if they have a bound for all of the basic sets in C<set>,
use the following functions instead.
#include <isl/set.h>
isl_bool isl_set_dim_has_lower_bound(
__isl_keep isl_set *set,
enum isl_dim_type type, unsigned pos);
isl_bool isl_set_dim_has_upper_bound(
__isl_keep isl_set *set,
enum isl_dim_type type, unsigned pos);
=item * Space
To check whether a set is a parameter domain, use this function:
isl_bool isl_set_is_params(__isl_keep isl_set *set);
isl_bool isl_union_set_is_params(
__isl_keep isl_union_set *uset);
=item * Wrapping
The following functions check whether the space of the given
(basic) set or relation domain and/or range is a wrapped relation.
#include <isl/space.h>
isl_bool isl_space_is_wrapping(
__isl_keep isl_space *space);
isl_bool isl_space_domain_is_wrapping(
__isl_keep isl_space *space);
isl_bool isl_space_range_is_wrapping(
__isl_keep isl_space *space);
isl_bool isl_space_is_product(
__isl_keep isl_space *space);
#include <isl/set.h>
isl_bool isl_basic_set_is_wrapping(
__isl_keep isl_basic_set *bset);
isl_bool isl_set_is_wrapping(__isl_keep isl_set *set);
#include <isl/map.h>
isl_bool isl_map_domain_is_wrapping(
__isl_keep isl_map *map);
isl_bool isl_map_range_is_wrapping(
__isl_keep isl_map *map);
isl_bool isl_map_is_product(__isl_keep isl_map *map);
#include <isl/val.h>
isl_bool isl_multi_val_range_is_wrapping(
__isl_keep isl_multi_val *mv);
#include <isl/aff.h>
isl_bool isl_multi_aff_range_is_wrapping(
__isl_keep isl_multi_aff *ma);
isl_bool isl_multi_pw_aff_range_is_wrapping(
__isl_keep isl_multi_pw_aff *mpa);
isl_bool isl_multi_union_pw_aff_range_is_wrapping(
__isl_keep isl_multi_union_pw_aff *mupa);
The input to C<isl_space_is_wrapping> should
be the space of a set, while that of
C<isl_space_domain_is_wrapping> and
C<isl_space_range_is_wrapping> should be the space of a relation.
The input to C<isl_space_is_product> can be either the space
of a set or that of a binary relation.
In case the input is the space of a binary relation, it checks
whether both domain and range are wrapping.
=item * Internal Product
isl_bool isl_basic_map_can_zip(
__isl_keep isl_basic_map *bmap);
isl_bool isl_map_can_zip(__isl_keep isl_map *map);
Check whether the product of domain and range of the given relation
can be computed,
i.e., whether both domain and range are nested relations.
=item * Currying
#include <isl/space.h>
isl_bool isl_space_can_curry(
__isl_keep isl_space *space);
#include <isl/map.h>
isl_bool isl_basic_map_can_curry(
__isl_keep isl_basic_map *bmap);
isl_bool isl_map_can_curry(__isl_keep isl_map *map);
Check whether the domain of the (basic) relation is a wrapped relation.
#include <isl/space.h>
__isl_give isl_space *isl_space_uncurry(
__isl_take isl_space *space);
#include <isl/map.h>
isl_bool isl_basic_map_can_uncurry(
__isl_keep isl_basic_map *bmap);
isl_bool isl_map_can_uncurry(__isl_keep isl_map *map);
Check whether the range of the (basic) relation is a wrapped relation.
#include <isl/space.h>
isl_bool isl_space_can_range_curry(
__isl_keep isl_space *space);
#include <isl/map.h>
isl_bool isl_map_can_range_curry(
__isl_keep isl_map *map);
Check whether the domain of the relation wrapped in the range of
the input is itself a wrapped relation.
=item * Special Values
#include <isl/aff.h>
isl_bool isl_aff_is_cst(__isl_keep isl_aff *aff);
isl_bool isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
isl_bool isl_multi_pw_aff_is_cst(
__isl_keep isl_multi_pw_aff *mpa);
Check whether the given expression is a constant.
#include <isl/val.h>
isl_bool isl_multi_val_involves_nan(
__isl_keep isl_multi_val *mv);
#include <isl/aff.h>
isl_bool isl_aff_is_nan(__isl_keep isl_aff *aff);
isl_bool isl_multi_aff_involves_nan(
__isl_keep isl_multi_aff *ma);
isl_bool isl_pw_aff_involves_nan(
__isl_keep isl_pw_aff *pa);
isl_bool isl_pw_multi_aff_involves_nan(
__isl_keep isl_pw_multi_aff *pma);
isl_bool isl_multi_pw_aff_involves_nan(
__isl_keep isl_multi_pw_aff *mpa);
isl_bool isl_union_pw_aff_involves_nan(
__isl_keep isl_union_pw_aff *upa);
isl_bool isl_union_pw_multi_aff_involves_nan(
__isl_keep isl_union_pw_multi_aff *upma);
isl_bool isl_multi_union_pw_aff_involves_nan(
__isl_keep isl_multi_union_pw_aff *mupa);
#include <isl/polynomial.h>
isl_bool isl_qpolynomial_is_nan(
__isl_keep isl_qpolynomial *qp);
isl_bool isl_qpolynomial_fold_is_nan(
__isl_keep isl_qpolynomial_fold *fold);
isl_bool isl_pw_qpolynomial_involves_nan(
__isl_keep isl_pw_qpolynomial *pwqp);
isl_bool isl_pw_qpolynomial_fold_involves_nan(
__isl_keep isl_pw_qpolynomial_fold *pwf);
isl_bool isl_union_pw_qpolynomial_involves_nan(
__isl_keep isl_union_pw_qpolynomial *upwqp);
isl_bool isl_union_pw_qpolynomial_fold_involves_nan(
__isl_keep isl_union_pw_qpolynomial_fold *upwf);
Check whether the given expression is equal to or involves NaN.
#include <isl/aff.h>
isl_bool isl_aff_plain_is_zero(
__isl_keep isl_aff *aff);
Check whether the affine expression is obviously zero.
=back
=head3 Binary Properties
=over
=item * Equality
The following functions check whether two objects
represent the same set, relation or function.
The C<plain> variants only return true if the objects
are obviously the same. That is, they may return false
even if the objects are the same, but they will never
return true if the objects are not the same.
#include <isl/set.h>
isl_bool isl_basic_set_plain_is_equal(
__isl_keep isl_basic_set *bset1,
__isl_keep isl_basic_set *bset2);
isl_bool isl_basic_set_is_equal(
__isl_keep isl_basic_set *bset1,
__isl_keep isl_basic_set *bset2);
isl_bool isl_set_plain_is_equal(
__isl_keep isl_set *set1,
__isl_keep isl_set *set2);
isl_bool isl_set_is_equal(__isl_keep isl_set *set1,
__isl_keep isl_set *set2);
#include <isl/map.h>
isl_bool isl_basic_map_is_equal(
__isl_keep isl_basic_map *bmap1,
__isl_keep isl_basic_map *bmap2);
isl_bool isl_map_is_equal(__isl_keep isl_map *map1,
__isl_keep isl_map *map2);
isl_bool isl_map_plain_is_equal(
__isl_keep isl_map *map1,
__isl_keep isl_map *map2);
#include <isl/union_set.h>
isl_bool isl_union_set_is_equal(
__isl_keep isl_union_set *uset1,
__isl_keep isl_union_set *uset2);
#include <isl/union_map.h>
isl_bool isl_union_map_is_equal(
__isl_keep isl_union_map *umap1,
__isl_keep isl_union_map *umap2);
#include <isl/val.h>
isl_bool isl_multi_val_plain_is_equal(
__isl_keep isl_multi_val *mv1,
__isl_keep isl_multi_val *mv2);
#include <isl/aff.h>
isl_bool isl_aff_plain_is_equal(
__isl_keep isl_aff *aff1,
__isl_keep isl_aff *aff2);
isl_bool isl_multi_aff_plain_is_equal(
__isl_keep isl_multi_aff *maff1,
__isl_keep isl_multi_aff *maff2);
isl_bool isl_pw_aff_plain_is_equal(
__isl_keep isl_pw_aff *pwaff1,
__isl_keep isl_pw_aff *pwaff2);
isl_bool isl_pw_aff_is_equal(
__isl_keep isl_pw_aff *pa1,
__isl_keep isl_pw_aff *pa2);
isl_bool isl_pw_multi_aff_plain_is_equal(
__isl_keep isl_pw_multi_aff *pma1,
__isl_keep isl_pw_multi_aff *pma2);
isl_bool isl_pw_multi_aff_is_equal(
__isl_keep isl_pw_multi_aff *pma1,
__isl_keep isl_pw_multi_aff *pma2);
isl_bool isl_multi_pw_aff_plain_is_equal(
__isl_keep isl_multi_pw_aff *mpa1,
__isl_keep isl_multi_pw_aff *mpa2);
isl_bool isl_multi_pw_aff_is_equal(
__isl_keep isl_multi_pw_aff *mpa1,
__isl_keep isl_multi_pw_aff *mpa2);
isl_bool isl_union_pw_aff_plain_is_equal(
__isl_keep isl_union_pw_aff *upa1,
__isl_keep isl_union_pw_aff *upa2);
isl_bool isl_union_pw_multi_aff_plain_is_equal(
__isl_keep isl_union_pw_multi_aff *upma1,
__isl_keep isl_union_pw_multi_aff *upma2);
isl_bool isl_multi_union_pw_aff_plain_is_equal(
__isl_keep isl_multi_union_pw_aff *mupa1,
__isl_keep isl_multi_union_pw_aff *mupa2);
#include <isl/polynomial.h>
isl_bool isl_union_pw_qpolynomial_plain_is_equal(
__isl_keep isl_union_pw_qpolynomial *upwqp1,
__isl_keep isl_union_pw_qpolynomial *upwqp2);
isl_bool isl_union_pw_qpolynomial_fold_plain_is_equal(
__isl_keep isl_union_pw_qpolynomial_fold *upwf1,
__isl_keep isl_union_pw_qpolynomial_fold *upwf2);
=item * Disjointness
#include <isl/set.h>
isl_bool isl_basic_set_is_disjoint(
__isl_keep isl_basic_set *bset1,
__isl_keep isl_basic_set *bset2);
isl_bool isl_set_plain_is_disjoint(
__isl_keep isl_set *set1,
__isl_keep isl_set *set2);
isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1,
__isl_keep isl_set *set2);
#include <isl/map.h>
isl_bool isl_basic_map_is_disjoint(
__isl_keep isl_basic_map *bmap1,
__isl_keep isl_basic_map *bmap2);
isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1,
__isl_keep isl_map *map2);
#include <isl/union_set.h>
isl_bool isl_union_set_is_disjoint(
__isl_keep isl_union_set *uset1,
__isl_keep isl_union_set *uset2);
#include <isl/union_map.h>
isl_bool isl_union_map_is_disjoint(
__isl_keep isl_union_map *umap1,
__isl_keep isl_union_map *umap2);
=item * Subset
isl_bool isl_basic_set_is_subset(
__isl_keep isl_basic_set *bset1,
__isl_keep isl_basic_set *bset2);
isl_bool isl_set_is_subset(__isl_keep isl_set *set1,
__isl_keep isl_set *set2);
isl_bool isl_set_is_strict_subset(
__isl_keep isl_set *set1,
__isl_keep isl_set *set2);
isl_bool isl_union_set_is_subset(
__isl_keep isl_union_set *uset1,
__isl_keep isl_union_set *uset2);
isl_bool isl_union_set_is_strict_subset(
__isl_keep isl_union_set *uset1,
__isl_keep isl_union_set *uset2);
isl_bool isl_basic_map_is_subset(
__isl_keep isl_basic_map *bmap1,
__isl_keep isl_basic_map *bmap2);
isl_bool isl_basic_map_is_strict_subset(
__isl_keep isl_basic_map *bmap1,
__isl_keep isl_basic_map *bmap2);
isl_bool isl_map_is_subset(
__isl_keep isl_map *map1,
__isl_keep isl_map *map2);
isl_bool isl_map_is_strict_subset(
__isl_keep isl_map *map1,
__isl_keep isl_map *map2);
isl_bool isl_union_map_is_subset(
__isl_keep isl_union_map *umap1,
__isl_keep isl_union_map *umap2);
isl_bool isl_union_map_is_strict_subset(
__isl_keep isl_union_map *umap1,
__isl_keep isl_union_map *umap2);
Check whether the first argument is a (strict) subset of the
second argument.
=item * Order
Every comparison function returns a negative value if the first
argument is considered smaller than the second, a positive value
if the first argument is considered greater and zero if the two
constraints are considered the same by the comparison criterion.
#include <isl/constraint.h>
int isl_constraint_plain_cmp(
__isl_keep isl_constraint *c1,
__isl_keep isl_constraint *c2);
This function is useful for sorting C<isl_constraint>s.
The order depends on the internal representation of the inputs.
The order is fixed over different calls to the function (assuming
the internal representation of the inputs has not changed), but may
change over different versions of C<isl>.
#include <isl/constraint.h>
int isl_constraint_cmp_last_non_zero(
__isl_keep isl_constraint *c1,
__isl_keep isl_constraint *c2);
This function can be used to sort constraints that live in the same
local space. Constraints that involve ``earlier'' dimensions or
that have a smaller coefficient for the shared latest dimension
are considered smaller than other constraints.
This function only defines a B<partial> order.
#include <isl/set.h>
int isl_set_plain_cmp(__isl_keep isl_set *set1,
__isl_keep isl_set *set2);
This function is useful for sorting C<isl_set>s.
The order depends on the internal representation of the inputs.
The order is fixed over different calls to the function (assuming
the internal representation of the inputs has not changed), but may
change over different versions of C<isl>.
#include <isl/aff.h>
int isl_multi_aff_plain_cmp(
__isl_keep isl_multi_aff *ma1,
__isl_keep isl_multi_aff *ma2);
int isl_pw_aff_plain_cmp(__isl_keep isl_pw_aff *pa1,
__isl_keep isl_pw_aff *pa2);
The functions C<isl_multi_aff_plain_cmp> and
C<isl_pw_aff_plain_cmp> can be used to sort C<isl_multi_aff>s and
C<isl_pw_aff>s. The order is not strictly defined.
The current order sorts expressions that only involve
earlier dimensions before those that involve later dimensions.
=back
=head2 Unary Operations
=over
=item * Complement
__isl_give isl_set *isl_set_complement(
__isl_take isl_set *set);
__isl_give isl_map *isl_map_complement(
__isl_take isl_map *map);
=item * Inverse map
#include <isl/space.h>
__isl_give isl_space *isl_space_reverse(
__isl_take isl_space *space);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_reverse(
__isl_take isl_basic_map *bmap);
__isl_give isl_map *isl_map_reverse(
__isl_take isl_map *map);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_reverse(
__isl_take isl_union_map *umap);
=item * Projection
#include <isl/space.h>
__isl_give isl_space *isl_space_domain(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_range(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_params(
__isl_take isl_space *space);
#include <isl/local_space.h>
__isl_give isl_local_space *isl_local_space_domain(
__isl_take isl_local_space *ls);
__isl_give isl_local_space *isl_local_space_range(
__isl_take isl_local_space *ls);
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_project_out(
__isl_take isl_basic_set *bset,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_map *isl_set_project_onto_map(
__isl_take isl_set *set,
enum isl_dim_type type, unsigned first,
unsigned n);
__isl_give isl_basic_set *isl_basic_set_params(
__isl_take isl_basic_set *bset);
__isl_give isl_set *isl_set_params(__isl_take isl_set *set);
The function C<isl_set_project_onto_map> returns a relation
that projects the input set onto the given set dimensions.
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_project_out(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_basic_set *isl_basic_map_domain(
__isl_take isl_basic_map *bmap);
__isl_give isl_basic_set *isl_basic_map_range(
__isl_take isl_basic_map *bmap);
__isl_give isl_set *isl_map_params(__isl_take isl_map *map);
__isl_give isl_set *isl_map_domain(
__isl_take isl_map *bmap);
__isl_give isl_set *isl_map_range(
__isl_take isl_map *map);
#include <isl/union_set.h>
__isl_give isl_union_set *isl_union_set_project_out(
__isl_take isl_union_set *uset,
enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_set *isl_union_set_params(
__isl_take isl_union_set *uset);
The function C<isl_union_set_project_out> can only project out
parameters.
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_project_out(
__isl_take isl_union_map *umap,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_union_map *
isl_union_map_project_out_all_params(
__isl_take isl_union_map *umap);
__isl_give isl_set *isl_union_map_params(
__isl_take isl_union_map *umap);
__isl_give isl_union_set *isl_union_map_domain(
__isl_take isl_union_map *umap);
__isl_give isl_union_set *isl_union_map_range(
__isl_take isl_union_map *umap);
The function C<isl_union_map_project_out> can only project out
parameters.
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_project_domain_on_params(
__isl_take isl_aff *aff);
__isl_give isl_multi_aff *
isl_multi_aff_project_domain_on_params(
__isl_take isl_multi_aff *ma);
__isl_give isl_pw_aff *
isl_pw_aff_project_domain_on_params(
__isl_take isl_pw_aff *pa);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_project_domain_on_params(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_pw_multi_aff *
isl_pw_multi_aff_project_domain_on_params(
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_set *isl_pw_aff_domain(
__isl_take isl_pw_aff *pwaff);
__isl_give isl_set *isl_pw_multi_aff_domain(
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_set *isl_multi_pw_aff_domain(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_union_set *isl_union_pw_aff_domain(
__isl_take isl_union_pw_aff *upa);
__isl_give isl_union_set *isl_union_pw_multi_aff_domain(
__isl_take isl_union_pw_multi_aff *upma);
__isl_give isl_union_set *
isl_multi_union_pw_aff_domain(
__isl_take isl_multi_union_pw_aff *mupa);
__isl_give isl_set *isl_pw_aff_params(
__isl_take isl_pw_aff *pwa);
If no explicit domain was set on a zero-dimensional input to
C<isl_multi_union_pw_aff_domain>, then this function will
return a parameter set.
#include <isl/polynomial.h>
__isl_give isl_qpolynomial *
isl_qpolynomial_project_domain_on_params(
__isl_take isl_qpolynomial *qp);
__isl_give isl_pw_qpolynomial *
isl_pw_qpolynomial_project_domain_on_params(
__isl_take isl_pw_qpolynomial *pwqp);
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_project_domain_on_params(
__isl_take isl_pw_qpolynomial_fold *pwf);
__isl_give isl_set *isl_pw_qpolynomial_domain(
__isl_take isl_pw_qpolynomial *pwqp);
__isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
__isl_take isl_union_pw_qpolynomial_fold *upwf);
__isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
__isl_take isl_union_pw_qpolynomial *upwqp);
#include <isl/space.h>
__isl_give isl_space *isl_space_domain_map(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_range_map(
__isl_take isl_space *space);
#include <isl/map.h>
__isl_give isl_map *isl_set_wrapped_domain_map(
__isl_take isl_set *set);
__isl_give isl_basic_map *isl_basic_map_domain_map(
__isl_take isl_basic_map *bmap);
__isl_give isl_basic_map *isl_basic_map_range_map(
__isl_take isl_basic_map *bmap);
__isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
__isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_domain_map(
__isl_take isl_union_map *umap);
__isl_give isl_union_pw_multi_aff *
isl_union_map_domain_map_union_pw_multi_aff(
__isl_take isl_union_map *umap);
__isl_give isl_union_map *isl_union_map_range_map(
__isl_take isl_union_map *umap);
__isl_give isl_union_map *
isl_union_set_wrapped_domain_map(
__isl_take isl_union_set *uset);
The functions above construct a (basic, regular or union) relation
that maps (a wrapped version of) the input relation to its domain or range.
C<isl_set_wrapped_domain_map> maps the input set to the domain
of its wrapped relation.
=item * Elimination
__isl_give isl_basic_set *isl_basic_set_eliminate(
__isl_take isl_basic_set *bset,
enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_set *isl_set_eliminate(
__isl_take isl_set *set, enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_basic_map *isl_basic_map_eliminate(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_map *isl_map_eliminate(
__isl_take isl_map *map, enum isl_dim_type type,
unsigned first, unsigned n);
Eliminate the coefficients for the given dimensions from the constraints,
without removing the dimensions.
=item * Constructing a set from a parameter domain
A zero-dimensional (local) space or (basic) set can be constructed
on a given parameter domain using the following functions.
#include <isl/space.h>
__isl_give isl_space *isl_space_set_from_params(
__isl_take isl_space *space);
#include <isl/local_space.h>
__isl_give isl_local_space *
isl_local_space_set_from_params(
__isl_take isl_local_space *ls);
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_from_params(
__isl_take isl_basic_set *bset);
__isl_give isl_set *isl_set_from_params(
__isl_take isl_set *set);
=item * Constructing a relation from one or two sets
Create a relation with the given set(s) as domain and/or range.
If only the domain or the range is specified, then
the range or domain of the created relation is a zero-dimensional
flat anonymous space.
#include <isl/space.h>
__isl_give isl_space *isl_space_from_domain(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_from_range(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_map_from_set(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_map_from_domain_and_range(
__isl_take isl_space *domain,
__isl_take isl_space *range);
#include <isl/local_space.h>
__isl_give isl_local_space *isl_local_space_from_domain(
__isl_take isl_local_space *ls);
#include <isl/map.h>
__isl_give isl_map *isl_map_from_domain(
__isl_take isl_set *set);
__isl_give isl_map *isl_map_from_range(
__isl_take isl_set *set);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_from_domain(
__isl_take isl_union_set *uset);
__isl_give isl_union_map *isl_union_map_from_range(
__isl_take isl_union_set *uset);
__isl_give isl_union_map *
isl_union_map_from_domain_and_range(
__isl_take isl_union_set *domain,
__isl_take isl_union_set *range);
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_from_range(
__isl_take isl_multi_val *mv);
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_from_range(
__isl_take isl_aff *aff);
__isl_give isl_multi_aff *isl_multi_aff_from_range(
__isl_take isl_multi_aff *ma);
__isl_give isl_pw_aff *isl_pw_aff_from_range(
__isl_take isl_pw_aff *pwa);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_range(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_from_range(
__isl_take isl_multi_union_pw_aff *mupa);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
__isl_take isl_set *set);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_from_domain(
__isl_take isl_union_set *uset);
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial *
isl_pw_qpolynomial_from_range(
__isl_take isl_pw_qpolynomial *pwqp);
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_from_range(
__isl_take isl_pw_qpolynomial_fold *pwf);
=item * Slicing
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_fix_si(
__isl_take isl_basic_set *bset,
enum isl_dim_type type, unsigned pos, int value);
__isl_give isl_basic_set *isl_basic_set_fix_val(
__isl_take isl_basic_set *bset,
enum isl_dim_type type, unsigned pos,
__isl_take isl_val *v);
__isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
enum isl_dim_type type, unsigned pos, int value);
__isl_give isl_set *isl_set_fix_val(
__isl_take isl_set *set,
enum isl_dim_type type, unsigned pos,
__isl_take isl_val *v);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_fix_si(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type, unsigned pos, int value);
__isl_give isl_basic_map *isl_basic_map_fix_val(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type, unsigned pos,
__isl_take isl_val *v);
__isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
enum isl_dim_type type, unsigned pos, int value);
__isl_give isl_map *isl_map_fix_val(
__isl_take isl_map *map,
enum isl_dim_type type, unsigned pos,
__isl_take isl_val *v);
#include <isl/aff.h>
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_fix_si(
__isl_take isl_pw_multi_aff *pma,
enum isl_dim_type type, unsigned pos, int value);
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_fix_val(
__isl_take isl_pw_qpolynomial *pwqp,
enum isl_dim_type type, unsigned n,
__isl_take isl_val *v);
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_fix_val(
__isl_take isl_pw_qpolynomial_fold *pwf,
enum isl_dim_type type, unsigned n,
__isl_take isl_val *v);
Intersect the set, relation or function domain
with the hyperplane where the given
dimension has the fixed given value.
#include <isl/set.h>
__isl_give isl_basic_set *
isl_basic_set_lower_bound_val(
__isl_take isl_basic_set *bset,
enum isl_dim_type type, unsigned pos,
__isl_take isl_val *value);
__isl_give isl_basic_set *
isl_basic_set_upper_bound_val(
__isl_take isl_basic_set *bset,
enum isl_dim_type type, unsigned pos,
__isl_take isl_val *value);
__isl_give isl_set *isl_set_lower_bound_si(
__isl_take isl_set *set,
enum isl_dim_type type, unsigned pos, int value);
__isl_give isl_set *isl_set_lower_bound_val(
__isl_take isl_set *set,
enum isl_dim_type type, unsigned pos,
__isl_take isl_val *value);
__isl_give isl_set *isl_set_upper_bound_si(
__isl_take isl_set *set,
enum isl_dim_type type, unsigned pos, int value);
__isl_give isl_set *isl_set_upper_bound_val(
__isl_take isl_set *set,
enum isl_dim_type type, unsigned pos,
__isl_take isl_val *value);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_lower_bound_si(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type, unsigned pos, int value);
__isl_give isl_basic_map *isl_basic_map_upper_bound_si(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type, unsigned pos, int value);
__isl_give isl_map *isl_map_lower_bound_si(
__isl_take isl_map *map,
enum isl_dim_type type, unsigned pos, int value);
__isl_give isl_map *isl_map_upper_bound_si(
__isl_take isl_map *map,
enum isl_dim_type type, unsigned pos, int value);
Intersect the set or relation with the half-space where the given
dimension has a value bounded by the fixed given integer value.
__isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
enum isl_dim_type type1, int pos1,
enum isl_dim_type type2, int pos2);
__isl_give isl_basic_map *isl_basic_map_equate(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type1, int pos1,
enum isl_dim_type type2, int pos2);
__isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
enum isl_dim_type type1, int pos1,
enum isl_dim_type type2, int pos2);
Intersect the set or relation with the hyperplane where the given
dimensions are equal to each other.
__isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
enum isl_dim_type type1, int pos1,
enum isl_dim_type type2, int pos2);
Intersect the relation with the hyperplane where the given
dimensions have opposite values.
__isl_give isl_map *isl_map_order_le(
__isl_take isl_map *map,
enum isl_dim_type type1, int pos1,
enum isl_dim_type type2, int pos2);
__isl_give isl_basic_map *isl_basic_map_order_ge(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type1, int pos1,
enum isl_dim_type type2, int pos2);
__isl_give isl_map *isl_map_order_ge(
__isl_take isl_map *map,
enum isl_dim_type type1, int pos1,
enum isl_dim_type type2, int pos2);
__isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map,
enum isl_dim_type type1, int pos1,
enum isl_dim_type type2, int pos2);
__isl_give isl_basic_map *isl_basic_map_order_gt(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type1, int pos1,
enum isl_dim_type type2, int pos2);
__isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map,
enum isl_dim_type type1, int pos1,
enum isl_dim_type type2, int pos2);
Intersect the relation with the half-space where the given
dimensions satisfy the given ordering.
#include <isl/union_set.h>
__isl_give isl_union_map *isl_union_map_remove_map_if(
__isl_take isl_union_map *umap,
isl_bool (*fn)(__isl_keep isl_map *map,
void *user), void *user);
This function calls the callback function once for each
pair of spaces for which there are elements in the input.
If the callback returns C<isl_bool_true>, then all those elements
are removed from the result. The only remaining elements in the output
are then those for which the callback returns C<isl_bool_false>.
=item * Locus
#include <isl/aff.h>
__isl_give isl_basic_set *isl_aff_zero_basic_set(
__isl_take isl_aff *aff);
__isl_give isl_basic_set *isl_aff_neg_basic_set(
__isl_take isl_aff *aff);
__isl_give isl_set *isl_pw_aff_pos_set(
__isl_take isl_pw_aff *pa);
__isl_give isl_set *isl_pw_aff_nonneg_set(
__isl_take isl_pw_aff *pwaff);
__isl_give isl_set *isl_pw_aff_zero_set(
__isl_take isl_pw_aff *pwaff);
__isl_give isl_set *isl_pw_aff_non_zero_set(
__isl_take isl_pw_aff *pwaff);
__isl_give isl_union_set *
isl_union_pw_aff_zero_union_set(
__isl_take isl_union_pw_aff *upa);
__isl_give isl_union_set *
isl_multi_union_pw_aff_zero_union_set(
__isl_take isl_multi_union_pw_aff *mupa);
The function C<isl_aff_neg_basic_set> returns a basic set
containing those elements in the domain space
of C<aff> where C<aff> is negative.
The function C<isl_pw_aff_nonneg_set> returns a set
containing those elements in the domain
of C<pwaff> where C<pwaff> is non-negative.
The function C<isl_multi_union_pw_aff_zero_union_set>
returns a union set containing those elements
in the domains of its elements where they are all zero.
=item * Identity
__isl_give isl_map *isl_set_identity(
__isl_take isl_set *set);
__isl_give isl_union_map *isl_union_set_identity(
__isl_take isl_union_set *uset);
__isl_give isl_union_pw_multi_aff *
isl_union_set_identity_union_pw_multi_aff(
__isl_take isl_union_set *uset);
Construct an identity relation on the given (union) set.
=item * Function Extraction
A piecewise quasi affine expression that is equal to 1 on a set
and 0 outside the set can be created using the following function.
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_set_indicator_function(
__isl_take isl_set *set);
A piecewise multiple quasi affine expression can be extracted
from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
and the C<isl_map> is single-valued.
In case of a conversion from an C<isl_union_map>
to an C<isl_union_pw_multi_aff>, these properties need to hold
in each domain space.
A conversion to a C<isl_multi_union_pw_aff> additionally
requires that the input is non-empty and involves only a single
range space.
#include <isl/aff.h>
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
__isl_take isl_set *set);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
__isl_take isl_map *map);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_from_union_set(
__isl_take isl_union_set *uset);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_from_union_map(
__isl_take isl_union_map *umap);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_from_union_map(
__isl_take isl_union_map *umap);
=item * Deltas
__isl_give isl_basic_set *isl_basic_map_deltas(
__isl_take isl_basic_map *bmap);
__isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
__isl_give isl_union_set *isl_union_map_deltas(
__isl_take isl_union_map *umap);
These functions return a (basic) set containing the differences
between image elements and corresponding domain elements in the input.
__isl_give isl_basic_map *isl_basic_map_deltas_map(
__isl_take isl_basic_map *bmap);
__isl_give isl_map *isl_map_deltas_map(
__isl_take isl_map *map);
__isl_give isl_union_map *isl_union_map_deltas_map(
__isl_take isl_union_map *umap);
The functions above construct a (basic, regular or union) relation
that maps (a wrapped version of) the input relation to its delta set.
=item * Coalescing
Simplify the representation of a set, relation or functions by trying
to combine pairs of basic sets or relations into a single
basic set or relation.
#include <isl/set.h>
__isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
#include <isl/map.h>
__isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
#include <isl/union_set.h>
__isl_give isl_union_set *isl_union_set_coalesce(
__isl_take isl_union_set *uset);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_coalesce(
__isl_take isl_union_map *umap);
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_aff_coalesce(
__isl_take isl_pw_aff *pwqp);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_coalesce(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_union_pw_aff *isl_union_pw_aff_coalesce(
__isl_take isl_union_pw_aff *upa);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_coalesce(
__isl_take isl_union_pw_multi_aff *upma);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_coalesce(
__isl_take isl_multi_union_pw_aff *aff);
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_coalesce(
__isl_take isl_pw_qpolynomial_fold *pwf);
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_coalesce(
__isl_take isl_union_pw_qpolynomial *upwqp);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_coalesce(
__isl_take isl_union_pw_qpolynomial_fold *upwf);
One of the methods for combining pairs of basic sets or relations
can result in coefficients that are much larger than those that appear
in the constraints of the input. By default, the coefficients are
not allowed to grow larger, but this can be changed by unsetting
the following option.
isl_stat isl_options_set_coalesce_bounded_wrapping(
isl_ctx *ctx, int val);
int isl_options_get_coalesce_bounded_wrapping(
isl_ctx *ctx);
One of the other methods tries to combine pairs of basic sets
with different local variables, treating them as existentially
quantified variables even if they have known (but different)
integer division expressions. The result may then also have
existentially quantified variables. Turning on the following
option prevents this from happening.
isl_stat isl_options_set_coalesce_preserve_locals(
isl_ctx *ctx, int val);
int isl_options_get_coalesce_preserve_locals(isl_ctx *ctx);
=item * Detecting equalities
__isl_give isl_basic_set *isl_basic_set_detect_equalities(
__isl_take isl_basic_set *bset);
__isl_give isl_basic_map *isl_basic_map_detect_equalities(
__isl_take isl_basic_map *bmap);
__isl_give isl_set *isl_set_detect_equalities(
__isl_take isl_set *set);
__isl_give isl_map *isl_map_detect_equalities(
__isl_take isl_map *map);
__isl_give isl_union_set *isl_union_set_detect_equalities(
__isl_take isl_union_set *uset);
__isl_give isl_union_map *isl_union_map_detect_equalities(
__isl_take isl_union_map *umap);
Simplify the representation of a set or relation by detecting implicit
equalities.
=item * Removing redundant constraints
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_remove_redundancies(
__isl_take isl_basic_set *bset);
__isl_give isl_set *isl_set_remove_redundancies(
__isl_take isl_set *set);
#include <isl/union_set.h>
__isl_give isl_union_set *
isl_union_set_remove_redundancies(
__isl_take isl_union_set *uset);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_remove_redundancies(
__isl_take isl_basic_map *bmap);
__isl_give isl_map *isl_map_remove_redundancies(
__isl_take isl_map *map);
#include <isl/union_map.h>
__isl_give isl_union_map *
isl_union_map_remove_redundancies(
__isl_take isl_union_map *umap);
=item * Convex hull
__isl_give isl_basic_set *isl_set_convex_hull(
__isl_take isl_set *set);
__isl_give isl_basic_map *isl_map_convex_hull(
__isl_take isl_map *map);
If the input set or relation has any existentially quantified
variables, then the result of these operations is currently undefined.
=item * Simple hull
#include <isl/set.h>
__isl_give isl_basic_set *
isl_set_unshifted_simple_hull(
__isl_take isl_set *set);
__isl_give isl_basic_set *isl_set_simple_hull(
__isl_take isl_set *set);
__isl_give isl_basic_set *
isl_set_plain_unshifted_simple_hull(
__isl_take isl_set *set);
__isl_give isl_basic_set *
isl_set_unshifted_simple_hull_from_set_list(
__isl_take isl_set *set,
__isl_take isl_set_list *list);
#include <isl/map.h>
__isl_give isl_basic_map *
isl_map_unshifted_simple_hull(
__isl_take isl_map *map);
__isl_give isl_basic_map *isl_map_simple_hull(
__isl_take isl_map *map);
__isl_give isl_basic_map *
isl_map_plain_unshifted_simple_hull(
__isl_take isl_map *map);
__isl_give isl_basic_map *
isl_map_unshifted_simple_hull_from_map_list(
__isl_take isl_map *map,
__isl_take isl_map_list *list);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_simple_hull(
__isl_take isl_union_map *umap);
These functions compute a single basic set or relation
that contains the whole input set or relation.
In particular, the output is described by translates
of the constraints describing the basic sets or relations in the input.
In case of C<isl_set_unshifted_simple_hull>, only the original
constraints are used, without any translation.
In case of C<isl_set_plain_unshifted_simple_hull> and
C<isl_map_plain_unshifted_simple_hull>, the result is described
by original constraints that are obviously satisfied
by the entire input set or relation.
In case of C<isl_set_unshifted_simple_hull_from_set_list> and
C<isl_map_unshifted_simple_hull_from_map_list>, the
constraints are taken from the elements of the second argument.
=begin latex
(See \autoref{s:simple hull}.)
=end latex
=item * Affine hull
__isl_give isl_basic_set *isl_basic_set_affine_hull(
__isl_take isl_basic_set *bset);
__isl_give isl_basic_set *isl_set_affine_hull(
__isl_take isl_set *set);
__isl_give isl_union_set *isl_union_set_affine_hull(
__isl_take isl_union_set *uset);
__isl_give isl_basic_map *isl_basic_map_affine_hull(
__isl_take isl_basic_map *bmap);
__isl_give isl_basic_map *isl_map_affine_hull(
__isl_take isl_map *map);
__isl_give isl_union_map *isl_union_map_affine_hull(
__isl_take isl_union_map *umap);
In case of union sets and relations, the affine hull is computed
per space.
=item * Polyhedral hull
__isl_give isl_basic_set *isl_set_polyhedral_hull(
__isl_take isl_set *set);
__isl_give isl_basic_map *isl_map_polyhedral_hull(
__isl_take isl_map *map);
__isl_give isl_union_set *isl_union_set_polyhedral_hull(
__isl_take isl_union_set *uset);
__isl_give isl_union_map *isl_union_map_polyhedral_hull(
__isl_take isl_union_map *umap);
These functions compute a single basic set or relation
not involving any existentially quantified variables
that contains the whole input set or relation.
In case of union sets and relations, the polyhedral hull is computed
per space.
=item * Box hull
#include <isl/map.h>
__isl_give isl_fixed_box *
isl_map_get_range_simple_fixed_box_hull(
__isl_keep isl_map *map);
This function tries to approximate the range of the map by a box of fixed size.
The box is described in terms of an offset living in the same space as
the input map and a size living in the range space. For any element
in the input map, the range value is greater than or equal to
the offset applied to the domain value and the difference with
this offset is strictly smaller than the size.
If no fixed-size approximation of the range can be found,
an I<invalid> box is returned, i.e., one for which
C<isl_fixed_box_is_valid> below returns false.
The validity, the offset and the size of the box can be obtained using
the following functions.
#include <isl/fixed_box.h>
isl_bool isl_fixed_box_is_valid(
__isl_keep isl_fixed_box *box);
__isl_give isl_multi_aff *isl_fixed_box_get_offset(
__isl_keep isl_fixed_box *box);
__isl_give isl_multi_val *isl_fixed_box_get_size(
__isl_keep isl_fixed_box *box);
The box can be copied and freed using the following functions.
#include <isl/fixed_box.h>
__isl_give isl_fixed_box *isl_fixed_box_copy(
__isl_keep isl_fixed_box *box);
__isl_null isl_fixed_box *isl_fixed_box_free(
__isl_take isl_fixed_box *box);
=item * Other approximations
#include <isl/set.h>
__isl_give isl_basic_set *
isl_basic_set_drop_constraints_involving_dims(
__isl_take isl_basic_set *bset,
enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_basic_set *
isl_basic_set_drop_constraints_not_involving_dims(
__isl_take isl_basic_set *bset,
enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_set *
isl_set_drop_constraints_involving_dims(
__isl_take isl_set *set,
enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_set *
isl_set_drop_constraints_not_involving_dims(
__isl_take isl_set *set,
enum isl_dim_type type,
unsigned first, unsigned n);
#include <isl/map.h>
__isl_give isl_basic_map *
isl_basic_map_drop_constraints_involving_dims(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_basic_map *
isl_basic_map_drop_constraints_not_involving_dims(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_map *
isl_map_drop_constraints_involving_dims(
__isl_take isl_map *map,
enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_map *
isl_map_drop_constraints_not_involving_dims(
__isl_take isl_map *map,
enum isl_dim_type type,
unsigned first, unsigned n);
These functions drop any constraints (not) involving the specified dimensions.
Note that the result depends on the representation of the input.
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
__isl_take isl_pw_qpolynomial *pwqp, int sign);
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_to_polynomial(
__isl_take isl_union_pw_qpolynomial *upwqp, int sign);
Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
the polynomial will be an overapproximation. If C<sign> is negative,
it will be an underapproximation. If C<sign> is zero, the approximation
will lie somewhere in between.
=item * Feasibility
__isl_give isl_basic_set *isl_basic_set_sample(
__isl_take isl_basic_set *bset);
__isl_give isl_basic_set *isl_set_sample(
__isl_take isl_set *set);
__isl_give isl_basic_map *isl_basic_map_sample(
__isl_take isl_basic_map *bmap);
__isl_give isl_basic_map *isl_map_sample(
__isl_take isl_map *map);
If the input (basic) set or relation is non-empty, then return
a singleton subset of the input. Otherwise, return an empty set.
=item * Optimization
#include <isl/ilp.h>
__isl_give isl_val *isl_basic_set_max_val(
__isl_keep isl_basic_set *bset,
__isl_keep isl_aff *obj);
__isl_give isl_val *isl_set_min_val(
__isl_keep isl_set *set,
__isl_keep isl_aff *obj);
__isl_give isl_val *isl_set_max_val(
__isl_keep isl_set *set,
__isl_keep isl_aff *obj);
__isl_give isl_multi_val *
isl_union_set_min_multi_union_pw_aff(
__isl_keep isl_union_set *uset,
__isl_keep isl_multi_union_pw_aff *obj);
Compute the minimum or maximum of the integer affine expression C<obj>
over the points in C<set>.
The result is C<NULL> in case of an error, the optimal value in case
there is one, negative infinity or infinity if the problem is unbounded and
NaN if the problem is empty.
#include <isl/ilp.h>
__isl_give isl_val *isl_union_pw_aff_min_val(
__isl_take isl_union_pw_aff *upa);
__isl_give isl_val *isl_union_pw_aff_max_val(
__isl_take isl_union_pw_aff *upa);
__isl_give isl_multi_val *
isl_multi_union_pw_aff_min_multi_val(
__isl_take isl_multi_union_pw_aff *mupa);
__isl_give isl_multi_val *
isl_multi_union_pw_aff_max_multi_val(
__isl_take isl_multi_union_pw_aff *mupa);
Compute the minimum or maximum of the integer affine expression
over its definition domain.
The result is C<NULL> in case of an error, the optimal value in case
there is one, negative infinity or infinity if the problem is unbounded and
NaN if the problem is empty.
#include <isl/ilp.h>
__isl_give isl_val *isl_basic_set_dim_max_val(
__isl_take isl_basic_set *bset, int pos);
Return the maximal value attained by the given set dimension,
independently of the parameter values and of any other dimensions.
The result is C<NULL> in case of an error, the optimal value in case
there is one, infinity if the problem is unbounded and
NaN if the input is empty.
=item * Parametric optimization
__isl_give isl_pw_aff *isl_set_dim_min(
__isl_take isl_set *set, int pos);
__isl_give isl_pw_aff *isl_set_dim_max(
__isl_take isl_set *set, int pos);
__isl_give isl_pw_aff *isl_map_dim_min(
__isl_take isl_map *map, int pos);
__isl_give isl_pw_aff *isl_map_dim_max(
__isl_take isl_map *map, int pos);
Compute the minimum or maximum of the given set or output dimension
as a function of the parameters (and input dimensions), but independently
of the other set or output dimensions.
For lexicographic optimization, see L<"Lexicographic Optimization">.
=item * Dual
The following functions compute either the set of (rational) coefficient
values of valid constraints for the given set or the set of (rational)
values satisfying the constraints with coefficients from the given set.
Internally, these two sets of functions perform essentially the
same operations, except that the set of coefficients is assumed to
be a cone, while the set of values may be any polyhedron.
The current implementation is based on the Farkas lemma and
Fourier-Motzkin elimination, but this may change or be made optional
in future. In particular, future implementations may use different
dualization algorithms or skip the elimination step.
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_coefficients(
__isl_take isl_basic_set *bset);
__isl_give isl_basic_set_list *
isl_basic_set_list_coefficients(
__isl_take isl_basic_set_list *list);
__isl_give isl_basic_set *isl_set_coefficients(
__isl_take isl_set *set);
__isl_give isl_union_set *isl_union_set_coefficients(
__isl_take isl_union_set *bset);
__isl_give isl_basic_set *isl_basic_set_solutions(
__isl_take isl_basic_set *bset);
__isl_give isl_basic_set *isl_set_solutions(
__isl_take isl_set *set);
__isl_give isl_union_set *isl_union_set_solutions(
__isl_take isl_union_set *bset);
=item * Power
__isl_give isl_map *isl_map_fixed_power_val(
__isl_take isl_map *map,
__isl_take isl_val *exp);
__isl_give isl_union_map *
isl_union_map_fixed_power_val(
__isl_take isl_union_map *umap,
__isl_take isl_val *exp);
Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
of C<map> is computed.
__isl_give isl_map *isl_map_power(__isl_take isl_map *map,
int *exact);
__isl_give isl_union_map *isl_union_map_power(
__isl_take isl_union_map *umap, int *exact);
Compute a parametric representation for all positive powers I<k> of C<map>.
The result maps I<k> to a nested relation corresponding to the
I<k>th power of C<map>.
The result may be an overapproximation. If the result is known to be exact,
then C<*exact> is set to C<1>.
=item * Transitive closure
__isl_give isl_map *isl_map_transitive_closure(
__isl_take isl_map *map, int *exact);
__isl_give isl_union_map *isl_union_map_transitive_closure(
__isl_take isl_union_map *umap, int *exact);
Compute the transitive closure of C<map>.
The result may be an overapproximation. If the result is known to be exact,
then C<*exact> is set to C<1>.
=item * Reaching path lengths
__isl_give isl_map *isl_map_reaching_path_lengths(
__isl_take isl_map *map, int *exact);
Compute a relation that maps each element in the range of C<map>
to the lengths of all paths composed of edges in C<map> that
end up in the given element.
The result may be an overapproximation. If the result is known to be exact,
then C<*exact> is set to C<1>.
To compute the I<maximal> path length, the resulting relation
should be postprocessed by C<isl_map_lexmax>.
In particular, if the input relation is a dependence relation
(mapping sources to sinks), then the maximal path length corresponds
to the free schedule.
Note, however, that C<isl_map_lexmax> expects the maximum to be
finite, so if the path lengths are unbounded (possibly due to
the overapproximation), then you will get an error message.
=item * Wrapping
#include <isl/space.h>
__isl_give isl_space *isl_space_wrap(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_unwrap(
__isl_take isl_space *space);
#include <isl/local_space.h>
__isl_give isl_local_space *isl_local_space_wrap(
__isl_take isl_local_space *ls);
#include <isl/set.h>
__isl_give isl_basic_map *isl_basic_set_unwrap(
__isl_take isl_basic_set *bset);
__isl_give isl_map *isl_set_unwrap(
__isl_take isl_set *set);
#include <isl/map.h>
__isl_give isl_basic_set *isl_basic_map_wrap(
__isl_take isl_basic_map *bmap);
__isl_give isl_set *isl_map_wrap(
__isl_take isl_map *map);
#include <isl/union_set.h>
__isl_give isl_union_map *isl_union_set_unwrap(
__isl_take isl_union_set *uset);
#include <isl/union_map.h>
__isl_give isl_union_set *isl_union_map_wrap(
__isl_take isl_union_map *umap);
The input to C<isl_space_unwrap> should
be the space of a set, while that of
C<isl_space_wrap> should be the space of a relation.
Conversely, the output of C<isl_space_unwrap> is the space
of a relation, while that of C<isl_space_wrap> is the space of a set.
=item * Flattening
Remove any internal structure of domain (and range) of the given
set or relation. If there is any such internal structure in the input,
then the name of the space is also removed.
#include <isl/space.h>
__isl_give isl_space *isl_space_flatten_domain(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_flatten_range(
__isl_take isl_space *space);
#include <isl/local_space.h>
__isl_give isl_local_space *
isl_local_space_flatten_domain(
__isl_take isl_local_space *ls);
__isl_give isl_local_space *
isl_local_space_flatten_range(
__isl_take isl_local_space *ls);
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_flatten(
__isl_take isl_basic_set *bset);
__isl_give isl_set *isl_set_flatten(
__isl_take isl_set *set);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_flatten_domain(
__isl_take isl_basic_map *bmap);
__isl_give isl_basic_map *isl_basic_map_flatten_range(
__isl_take isl_basic_map *bmap);
__isl_give isl_map *isl_map_flatten_range(
__isl_take isl_map *map);
__isl_give isl_map *isl_map_flatten_domain(
__isl_take isl_map *map);
__isl_give isl_basic_map *isl_basic_map_flatten(
__isl_take isl_basic_map *bmap);
__isl_give isl_map *isl_map_flatten(
__isl_take isl_map *map);
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_flatten_range(
__isl_take isl_multi_val *mv);
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_flatten_domain(
__isl_take isl_multi_aff *ma);
__isl_give isl_multi_aff *isl_multi_aff_flatten_range(
__isl_take isl_multi_aff *ma);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_flatten_range(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_flatten_range(
__isl_take isl_multi_union_pw_aff *mupa);
#include <isl/map.h>
__isl_give isl_map *isl_set_flatten_map(
__isl_take isl_set *set);
The function above constructs a relation
that maps the input set to a flattened version of the set.
=item * Lifting
Lift the input set to a space with extra dimensions corresponding
to the existentially quantified variables in the input.
In particular, the result lives in a wrapped map where the domain
is the original space and the range corresponds to the original
existentially quantified variables.
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_lift(
__isl_take isl_basic_set *bset);
__isl_give isl_set *isl_set_lift(
__isl_take isl_set *set);
__isl_give isl_union_set *isl_union_set_lift(
__isl_take isl_union_set *uset);
Given a local space that contains the existentially quantified
variables of a set, a basic relation that, when applied to
a basic set, has essentially the same effect as C<isl_basic_set_lift>,
can be constructed using the following function.
#include <isl/local_space.h>
__isl_give isl_basic_map *isl_local_space_lifting(
__isl_take isl_local_space *ls);
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_lift(
__isl_take isl_multi_aff *maff,
__isl_give isl_local_space **ls);
If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
then it is assigned the local space that lies at the basis of
the lifting applied.
=item * Internal Product
#include <isl/space.h>
__isl_give isl_space *isl_space_zip(
__isl_take isl_space *space);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_zip(
__isl_take isl_basic_map *bmap);
__isl_give isl_map *isl_map_zip(
__isl_take isl_map *map);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_zip(
__isl_take isl_union_map *umap);
Given a relation with nested relations for domain and range,
interchange the range of the domain with the domain of the range.
=item * Currying
#include <isl/space.h>
__isl_give isl_space *isl_space_curry(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_uncurry(
__isl_take isl_space *space);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_curry(
__isl_take isl_basic_map *bmap);
__isl_give isl_basic_map *isl_basic_map_uncurry(
__isl_take isl_basic_map *bmap);
__isl_give isl_map *isl_map_curry(
__isl_take isl_map *map);
__isl_give isl_map *isl_map_uncurry(
__isl_take isl_map *map);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_curry(
__isl_take isl_union_map *umap);
__isl_give isl_union_map *isl_union_map_uncurry(
__isl_take isl_union_map *umap);
Given a relation with a nested relation for domain,
the C<curry> functions
move the range of the nested relation out of the domain
and use it as the domain of a nested relation in the range,
with the original range as range of this nested relation.
The C<uncurry> functions perform the inverse operation.
#include <isl/space.h>
__isl_give isl_space *isl_space_range_curry(
__isl_take isl_space *space);
#include <isl/map.h>
__isl_give isl_map *isl_map_range_curry(
__isl_take isl_map *map);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_range_curry(
__isl_take isl_union_map *umap);
These functions apply the currying to the relation that
is nested inside the range of the input.
=item * Aligning parameters
Change the order of the parameters of the given set, relation
or function
such that the first parameters match those of C<model>.
This may involve the introduction of extra parameters.
All parameters need to be named.
#include <isl/space.h>
__isl_give isl_space *isl_space_align_params(
__isl_take isl_space *space1,
__isl_take isl_space *space2)
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_align_params(
__isl_take isl_basic_set *bset,
__isl_take isl_space *model);
__isl_give isl_set *isl_set_align_params(
__isl_take isl_set *set,
__isl_take isl_space *model);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_align_params(
__isl_take isl_basic_map *bmap,
__isl_take isl_space *model);
__isl_give isl_map *isl_map_align_params(
__isl_take isl_map *map,
__isl_take isl_space *model);
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_align_params(
__isl_take isl_multi_val *mv,
__isl_take isl_space *model);
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_align_params(
__isl_take isl_aff *aff,
__isl_take isl_space *model);
__isl_give isl_multi_aff *isl_multi_aff_align_params(
__isl_take isl_multi_aff *multi,
__isl_take isl_space *model);
__isl_give isl_pw_aff *isl_pw_aff_align_params(
__isl_take isl_pw_aff *pwaff,
__isl_take isl_space *model);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params(
__isl_take isl_pw_multi_aff *pma,
__isl_take isl_space *model);
__isl_give isl_union_pw_aff *
isl_union_pw_aff_align_params(
__isl_take isl_union_pw_aff *upa,
__isl_take isl_space *model);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_align_params(
__isl_take isl_union_pw_multi_aff *upma,
__isl_take isl_space *model);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_align_params(
__isl_take isl_multi_union_pw_aff *mupa,
__isl_take isl_space *model);
#include <isl/polynomial.h>
__isl_give isl_qpolynomial *isl_qpolynomial_align_params(
__isl_take isl_qpolynomial *qp,
__isl_take isl_space *model);
=item * Drop unused parameters
Drop parameters that are not referenced by the isl object.
All parameters need to be named.
#include <isl/set.h>
__isl_give isl_basic_set *
isl_basic_set_drop_unused_params(
__isl_take isl_basic_set *bset);
__isl_give isl_set *isl_set_drop_unused_params(
__isl_take isl_set *set);
#include <isl/map.h>
__isl_give isl_basic_map *
isl_basic_map_drop_unused_params(
__isl_take isl_basic_map *bmap);
__isl_give isl_map *isl_map_drop_unused_params(
__isl_take isl_map *map);
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_aff_drop_unused_params(
__isl_take isl_pw_aff *pa);
__isl_give isl_pw_multi_aff *
isl_pw_multi_aff_drop_unused_params(
__isl_take isl_pw_multi_aff *pma);
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial *
isl_pw_qpolynomial_drop_unused_params(
__isl_take isl_pw_qpolynomial *pwqp);
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_drop_unused_params(
__isl_take isl_pw_qpolynomial_fold *pwf);
=item * Unary Arithmetic Operations
#include <isl/set.h>
__isl_give isl_set *isl_set_neg(
__isl_take isl_set *set);
#include <isl/map.h>
__isl_give isl_map *isl_map_neg(
__isl_take isl_map *map);
C<isl_set_neg> constructs a set containing the opposites of
the elements in its argument.
The domain of the result of C<isl_map_neg> is the same
as the domain of its argument. The corresponding range
elements are the opposites of the corresponding range
elements in the argument.
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_neg(
__isl_take isl_multi_val *mv);
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_neg(
__isl_take isl_aff *aff);
__isl_give isl_multi_aff *isl_multi_aff_neg(
__isl_take isl_multi_aff *ma);
__isl_give isl_pw_aff *isl_pw_aff_neg(
__isl_take isl_pw_aff *pwaff);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_neg(
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_neg(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_union_pw_aff *isl_union_pw_aff_neg(
__isl_take isl_union_pw_aff *upa);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_neg(
__isl_take isl_union_pw_multi_aff *upma);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_neg(
__isl_take isl_multi_union_pw_aff *mupa);
__isl_give isl_aff *isl_aff_ceil(
__isl_take isl_aff *aff);
__isl_give isl_pw_aff *isl_pw_aff_ceil(
__isl_take isl_pw_aff *pwaff);
__isl_give isl_aff *isl_aff_floor(
__isl_take isl_aff *aff);
__isl_give isl_multi_aff *isl_multi_aff_floor(
__isl_take isl_multi_aff *ma);
__isl_give isl_pw_aff *isl_pw_aff_floor(
__isl_take isl_pw_aff *pwaff);
__isl_give isl_union_pw_aff *isl_union_pw_aff_floor(
__isl_take isl_union_pw_aff *upa);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_floor(
__isl_take isl_multi_union_pw_aff *mupa);
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_aff_list_min(
__isl_take isl_pw_aff_list *list);
__isl_give isl_pw_aff *isl_pw_aff_list_max(
__isl_take isl_pw_aff_list *list);
#include <isl/polynomial.h>
__isl_give isl_qpolynomial *isl_qpolynomial_neg(
__isl_take isl_qpolynomial *qp);
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
__isl_take isl_pw_qpolynomial *pwqp);
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_neg(
__isl_take isl_union_pw_qpolynomial *upwqp);
__isl_give isl_qpolynomial *isl_qpolynomial_pow(
__isl_take isl_qpolynomial *qp,
unsigned exponent);
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
__isl_take isl_pw_qpolynomial *pwqp,
unsigned exponent);
=item * Evaluation
The following functions evaluate a function in a point.
#include <isl/aff.h>
__isl_give isl_val *isl_aff_eval(
__isl_take isl_aff *aff,
__isl_take isl_point *pnt);
__isl_give isl_val *isl_pw_aff_eval(
__isl_take isl_pw_aff *pa,
__isl_take isl_point *pnt);
#include <isl/polynomial.h>
__isl_give isl_val *isl_pw_qpolynomial_eval(
__isl_take isl_pw_qpolynomial *pwqp,
__isl_take isl_point *pnt);
__isl_give isl_val *isl_pw_qpolynomial_fold_eval(
__isl_take isl_pw_qpolynomial_fold *pwf,
__isl_take isl_point *pnt);
__isl_give isl_val *isl_union_pw_qpolynomial_eval(
__isl_take isl_union_pw_qpolynomial *upwqp,
__isl_take isl_point *pnt);
__isl_give isl_val *isl_union_pw_qpolynomial_fold_eval(
__isl_take isl_union_pw_qpolynomial_fold *upwf,
__isl_take isl_point *pnt);
These functions return NaN when evaluated at a void point.
Note that C<isl_pw_aff_eval> returns NaN when the function is evaluated outside
its definition domain, while C<isl_pw_qpolynomial_eval> returns zero
when the function is evaluated outside its explicit domain.
=item * Dimension manipulation
It is usually not advisable to directly change the (input or output)
space of a set or a relation as this removes the name and the internal
structure of the space. However, the functions below can be useful
to add new parameters, assuming
C<isl_set_align_params> and C<isl_map_align_params>
are not sufficient.
#include <isl/space.h>
__isl_give isl_space *isl_space_add_dims(
__isl_take isl_space *space,
enum isl_dim_type type, unsigned n);
__isl_give isl_space *isl_space_insert_dims(
__isl_take isl_space *space,
enum isl_dim_type type, unsigned pos, unsigned n);
__isl_give isl_space *isl_space_drop_dims(
__isl_take isl_space *space,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_space *isl_space_move_dims(
__isl_take isl_space *space,
enum isl_dim_type dst_type, unsigned dst_pos,
enum isl_dim_type src_type, unsigned src_pos,
unsigned n);
#include <isl/local_space.h>
__isl_give isl_local_space *isl_local_space_add_dims(
__isl_take isl_local_space *ls,
enum isl_dim_type type, unsigned n);
__isl_give isl_local_space *isl_local_space_insert_dims(
__isl_take isl_local_space *ls,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_local_space *isl_local_space_drop_dims(
__isl_take isl_local_space *ls,
enum isl_dim_type type, unsigned first, unsigned n);
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_add_dims(
__isl_take isl_basic_set *bset,
enum isl_dim_type type, unsigned n);
__isl_give isl_set *isl_set_add_dims(
__isl_take isl_set *set,
enum isl_dim_type type, unsigned n);
__isl_give isl_basic_set *isl_basic_set_insert_dims(
__isl_take isl_basic_set *bset,
enum isl_dim_type type, unsigned pos,
unsigned n);
__isl_give isl_set *isl_set_insert_dims(
__isl_take isl_set *set,
enum isl_dim_type type, unsigned pos, unsigned n);
__isl_give isl_basic_set *isl_basic_set_move_dims(
__isl_take isl_basic_set *bset,
enum isl_dim_type dst_type, unsigned dst_pos,
enum isl_dim_type src_type, unsigned src_pos,
unsigned n);
__isl_give isl_set *isl_set_move_dims(
__isl_take isl_set *set,
enum isl_dim_type dst_type, unsigned dst_pos,
enum isl_dim_type src_type, unsigned src_pos,
unsigned n);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_add_dims(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type, unsigned n);
__isl_give isl_map *isl_map_add_dims(
__isl_take isl_map *map,
enum isl_dim_type type, unsigned n);
__isl_give isl_basic_map *isl_basic_map_insert_dims(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type, unsigned pos,
unsigned n);
__isl_give isl_map *isl_map_insert_dims(
__isl_take isl_map *map,
enum isl_dim_type type, unsigned pos, unsigned n);
__isl_give isl_basic_map *isl_basic_map_move_dims(
__isl_take isl_basic_map *bmap,
enum isl_dim_type dst_type, unsigned dst_pos,
enum isl_dim_type src_type, unsigned src_pos,
unsigned n);
__isl_give isl_map *isl_map_move_dims(
__isl_take isl_map *map,
enum isl_dim_type dst_type, unsigned dst_pos,
enum isl_dim_type src_type, unsigned src_pos,
unsigned n);
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_insert_dims(
__isl_take isl_multi_val *mv,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_multi_val *isl_multi_val_add_dims(
__isl_take isl_multi_val *mv,
enum isl_dim_type type, unsigned n);
__isl_give isl_multi_val *isl_multi_val_drop_dims(
__isl_take isl_multi_val *mv,
enum isl_dim_type type, unsigned first, unsigned n);
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_insert_dims(
__isl_take isl_aff *aff,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_multi_aff *isl_multi_aff_insert_dims(
__isl_take isl_multi_aff *ma,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_pw_aff *isl_pw_aff_insert_dims(
__isl_take isl_pw_aff *pwaff,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_insert_dims(
__isl_take isl_multi_pw_aff *mpa,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_aff *isl_aff_add_dims(
__isl_take isl_aff *aff,
enum isl_dim_type type, unsigned n);
__isl_give isl_multi_aff *isl_multi_aff_add_dims(
__isl_take isl_multi_aff *ma,
enum isl_dim_type type, unsigned n);
__isl_give isl_pw_aff *isl_pw_aff_add_dims(
__isl_take isl_pw_aff *pwaff,
enum isl_dim_type type, unsigned n);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_add_dims(
__isl_take isl_multi_pw_aff *mpa,
enum isl_dim_type type, unsigned n);
__isl_give isl_aff *isl_aff_drop_dims(
__isl_take isl_aff *aff,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_multi_aff *isl_multi_aff_drop_dims(
__isl_take isl_multi_aff *maff,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_pw_aff *isl_pw_aff_drop_dims(
__isl_take isl_pw_aff *pwaff,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims(
__isl_take isl_pw_multi_aff *pma,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_union_pw_aff *isl_union_pw_aff_drop_dims(
__isl_take isl_union_pw_aff *upa,
enum isl_dim_type type, unsigned first, unsigned n);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_drop_dims(
__isl_take isl_union_pw_multi_aff *upma,
enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_drop_dims(
__isl_take isl_multi_union_pw_aff *mupa,
enum isl_dim_type type, unsigned first,
unsigned n);
__isl_give isl_aff *isl_aff_move_dims(
__isl_take isl_aff *aff,
enum isl_dim_type dst_type, unsigned dst_pos,
enum isl_dim_type src_type, unsigned src_pos,
unsigned n);
__isl_give isl_multi_aff *isl_multi_aff_move_dims(
__isl_take isl_multi_aff *ma,
enum isl_dim_type dst_type, unsigned dst_pos,
enum isl_dim_type src_type, unsigned src_pos,
unsigned n);
__isl_give isl_pw_aff *isl_pw_aff_move_dims(
__isl_take isl_pw_aff *pa,
enum isl_dim_type dst_type, unsigned dst_pos,
enum isl_dim_type src_type, unsigned src_pos,
unsigned n);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_move_dims(
__isl_take isl_multi_pw_aff *pma,
enum isl_dim_type dst_type, unsigned dst_pos,
enum isl_dim_type src_type, unsigned src_pos,
unsigned n);
#include <isl/polynomial.h>
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_drop_dims(
__isl_take isl_union_pw_qpolynomial *upwqp,
enum isl_dim_type type,
unsigned first, unsigned n);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_drop_dims(
__isl_take isl_union_pw_qpolynomial_fold *upwf,
enum isl_dim_type type,
unsigned first, unsigned n);
The operations on union expressions can only manipulate parameters.
=back
=head2 Binary Operations
The two arguments of a binary operation not only need to live
in the same C<isl_ctx>, they currently also need to have
the same (number of) parameters.
=head3 Basic Operations
=over
=item * Intersection
#include <isl/local_space.h>
__isl_give isl_local_space *isl_local_space_intersect(
__isl_take isl_local_space *ls1,
__isl_take isl_local_space *ls2);
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_intersect_params(
__isl_take isl_basic_set *bset1,
__isl_take isl_basic_set *bset2);
__isl_give isl_basic_set *isl_basic_set_intersect(
__isl_take isl_basic_set *bset1,
__isl_take isl_basic_set *bset2);
__isl_give isl_basic_set *isl_basic_set_list_intersect(
__isl_take struct isl_basic_set_list *list);
__isl_give isl_set *isl_set_intersect_params(
__isl_take isl_set *set,
__isl_take isl_set *params);
__isl_give isl_set *isl_set_intersect(
__isl_take isl_set *set1,
__isl_take isl_set *set2);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_intersect_domain(
__isl_take isl_basic_map *bmap,
__isl_take isl_basic_set *bset);
__isl_give isl_basic_map *isl_basic_map_intersect_range(
__isl_take isl_basic_map *bmap,
__isl_take isl_basic_set *bset);
__isl_give isl_basic_map *isl_basic_map_intersect(
__isl_take isl_basic_map *bmap1,
__isl_take isl_basic_map *bmap2);
__isl_give isl_basic_map *isl_basic_map_list_intersect(
__isl_take isl_basic_map_list *list);
__isl_give isl_map *isl_map_intersect_params(
__isl_take isl_map *map,
__isl_take isl_set *params);
__isl_give isl_map *isl_map_intersect_domain(
__isl_take isl_map *map,
__isl_take isl_set *set);
__isl_give isl_map *isl_map_intersect_range(
__isl_take isl_map *map,
__isl_take isl_set *set);
__isl_give isl_map *isl_map_intersect(
__isl_take isl_map *map1,
__isl_take isl_map *map2);
__isl_give isl_map *
isl_map_intersect_domain_factor_range(
__isl_take isl_map *map,
__isl_take isl_map *factor);
__isl_give isl_map *
isl_map_intersect_range_factor_range(
__isl_take isl_map *map,
__isl_take isl_map *factor);
#include <isl/union_set.h>
__isl_give isl_union_set *isl_union_set_intersect_params(
__isl_take isl_union_set *uset,
__isl_take isl_set *set);
__isl_give isl_union_set *isl_union_set_intersect(
__isl_take isl_union_set *uset1,
__isl_take isl_union_set *uset2);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_intersect_params(
__isl_take isl_union_map *umap,
__isl_take isl_set *set);
__isl_give isl_union_map *isl_union_map_intersect_domain(
__isl_take isl_union_map *umap,
__isl_take isl_union_set *uset);
__isl_give isl_union_map *isl_union_map_intersect_range(
__isl_take isl_union_map *umap,
__isl_take isl_union_set *uset);
__isl_give isl_union_map *isl_union_map_intersect(
__isl_take isl_union_map *umap1,
__isl_take isl_union_map *umap2);
__isl_give isl_union_map *
isl_union_map_intersect_range_factor_range(
__isl_take isl_union_map *umap,
__isl_take isl_union_map *factor);
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
__isl_take isl_pw_aff *pa,
__isl_take isl_set *set);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_intersect_domain(
__isl_take isl_multi_pw_aff *mpa,
__isl_take isl_set *domain);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
__isl_take isl_pw_multi_aff *pma,
__isl_take isl_set *set);
__isl_give isl_union_pw_aff *isl_union_pw_aff_intersect_domain(
__isl_take isl_union_pw_aff *upa,
__isl_take isl_union_set *uset);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_intersect_domain(
__isl_take isl_union_pw_multi_aff *upma,
__isl_take isl_union_set *uset);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_intersect_domain(
__isl_take isl_multi_union_pw_aff *mupa,
__isl_take isl_union_set *uset);
__isl_give isl_pw_aff *isl_pw_aff_intersect_params(
__isl_take isl_pw_aff *pa,
__isl_take isl_set *set);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_intersect_params(
__isl_take isl_multi_pw_aff *mpa,
__isl_take isl_set *set);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
__isl_take isl_pw_multi_aff *pma,
__isl_take isl_set *set);
__isl_give isl_union_pw_aff *
isl_union_pw_aff_intersect_params(
__isl_take isl_union_pw_aff *upa,
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_intersect_params(
__isl_take isl_union_pw_multi_aff *upma,
__isl_take isl_set *set);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_intersect_params(
__isl_take isl_multi_union_pw_aff *mupa,
__isl_take isl_set *params);
isl_multi_union_pw_aff_intersect_range(
__isl_take isl_multi_union_pw_aff *mupa,
__isl_take isl_set *set);
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial *
isl_pw_qpolynomial_intersect_domain(
__isl_take isl_pw_qpolynomial *pwpq,
__isl_take isl_set *set);
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_intersect_domain(
__isl_take isl_union_pw_qpolynomial *upwpq,
__isl_take isl_union_set *uset);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_intersect_domain(
__isl_take isl_union_pw_qpolynomial_fold *upwf,
__isl_take isl_union_set *uset);
__isl_give isl_pw_qpolynomial *
isl_pw_qpolynomial_intersect_params(
__isl_take isl_pw_qpolynomial *pwpq,
__isl_take isl_set *set);
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_intersect_params(
__isl_take isl_pw_qpolynomial_fold *pwf,
__isl_take isl_set *set);
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_intersect_params(
__isl_take isl_union_pw_qpolynomial *upwpq,
__isl_take isl_set *set);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_intersect_params(
__isl_take isl_union_pw_qpolynomial_fold *upwf,
__isl_take isl_set *set);
The second argument to the C<_params> functions needs to be
a parametric (basic) set. For the other functions, a parametric set
for either argument is only allowed if the other argument is
a parametric set as well.
The list passed to C<isl_basic_set_list_intersect> needs to have
at least one element and all elements need to live in the same space.
The function C<isl_multi_union_pw_aff_intersect_range>
restricts the input function to those shared domain elements
that map to the specified range.
=item * Union
#include <isl/set.h>
__isl_give isl_set *isl_basic_set_union(
__isl_take isl_basic_set *bset1,
__isl_take isl_basic_set *bset2);
__isl_give isl_set *isl_set_union(
__isl_take isl_set *set1,
__isl_take isl_set *set2);
__isl_give isl_set *isl_set_list_union(
__isl_take isl_set_list *list);
#include <isl/map.h>
__isl_give isl_map *isl_basic_map_union(
__isl_take isl_basic_map *bmap1,
__isl_take isl_basic_map *bmap2);
__isl_give isl_map *isl_map_union(
__isl_take isl_map *map1,
__isl_take isl_map *map2);
#include <isl/union_set.h>
__isl_give isl_union_set *isl_union_set_union(
__isl_take isl_union_set *uset1,
__isl_take isl_union_set *uset2);
__isl_give isl_union_set *isl_union_set_list_union(
__isl_take isl_union_set_list *list);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_union(
__isl_take isl_union_map *umap1,
__isl_take isl_union_map *umap2);
The list passed to C<isl_set_list_union> needs to have
at least one element and all elements need to live in the same space.
=item * Set difference
#include <isl/set.h>
__isl_give isl_set *isl_set_subtract(
__isl_take isl_set *set1,
__isl_take isl_set *set2);
#include <isl/map.h>
__isl_give isl_map *isl_map_subtract(
__isl_take isl_map *map1,
__isl_take isl_map *map2);
__isl_give isl_map *isl_map_subtract_domain(
__isl_take isl_map *map,
__isl_take isl_set *dom);
__isl_give isl_map *isl_map_subtract_range(
__isl_take isl_map *map,
__isl_take isl_set *dom);
#include <isl/union_set.h>
__isl_give isl_union_set *isl_union_set_subtract(
__isl_take isl_union_set *uset1,
__isl_take isl_union_set *uset2);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_subtract(
__isl_take isl_union_map *umap1,
__isl_take isl_union_map *umap2);
__isl_give isl_union_map *isl_union_map_subtract_domain(
__isl_take isl_union_map *umap,
__isl_take isl_union_set *dom);
__isl_give isl_union_map *isl_union_map_subtract_range(
__isl_take isl_union_map *umap,
__isl_take isl_union_set *dom);
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_aff_subtract_domain(
__isl_take isl_pw_aff *pa,
__isl_take isl_set *set);
__isl_give isl_pw_multi_aff *
isl_pw_multi_aff_subtract_domain(
__isl_take isl_pw_multi_aff *pma,
__isl_take isl_set *set);
__isl_give isl_union_pw_aff *
isl_union_pw_aff_subtract_domain(
__isl_take isl_union_pw_aff *upa,
__isl_take isl_union_set *uset);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_subtract_domain(
__isl_take isl_union_pw_multi_aff *upma,
__isl_take isl_set *set);
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial *
isl_pw_qpolynomial_subtract_domain(
__isl_take isl_pw_qpolynomial *pwpq,
__isl_take isl_set *set);
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_subtract_domain(
__isl_take isl_pw_qpolynomial_fold *pwf,
__isl_take isl_set *set);
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_subtract_domain(
__isl_take isl_union_pw_qpolynomial *upwpq,
__isl_take isl_union_set *uset);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_subtract_domain(
__isl_take isl_union_pw_qpolynomial_fold *upwf,
__isl_take isl_union_set *uset);
=item * Application
#include <isl/space.h>
__isl_give isl_space *isl_space_join(
__isl_take isl_space *left,
__isl_take isl_space *right);
#include <isl/map.h>
__isl_give isl_basic_set *isl_basic_set_apply(
__isl_take isl_basic_set *bset,
__isl_take isl_basic_map *bmap);
__isl_give isl_set *isl_set_apply(
__isl_take isl_set *set,
__isl_take isl_map *map);
__isl_give isl_union_set *isl_union_set_apply(
__isl_take isl_union_set *uset,
__isl_take isl_union_map *umap);
__isl_give isl_basic_map *isl_basic_map_apply_domain(
__isl_take isl_basic_map *bmap1,
__isl_take isl_basic_map *bmap2);
__isl_give isl_basic_map *isl_basic_map_apply_range(
__isl_take isl_basic_map *bmap1,
__isl_take isl_basic_map *bmap2);
__isl_give isl_map *isl_map_apply_domain(
__isl_take isl_map *map1,
__isl_take isl_map *map2);
__isl_give isl_map *isl_map_apply_range(
__isl_take isl_map *map1,
__isl_take isl_map *map2);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_apply_domain(
__isl_take isl_union_map *umap1,
__isl_take isl_union_map *umap2);
__isl_give isl_union_map *isl_union_map_apply_range(
__isl_take isl_union_map *umap1,
__isl_take isl_union_map *umap2);
#include <isl/aff.h>
__isl_give isl_union_pw_aff *
isl_multi_union_pw_aff_apply_aff(
__isl_take isl_multi_union_pw_aff *mupa,
__isl_take isl_aff *aff);
__isl_give isl_union_pw_aff *
isl_multi_union_pw_aff_apply_pw_aff(
__isl_take isl_multi_union_pw_aff *mupa,
__isl_take isl_pw_aff *pa);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_apply_multi_aff(
__isl_take isl_multi_union_pw_aff *mupa,
__isl_take isl_multi_aff *ma);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_apply_pw_multi_aff(
__isl_take isl_multi_union_pw_aff *mupa,
__isl_take isl_pw_multi_aff *pma);
The result of C<isl_multi_union_pw_aff_apply_aff> is defined
over the shared domain of the elements of the input. The dimension is
required to be greater than zero.
The C<isl_multi_union_pw_aff> argument of
C<isl_multi_union_pw_aff_apply_multi_aff> is allowed to be zero-dimensional,
but only if the range of the C<isl_multi_aff> argument
is also zero-dimensional.
Similarly for C<isl_multi_union_pw_aff_apply_pw_multi_aff>.
#include <isl/polynomial.h>
__isl_give isl_pw_qpolynomial_fold *
isl_set_apply_pw_qpolynomial_fold(
__isl_take isl_set *set,
__isl_take isl_pw_qpolynomial_fold *pwf,
int *tight);
__isl_give isl_pw_qpolynomial_fold *
isl_map_apply_pw_qpolynomial_fold(
__isl_take isl_map *map,
__isl_take isl_pw_qpolynomial_fold *pwf,
int *tight);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_set_apply_union_pw_qpolynomial_fold(
__isl_take isl_union_set *uset,
__isl_take isl_union_pw_qpolynomial_fold *upwf,
int *tight);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_map_apply_union_pw_qpolynomial_fold(
__isl_take isl_union_map *umap,
__isl_take isl_union_pw_qpolynomial_fold *upwf,
int *tight);
The functions taking a map
compose the given map with the given piecewise quasipolynomial reduction.
That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
over all elements in the intersection of the range of the map
and the domain of the piecewise quasipolynomial reduction
as a function of an element in the domain of the map.
The functions taking a set compute a bound over all elements in the
intersection of the set and the domain of the
piecewise quasipolynomial reduction.
=item * Preimage
#include <isl/set.h>
__isl_give isl_basic_set *
isl_basic_set_preimage_multi_aff(
__isl_take isl_basic_set *bset,
__isl_take isl_multi_aff *ma);
__isl_give isl_set *isl_set_preimage_multi_aff(
__isl_take isl_set *set,
__isl_take isl_multi_aff *ma);
__isl_give isl_set *isl_set_preimage_pw_multi_aff(
__isl_take isl_set *set,
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_set *isl_set_preimage_multi_pw_aff(
__isl_take isl_set *set,
__isl_take isl_multi_pw_aff *mpa);
#include <isl/union_set.h>
__isl_give isl_union_set *
isl_union_set_preimage_multi_aff(
__isl_take isl_union_set *uset,
__isl_take isl_multi_aff *ma);
__isl_give isl_union_set *
isl_union_set_preimage_pw_multi_aff(
__isl_take isl_union_set *uset,
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_union_set *
isl_union_set_preimage_union_pw_multi_aff(
__isl_take isl_union_set *uset,
__isl_take isl_union_pw_multi_aff *upma);
#include <isl/map.h>
__isl_give isl_basic_map *
isl_basic_map_preimage_domain_multi_aff(
__isl_take isl_basic_map *bmap,
__isl_take isl_multi_aff *ma);
__isl_give isl_map *isl_map_preimage_domain_multi_aff(
__isl_take isl_map *map,
__isl_take isl_multi_aff *ma);
__isl_give isl_map *isl_map_preimage_range_multi_aff(
__isl_take isl_map *map,
__isl_take isl_multi_aff *ma);
__isl_give isl_map *
isl_map_preimage_domain_pw_multi_aff(
__isl_take isl_map *map,
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_map *
isl_map_preimage_range_pw_multi_aff(
__isl_take isl_map *map,
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_map *
isl_map_preimage_domain_multi_pw_aff(
__isl_take isl_map *map,
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_basic_map *
isl_basic_map_preimage_range_multi_aff(
__isl_take isl_basic_map *bmap,
__isl_take isl_multi_aff *ma);
#include <isl/union_map.h>
__isl_give isl_union_map *
isl_union_map_preimage_domain_multi_aff(
__isl_take isl_union_map *umap,
__isl_take isl_multi_aff *ma);
__isl_give isl_union_map *
isl_union_map_preimage_range_multi_aff(
__isl_take isl_union_map *umap,
__isl_take isl_multi_aff *ma);
__isl_give isl_union_map *
isl_union_map_preimage_domain_pw_multi_aff(
__isl_take isl_union_map *umap,
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_union_map *
isl_union_map_preimage_range_pw_multi_aff(
__isl_take isl_union_map *umap,
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_union_map *
isl_union_map_preimage_domain_union_pw_multi_aff(
__isl_take isl_union_map *umap,
__isl_take isl_union_pw_multi_aff *upma);
__isl_give isl_union_map *
isl_union_map_preimage_range_union_pw_multi_aff(
__isl_take isl_union_map *umap,
__isl_take isl_union_pw_multi_aff *upma);
These functions compute the preimage of the given set or map domain/range under
the given function. In other words, the expression is plugged
into the set description or into the domain/range of the map.
=item * Pullback
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_pullback_aff(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_aff *isl_aff_pullback_multi_aff(
__isl_take isl_aff *aff,
__isl_take isl_multi_aff *ma);
__isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff(
__isl_take isl_pw_aff *pa,
__isl_take isl_multi_aff *ma);
__isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff(
__isl_take isl_pw_aff *pa,
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff(
__isl_take isl_pw_aff *pa,
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
__isl_take isl_multi_aff *ma1,
__isl_take isl_multi_aff *ma2);
__isl_give isl_pw_multi_aff *
isl_pw_multi_aff_pullback_multi_aff(
__isl_take isl_pw_multi_aff *pma,
__isl_take isl_multi_aff *ma);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_pullback_multi_aff(
__isl_take isl_multi_pw_aff *mpa,
__isl_take isl_multi_aff *ma);
__isl_give isl_pw_multi_aff *
isl_pw_multi_aff_pullback_pw_multi_aff(
__isl_take isl_pw_multi_aff *pma1,
__isl_take isl_pw_multi_aff *pma2);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_pullback_pw_multi_aff(
__isl_take isl_multi_pw_aff *mpa,
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_pullback_multi_pw_aff(
__isl_take isl_multi_pw_aff *mpa1,
__isl_take isl_multi_pw_aff *mpa2);
__isl_give isl_union_pw_aff *
isl_union_pw_aff_pullback_union_pw_multi_aff(
__isl_take isl_union_pw_aff *upa,
__isl_take isl_union_pw_multi_aff *upma);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
__isl_take isl_union_pw_multi_aff *upma1,
__isl_take isl_union_pw_multi_aff *upma2);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_pullback_union_pw_multi_aff(
__isl_take isl_multi_union_pw_aff *mupa,
__isl_take isl_union_pw_multi_aff *upma);
These functions precompose the first expression by the second function.
In other words, the second function is plugged
into the first expression.
=item * Locus
#include <isl/aff.h>
__isl_give isl_basic_set *isl_aff_eq_basic_set(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_set *isl_aff_eq_set(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_set *isl_aff_ne_set(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_basic_set *isl_aff_le_basic_set(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_set *isl_aff_le_set(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_basic_set *isl_aff_lt_basic_set(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_set *isl_aff_lt_set(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_basic_set *isl_aff_ge_basic_set(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_set *isl_aff_ge_set(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_basic_set *isl_aff_gt_basic_set(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_set *isl_aff_gt_set(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_set *isl_pw_aff_eq_set(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
__isl_give isl_set *isl_pw_aff_ne_set(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
__isl_give isl_set *isl_pw_aff_le_set(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
__isl_give isl_set *isl_pw_aff_lt_set(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
__isl_give isl_set *isl_pw_aff_ge_set(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
__isl_give isl_set *isl_pw_aff_gt_set(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
__isl_give isl_set *isl_multi_aff_lex_le_set(
__isl_take isl_multi_aff *ma1,
__isl_take isl_multi_aff *ma2);
__isl_give isl_set *isl_multi_aff_lex_lt_set(
__isl_take isl_multi_aff *ma1,
__isl_take isl_multi_aff *ma2);
__isl_give isl_set *isl_multi_aff_lex_ge_set(
__isl_take isl_multi_aff *ma1,
__isl_take isl_multi_aff *ma2);
__isl_give isl_set *isl_multi_aff_lex_gt_set(
__isl_take isl_multi_aff *ma1,
__isl_take isl_multi_aff *ma2);
__isl_give isl_set *isl_pw_aff_list_eq_set(
__isl_take isl_pw_aff_list *list1,
__isl_take isl_pw_aff_list *list2);
__isl_give isl_set *isl_pw_aff_list_ne_set(
__isl_take isl_pw_aff_list *list1,
__isl_take isl_pw_aff_list *list2);
__isl_give isl_set *isl_pw_aff_list_le_set(
__isl_take isl_pw_aff_list *list1,
__isl_take isl_pw_aff_list *list2);
__isl_give isl_set *isl_pw_aff_list_lt_set(
__isl_take isl_pw_aff_list *list1,
__isl_take isl_pw_aff_list *list2);
__isl_give isl_set *isl_pw_aff_list_ge_set(
__isl_take isl_pw_aff_list *list1,
__isl_take isl_pw_aff_list *list2);
__isl_give isl_set *isl_pw_aff_list_gt_set(
__isl_take isl_pw_aff_list *list1,
__isl_take isl_pw_aff_list *list2);
The function C<isl_aff_ge_basic_set> returns a basic set
containing those elements in the shared space
of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
The function C<isl_pw_aff_ge_set> returns a set
containing those elements in the shared domain
of C<pwaff1> and C<pwaff2> where C<pwaff1> is
greater than or equal to C<pwaff2>.
The function C<isl_multi_aff_lex_le_set> returns a set
containing those elements in the shared domain space
where C<ma1> is lexicographically smaller than or
equal to C<ma2>.
The functions operating on C<isl_pw_aff_list> apply the corresponding
C<isl_pw_aff> function to each pair of elements in the two lists.
#include <isl/aff.h>
__isl_give isl_map *isl_pw_aff_eq_map(
__isl_take isl_pw_aff *pa1,
__isl_take isl_pw_aff *pa2);
__isl_give isl_map *isl_pw_aff_lt_map(
__isl_take isl_pw_aff *pa1,
__isl_take isl_pw_aff *pa2);
__isl_give isl_map *isl_pw_aff_gt_map(
__isl_take isl_pw_aff *pa1,
__isl_take isl_pw_aff *pa2);
__isl_give isl_map *isl_multi_pw_aff_eq_map(
__isl_take isl_multi_pw_aff *mpa1,
__isl_take isl_multi_pw_aff *mpa2);
__isl_give isl_map *isl_multi_pw_aff_lex_lt_map(
__isl_take isl_multi_pw_aff *mpa1,
__isl_take isl_multi_pw_aff *mpa2);
__isl_give isl_map *isl_multi_pw_aff_lex_gt_map(
__isl_take isl_multi_pw_aff *mpa1,
__isl_take isl_multi_pw_aff *mpa2);
These functions return a map between domain elements of the arguments
where the function values satisfy the given relation.
#include <isl/union_map.h>
__isl_give isl_union_map *
isl_union_map_eq_at_multi_union_pw_aff(
__isl_take isl_union_map *umap,
__isl_take isl_multi_union_pw_aff *mupa);
__isl_give isl_union_map *
isl_union_map_lex_lt_at_multi_union_pw_aff(
__isl_take isl_union_map *umap,
__isl_take isl_multi_union_pw_aff *mupa);
__isl_give isl_union_map *
isl_union_map_lex_gt_at_multi_union_pw_aff(
__isl_take isl_union_map *umap,
__isl_take isl_multi_union_pw_aff *mupa);
These functions select the subset of elements in the union map
that have an equal or lexicographically smaller function value.
=item * Cartesian Product
#include <isl/space.h>
__isl_give isl_space *isl_space_product(
__isl_take isl_space *space1,
__isl_take isl_space *space2);
__isl_give isl_space *isl_space_domain_product(
__isl_take isl_space *space1,
__isl_take isl_space *space2);
__isl_give isl_space *isl_space_range_product(
__isl_take isl_space *space1,
__isl_take isl_space *space2);
The functions
C<isl_space_product>, C<isl_space_domain_product>
and C<isl_space_range_product> take pairs or relation spaces and
produce a single relations space, where either the domain, the range
or both domain and range are wrapped spaces of relations between
the domains and/or ranges of the input spaces.
If the product is only constructed over the domain or the range
then the ranges or the domains of the inputs should be the same.
The function C<isl_space_product> also accepts a pair of set spaces,
in which case it returns a wrapped space of a relation between the
two input spaces.
#include <isl/set.h>
__isl_give isl_set *isl_set_product(
__isl_take isl_set *set1,
__isl_take isl_set *set2);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_domain_product(
__isl_take isl_basic_map *bmap1,
__isl_take isl_basic_map *bmap2);
__isl_give isl_basic_map *isl_basic_map_range_product(
__isl_take isl_basic_map *bmap1,
__isl_take isl_basic_map *bmap2);
__isl_give isl_basic_map *isl_basic_map_product(
__isl_take isl_basic_map *bmap1,
__isl_take isl_basic_map *bmap2);
__isl_give isl_map *isl_map_domain_product(
__isl_take isl_map *map1,
__isl_take isl_map *map2);
__isl_give isl_map *isl_map_range_product(
__isl_take isl_map *map1,
__isl_take isl_map *map2);
__isl_give isl_map *isl_map_product(
__isl_take isl_map *map1,
__isl_take isl_map *map2);
#include <isl/union_set.h>
__isl_give isl_union_set *isl_union_set_product(
__isl_take isl_union_set *uset1,
__isl_take isl_union_set *uset2);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_domain_product(
__isl_take isl_union_map *umap1,
__isl_take isl_union_map *umap2);
__isl_give isl_union_map *isl_union_map_range_product(
__isl_take isl_union_map *umap1,
__isl_take isl_union_map *umap2);
__isl_give isl_union_map *isl_union_map_product(
__isl_take isl_union_map *umap1,
__isl_take isl_union_map *umap2);
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_range_product(
__isl_take isl_multi_val *mv1,
__isl_take isl_multi_val *mv2);
__isl_give isl_multi_val *isl_multi_val_product(
__isl_take isl_multi_val *mv1,
__isl_take isl_multi_val *mv2);
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_range_product(
__isl_take isl_multi_aff *ma1,
__isl_take isl_multi_aff *ma2);
__isl_give isl_multi_aff *isl_multi_aff_product(
__isl_take isl_multi_aff *ma1,
__isl_take isl_multi_aff *ma2);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_range_product(
__isl_take isl_multi_pw_aff *mpa1,
__isl_take isl_multi_pw_aff *mpa2);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_product(
__isl_take isl_multi_pw_aff *mpa1,
__isl_take isl_multi_pw_aff *mpa2);
__isl_give isl_pw_multi_aff *
isl_pw_multi_aff_range_product(
__isl_take isl_pw_multi_aff *pma1,
__isl_take isl_pw_multi_aff *pma2);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
__isl_take isl_pw_multi_aff *pma1,
__isl_take isl_pw_multi_aff *pma2);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_range_product(
__isl_take isl_multi_union_pw_aff *mupa1,
__isl_take isl_multi_union_pw_aff *mupa2);
The above functions compute the cross product of the given
sets, relations or functions. The domains and ranges of the results
are wrapped maps between domains and ranges of the inputs.
To obtain a ``flat'' product, use the following functions
instead.
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_flat_product(
__isl_take isl_basic_set *bset1,
__isl_take isl_basic_set *bset2);
__isl_give isl_set *isl_set_flat_product(
__isl_take isl_set *set1,
__isl_take isl_set *set2);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_flat_range_product(
__isl_take isl_basic_map *bmap1,
__isl_take isl_basic_map *bmap2);
__isl_give isl_map *isl_map_flat_domain_product(
__isl_take isl_map *map1,
__isl_take isl_map *map2);
__isl_give isl_map *isl_map_flat_range_product(
__isl_take isl_map *map1,
__isl_take isl_map *map2);
__isl_give isl_basic_map *isl_basic_map_flat_product(
__isl_take isl_basic_map *bmap1,
__isl_take isl_basic_map *bmap2);
__isl_give isl_map *isl_map_flat_product(
__isl_take isl_map *map1,
__isl_take isl_map *map2);
#include <isl/union_map.h>
__isl_give isl_union_map *
isl_union_map_flat_domain_product(
__isl_take isl_union_map *umap1,
__isl_take isl_union_map *umap2);
__isl_give isl_union_map *
isl_union_map_flat_range_product(
__isl_take isl_union_map *umap1,
__isl_take isl_union_map *umap2);
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_flat_range_product(
__isl_take isl_multi_val *mv1,
__isl_take isl_multi_val *mv2);
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_flat_range_product(
__isl_take isl_multi_aff *ma1,
__isl_take isl_multi_aff *ma2);
__isl_give isl_pw_multi_aff *
isl_pw_multi_aff_flat_range_product(
__isl_take isl_pw_multi_aff *pma1,
__isl_take isl_pw_multi_aff *pma2);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_flat_range_product(
__isl_take isl_multi_pw_aff *mpa1,
__isl_take isl_multi_pw_aff *mpa2);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_flat_range_product(
__isl_take isl_union_pw_multi_aff *upma1,
__isl_take isl_union_pw_multi_aff *upma2);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_flat_range_product(
__isl_take isl_multi_union_pw_aff *mupa1,
__isl_take isl_multi_union_pw_aff *mupa2);
#include <isl/space.h>
__isl_give isl_space *isl_space_factor_domain(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_factor_range(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_domain_factor_domain(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_domain_factor_range(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_range_factor_domain(
__isl_take isl_space *space);
__isl_give isl_space *isl_space_range_factor_range(
__isl_take isl_space *space);
The functions C<isl_space_range_factor_domain> and
C<isl_space_range_factor_range> extract the two arguments from
the result of a call to C<isl_space_range_product>.
The arguments of a call to a product can be extracted
from the result using the following functions.
#include <isl/map.h>
__isl_give isl_map *isl_map_factor_domain(
__isl_take isl_map *map);
__isl_give isl_map *isl_map_factor_range(
__isl_take isl_map *map);
__isl_give isl_map *isl_map_domain_factor_domain(
__isl_take isl_map *map);
__isl_give isl_map *isl_map_domain_factor_range(
__isl_take isl_map *map);
__isl_give isl_map *isl_map_range_factor_domain(
__isl_take isl_map *map);
__isl_give isl_map *isl_map_range_factor_range(
__isl_take isl_map *map);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_factor_domain(
__isl_take isl_union_map *umap);
__isl_give isl_union_map *isl_union_map_factor_range(
__isl_take isl_union_map *umap);
__isl_give isl_union_map *
isl_union_map_domain_factor_domain(
__isl_take isl_union_map *umap);
__isl_give isl_union_map *
isl_union_map_domain_factor_range(
__isl_take isl_union_map *umap);
__isl_give isl_union_map *
isl_union_map_range_factor_domain(
__isl_take isl_union_map *umap);
__isl_give isl_union_map *
isl_union_map_range_factor_range(
__isl_take isl_union_map *umap);
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_factor_range(
__isl_take isl_multi_val *mv);
__isl_give isl_multi_val *
isl_multi_val_range_factor_domain(
__isl_take isl_multi_val *mv);
__isl_give isl_multi_val *
isl_multi_val_range_factor_range(
__isl_take isl_multi_val *mv);
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_factor_range(
__isl_take isl_multi_aff *ma);
__isl_give isl_multi_aff *
isl_multi_aff_range_factor_domain(
__isl_take isl_multi_aff *ma);
__isl_give isl_multi_aff *
isl_multi_aff_range_factor_range(
__isl_take isl_multi_aff *ma);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_factor_range(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_range_factor_domain(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_range_factor_range(
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_factor_range(
__isl_take isl_multi_union_pw_aff *mupa);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_range_factor_domain(
__isl_take isl_multi_union_pw_aff *mupa);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_range_factor_range(
__isl_take isl_multi_union_pw_aff *mupa);
The splice functions are a generalization of the flat product functions,
where the second argument may be inserted at any position inside
the first argument rather than being placed at the end.
The functions C<isl_multi_val_factor_range>,
C<isl_multi_aff_factor_range>,
C<isl_multi_pw_aff_factor_range> and
C<isl_multi_union_pw_aff_factor_range>
take functions that live in a set space.
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_range_splice(
__isl_take isl_multi_val *mv1, unsigned pos,
__isl_take isl_multi_val *mv2);
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_range_splice(
__isl_take isl_multi_aff *ma1, unsigned pos,
__isl_take isl_multi_aff *ma2);
__isl_give isl_multi_aff *isl_multi_aff_splice(
__isl_take isl_multi_aff *ma1,
unsigned in_pos, unsigned out_pos,
__isl_take isl_multi_aff *ma2);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_range_splice(
__isl_take isl_multi_pw_aff *mpa1, unsigned pos,
__isl_take isl_multi_pw_aff *mpa2);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_splice(
__isl_take isl_multi_pw_aff *mpa1,
unsigned in_pos, unsigned out_pos,
__isl_take isl_multi_pw_aff *mpa2);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_range_splice(
__isl_take isl_multi_union_pw_aff *mupa1,
unsigned pos,
__isl_take isl_multi_union_pw_aff *mupa2);
=item * Simplification
When applied to a set or relation,
the gist operation returns a set or relation that has the
same intersection with the context as the input set or relation.
Any implicit equality in the intersection is made explicit in the result,
while all inequalities that are redundant with respect to the intersection
are removed.
In case of union sets and relations, the gist operation is performed
per space.
When applied to a function,
the gist operation applies the set gist operation to each of
the cells in the domain of the input piecewise expression.
The context is also exploited
to simplify the expression associated to each cell.
#include <isl/set.h>
__isl_give isl_basic_set *isl_basic_set_gist(
__isl_take isl_basic_set *bset,
__isl_take isl_basic_set *context);
__isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
__isl_take isl_set *context);
__isl_give isl_set *isl_set_gist_params(
__isl_take isl_set *set,
__isl_take isl_set *context);
#include <isl/map.h>
__isl_give isl_basic_map *isl_basic_map_gist(
__isl_take isl_basic_map *bmap,
__isl_take isl_basic_map *context);
__isl_give isl_basic_map *isl_basic_map_gist_domain(
__isl_take isl_basic_map *bmap,
__isl_take isl_basic_set *context);
__isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
__isl_take isl_map *context);
__isl_give isl_map *isl_map_gist_params(
__isl_take isl_map *map,
__isl_take isl_set *context);
__isl_give isl_map *isl_map_gist_domain(
__isl_take isl_map *map,
__isl_take isl_set *context);
__isl_give isl_map *isl_map_gist_range(
__isl_take isl_map *map,
__isl_take isl_set *context);
#include <isl/union_set.h>
__isl_give isl_union_set *isl_union_set_gist(
__isl_take isl_union_set *uset,
__isl_take isl_union_set *context);
__isl_give isl_union_set *isl_union_set_gist_params(
__isl_take isl_union_set *uset,
__isl_take isl_set *set);
#include <isl/union_map.h>
__isl_give isl_union_map *isl_union_map_gist(
__isl_take isl_union_map *umap,
__isl_take isl_union_map *context);
__isl_give isl_union_map *isl_union_map_gist_params(
__isl_take isl_union_map *umap,
__isl_take isl_set *set);
__isl_give isl_union_map *isl_union_map_gist_domain(
__isl_take isl_union_map *umap,
__isl_take isl_union_set *uset);
__isl_give isl_union_map *isl_union_map_gist_range(
__isl_take isl_union_map *umap,
__isl_take isl_union_set *uset);
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_gist_params(
__isl_take isl_aff *aff,
__isl_take isl_set *context);
__isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
__isl_take isl_set *context);
__isl_give isl_multi_aff *isl_multi_aff_gist_params(
__isl_take isl_multi_aff *maff,
__isl_take isl_set *context);
__isl_give isl_multi_aff *isl_multi_aff_gist(
__isl_take isl_multi_aff *maff,
__isl_take isl_set *context);
__isl_give isl_pw_aff *isl_pw_aff_gist_params(
__isl_take isl_pw_aff *pwaff,
__isl_take isl_set *context);
__isl_give isl_pw_aff *isl_pw_aff_gist(
__isl_take isl_pw_aff *pwaff,
__isl_take isl_set *context);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
__isl_take isl_pw_multi_aff *pma,
__isl_take isl_set *set);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
__isl_take isl_pw_multi_aff *pma,
__isl_take isl_set *set);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist_params(
__isl_take isl_multi_pw_aff *mpa,
__isl_take isl_set *set);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist(
__isl_take isl_multi_pw_aff *mpa,
__isl_take isl_set *set);
__isl_give isl_union_pw_aff *isl_union_pw_aff_gist(
__isl_take isl_union_pw_aff *upa,
__isl_take isl_union_set *context);
__isl_give isl_union_pw_aff *isl_union_pw_aff_gist_params(
__isl_take isl_union_pw_aff *upa,
__isl_take isl_set *context);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_gist_params(
__isl_take isl_union_pw_multi_aff *upma,
__isl_take isl_set *context);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_gist(
__isl_take isl_union_pw_multi_aff *upma,
__isl_take isl_union_set *context);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_gist_params(
__isl_take isl_multi_union_pw_aff *aff,
__isl_take isl_set *context);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_gist(
__isl_take isl_multi_union_pw_aff *aff,
__isl_take isl_union_set *context);
#include <isl/polynomial.h>
__isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
__isl_take isl_qpolynomial *qp,
__isl_take isl_set *context);
__isl_give isl_qpolynomial *isl_qpolynomial_gist(
__isl_take isl_qpolynomial *qp,
__isl_take isl_set *context);
__isl_give isl_qpolynomial_fold *
isl_qpolynomial_fold_gist_params(
__isl_take isl_qpolynomial_fold *fold,
__isl_take isl_set *context);
__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
__isl_take isl_qpolynomial_fold *fold,
__isl_take isl_set *context);
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
__isl_take isl_pw_qpolynomial *pwqp,
__isl_take isl_set *context);
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
__isl_take isl_pw_qpolynomial *pwqp,
__isl_take isl_set *context);
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_gist(
__isl_take isl_pw_qpolynomial_fold *pwf,
__isl_take isl_set *context);
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_gist_params(
__isl_take isl_pw_qpolynomial_fold *pwf,
__isl_take isl_set *context);
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_gist_params(
__isl_take isl_union_pw_qpolynomial *upwqp,
__isl_take isl_set *context);
__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
__isl_take isl_union_pw_qpolynomial *upwqp,
__isl_take isl_union_set *context);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_gist(
__isl_take isl_union_pw_qpolynomial_fold *upwf,
__isl_take isl_union_set *context);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_gist_params(
__isl_take isl_union_pw_qpolynomial_fold *upwf,
__isl_take isl_set *context);
=item * Binary Arithmetic Operations
#include <isl/set.h>
__isl_give isl_set *isl_set_sum(
__isl_take isl_set *set1,
__isl_take isl_set *set2);
#include <isl/map.h>
__isl_give isl_map *isl_map_sum(
__isl_take isl_map *map1,
__isl_take isl_map *map2);
C<isl_set_sum> computes the Minkowski sum of its two arguments,
i.e., the set containing the sums of pairs of elements from
C<set1> and C<set2>.
The domain of the result of C<isl_map_sum> is the intersection
of the domains of its two arguments. The corresponding range
elements are the sums of the corresponding range elements
in the two arguments.
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_add(
__isl_take isl_multi_val *mv1,
__isl_take isl_multi_val *mv2);
__isl_give isl_multi_val *isl_multi_val_sub(
__isl_take isl_multi_val *mv1,
__isl_take isl_multi_val *mv2);
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_add(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_multi_aff *isl_multi_aff_add(
__isl_take isl_multi_aff *maff1,
__isl_take isl_multi_aff *maff2);
__isl_give isl_pw_aff *isl_pw_aff_add(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_add(
__isl_take isl_multi_pw_aff *mpa1,
__isl_take isl_multi_pw_aff *mpa2);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
__isl_take isl_pw_multi_aff *pma1,
__isl_take isl_pw_multi_aff *pma2);
__isl_give isl_union_pw_aff *isl_union_pw_aff_add(
__isl_take isl_union_pw_aff *upa1,
__isl_take isl_union_pw_aff *upa2);
__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
__isl_take isl_union_pw_multi_aff *upma1,
__isl_take isl_union_pw_multi_aff *upma2);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_add(
__isl_take isl_multi_union_pw_aff *mupa1,
__isl_take isl_multi_union_pw_aff *mupa2);
__isl_give isl_pw_aff *isl_pw_aff_min(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
__isl_give isl_pw_aff *isl_pw_aff_max(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
__isl_give isl_aff *isl_aff_sub(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_multi_aff *isl_multi_aff_sub(
__isl_take isl_multi_aff *ma1,
__isl_take isl_multi_aff *ma2);
__isl_give isl_pw_aff *isl_pw_aff_sub(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_sub(
__isl_take isl_multi_pw_aff *mpa1,
__isl_take isl_multi_pw_aff *mpa2);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub(
__isl_take isl_pw_multi_aff *pma1,
__isl_take isl_pw_multi_aff *pma2);
__isl_give isl_union_pw_aff *isl_union_pw_aff_sub(
__isl_take isl_union_pw_aff *upa1,
__isl_take isl_union_pw_aff *upa2);
__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_sub(
__isl_take isl_union_pw_multi_aff *upma1,
__isl_take isl_union_pw_multi_aff *upma2);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_sub(
__isl_take isl_multi_union_pw_aff *mupa1,
__isl_take isl_multi_union_pw_aff *mupa2);
C<isl_aff_sub> subtracts the second argument from the first.
#include <isl/polynomial.h>
__isl_give isl_qpolynomial *isl_qpolynomial_add(
__isl_take isl_qpolynomial *qp1,
__isl_take isl_qpolynomial *qp2);
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
__isl_take isl_pw_qpolynomial *pwqp1,
__isl_take isl_pw_qpolynomial *pwqp2);
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
__isl_take isl_pw_qpolynomial *pwqp1,
__isl_take isl_pw_qpolynomial *pwqp2);
__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
__isl_take isl_pw_qpolynomial_fold *pwf1,
__isl_take isl_pw_qpolynomial_fold *pwf2);
__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
__isl_take isl_union_pw_qpolynomial *upwqp1,
__isl_take isl_union_pw_qpolynomial *upwqp2);
__isl_give isl_qpolynomial *isl_qpolynomial_sub(
__isl_take isl_qpolynomial *qp1,
__isl_take isl_qpolynomial *qp2);
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
__isl_take isl_pw_qpolynomial *pwqp1,
__isl_take isl_pw_qpolynomial *pwqp2);
__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
__isl_take isl_union_pw_qpolynomial *upwqp1,
__isl_take isl_union_pw_qpolynomial *upwqp2);
__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
__isl_take isl_pw_qpolynomial_fold *pwf1,
__isl_take isl_pw_qpolynomial_fold *pwf2);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_fold(
__isl_take isl_union_pw_qpolynomial_fold *upwf1,
__isl_take isl_union_pw_qpolynomial_fold *upwf2);
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_aff_union_add(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
__isl_take isl_pw_multi_aff *pma1,
__isl_take isl_pw_multi_aff *pma2);
__isl_give isl_union_pw_aff *isl_union_pw_aff_union_add(
__isl_take isl_union_pw_aff *upa1,
__isl_take isl_union_pw_aff *upa2);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_union_add(
__isl_take isl_union_pw_multi_aff *upma1,
__isl_take isl_union_pw_multi_aff *upma2);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_union_add(
__isl_take isl_multi_union_pw_aff *mupa1,
__isl_take isl_multi_union_pw_aff *mupa2);
__isl_give isl_pw_aff *isl_pw_aff_union_min(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
__isl_give isl_pw_aff *isl_pw_aff_union_max(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
expression with a domain that is the union of those of C<pwaff1> and
C<pwaff2> and such that on each cell, the quasi-affine expression is
the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
C<pwaff1> or C<pwaff2> is defined on a given cell, then the
associated expression is the defined one.
This in contrast to the C<isl_pw_aff_max> function, which is
only defined on the shared definition domain of the arguments.
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_add_val(
__isl_take isl_multi_val *mv,
__isl_take isl_val *v);
__isl_give isl_multi_val *isl_multi_val_mod_val(
__isl_take isl_multi_val *mv,
__isl_take isl_val *v);
__isl_give isl_multi_val *isl_multi_val_scale_val(
__isl_take isl_multi_val *mv,
__isl_take isl_val *v);
__isl_give isl_multi_val *isl_multi_val_scale_down_val(
__isl_take isl_multi_val *mv,
__isl_take isl_val *v);
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff,
__isl_take isl_val *mod);
__isl_give isl_pw_aff *isl_pw_aff_mod_val(
__isl_take isl_pw_aff *pa,
__isl_take isl_val *mod);
__isl_give isl_union_pw_aff *isl_union_pw_aff_mod_val(
__isl_take isl_union_pw_aff *upa,
__isl_take isl_val *f);
__isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff,
__isl_take isl_val *v);
__isl_give isl_multi_aff *isl_multi_aff_scale_val(
__isl_take isl_multi_aff *ma,
__isl_take isl_val *v);
__isl_give isl_pw_aff *isl_pw_aff_scale_val(
__isl_take isl_pw_aff *pa, __isl_take isl_val *v);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_val(
__isl_take isl_multi_pw_aff *mpa,
__isl_take isl_val *v);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_val(
__isl_take isl_pw_multi_aff *pma,
__isl_take isl_val *v);
__isl_give isl_union_pw_multi_aff *
__isl_give isl_union_pw_aff *isl_union_pw_aff_scale_val(
__isl_take isl_union_pw_aff *upa,
__isl_take isl_val *f);
isl_union_pw_multi_aff_scale_val(
__isl_take isl_union_pw_multi_aff *upma,
__isl_take isl_val *val);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_scale_val(
__isl_take isl_multi_union_pw_aff *mupa,
__isl_take isl_val *v);
__isl_give isl_aff *isl_aff_scale_down_ui(
__isl_take isl_aff *aff, unsigned f);
__isl_give isl_aff *isl_aff_scale_down_val(
__isl_take isl_aff *aff, __isl_take isl_val *v);
__isl_give isl_multi_aff *isl_multi_aff_scale_down_val(
__isl_take isl_multi_aff *ma,
__isl_take isl_val *v);
__isl_give isl_pw_aff *isl_pw_aff_scale_down_val(
__isl_take isl_pw_aff *pa,
__isl_take isl_val *f);
__isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_down_val(
__isl_take isl_multi_pw_aff *mpa,
__isl_take isl_val *v);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_down_val(
__isl_take isl_pw_multi_aff *pma,
__isl_take isl_val *v);
__isl_give isl_union_pw_aff *isl_union_pw_aff_scale_down_val(
__isl_take isl_union_pw_aff *upa,
__isl_take isl_val *v);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_scale_down_val(
__isl_take isl_union_pw_multi_aff *upma,
__isl_take isl_val *val);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_scale_down_val(
__isl_take isl_multi_union_pw_aff *mupa,
__isl_take isl_val *v);
#include <isl/polynomial.h>
__isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
__isl_take isl_qpolynomial *qp,
__isl_take isl_val *v);
__isl_give isl_qpolynomial_fold *
isl_qpolynomial_fold_scale_val(
__isl_take isl_qpolynomial_fold *fold,
__isl_take isl_val *v);
__isl_give isl_pw_qpolynomial *
isl_pw_qpolynomial_scale_val(
__isl_take isl_pw_qpolynomial *pwqp,
__isl_take isl_val *v);
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_scale_val(
__isl_take isl_pw_qpolynomial_fold *pwf,
__isl_take isl_val *v);
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_scale_val(
__isl_take isl_union_pw_qpolynomial *upwqp,
__isl_take isl_val *v);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_scale_val(
__isl_take isl_union_pw_qpolynomial_fold *upwf,
__isl_take isl_val *v);
__isl_give isl_qpolynomial *
isl_qpolynomial_scale_down_val(
__isl_take isl_qpolynomial *qp,
__isl_take isl_val *v);
__isl_give isl_qpolynomial_fold *
isl_qpolynomial_fold_scale_down_val(
__isl_take isl_qpolynomial_fold *fold,
__isl_take isl_val *v);
__isl_give isl_pw_qpolynomial *
isl_pw_qpolynomial_scale_down_val(
__isl_take isl_pw_qpolynomial *pwqp,
__isl_take isl_val *v);
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_fold_scale_down_val(
__isl_take isl_pw_qpolynomial_fold *pwf,
__isl_take isl_val *v);
__isl_give isl_union_pw_qpolynomial *
isl_union_pw_qpolynomial_scale_down_val(
__isl_take isl_union_pw_qpolynomial *upwqp,
__isl_take isl_val *v);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_fold_scale_down_val(
__isl_take isl_union_pw_qpolynomial_fold *upwf,
__isl_take isl_val *v);
#include <isl/val.h>
__isl_give isl_multi_val *isl_multi_val_mod_multi_val(
__isl_take isl_multi_val *mv1,
__isl_take isl_multi_val *mv2);
__isl_give isl_multi_val *isl_multi_val_scale_multi_val(
__isl_take isl_multi_val *mv1,
__isl_take isl_multi_val *mv2);
__isl_give isl_multi_val *
isl_multi_val_scale_down_multi_val(
__isl_take isl_multi_val *mv1,
__isl_take isl_multi_val *mv2);
#include <isl/aff.h>
__isl_give isl_multi_aff *isl_multi_aff_mod_multi_val(
__isl_take isl_multi_aff *ma,
__isl_take isl_multi_val *mv);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_mod_multi_val(
__isl_take isl_multi_union_pw_aff *upma,
__isl_take isl_multi_val *mv);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_mod_multi_val(
__isl_take isl_multi_pw_aff *mpa,
__isl_take isl_multi_val *mv);
__isl_give isl_multi_aff *isl_multi_aff_scale_multi_val(
__isl_take isl_multi_aff *ma,
__isl_take isl_multi_val *mv);
__isl_give isl_pw_multi_aff *
isl_pw_multi_aff_scale_multi_val(
__isl_take isl_pw_multi_aff *pma,
__isl_take isl_multi_val *mv);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_scale_multi_val(
__isl_take isl_multi_pw_aff *mpa,
__isl_take isl_multi_val *mv);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_scale_multi_val(
__isl_take isl_multi_union_pw_aff *mupa,
__isl_take isl_multi_val *mv);
__isl_give isl_union_pw_multi_aff *
isl_union_pw_multi_aff_scale_multi_val(
__isl_take isl_union_pw_multi_aff *upma,
__isl_take isl_multi_val *mv);
__isl_give isl_multi_aff *
isl_multi_aff_scale_down_multi_val(
__isl_take isl_multi_aff *ma,
__isl_take isl_multi_val *mv);
__isl_give isl_multi_pw_aff *
isl_multi_pw_aff_scale_down_multi_val(
__isl_take isl_multi_pw_aff *mpa,
__isl_take isl_multi_val *mv);
__isl_give isl_multi_union_pw_aff *
isl_multi_union_pw_aff_scale_down_multi_val(
__isl_take isl_multi_union_pw_aff *mupa,
__isl_take isl_multi_val *mv);
C<isl_multi_aff_scale_multi_val> scales the elements of C<ma>
by the corresponding elements of C<mv>.
#include <isl/aff.h>
__isl_give isl_aff *isl_aff_mul(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_aff *isl_aff_div(
__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2);
__isl_give isl_pw_aff *isl_pw_aff_mul(
__isl_take isl_pw_aff *pwaff1,
__isl_take isl_pw_aff *pwaff2);
__isl_give isl_pw_aff *isl_pw_aff_div(
__isl_take isl_pw_aff *pa1,
__isl_take isl_pw_aff *pa2);
__isl_give isl_pw_aff *isl_pw_aff_tdiv_q(
__isl_take isl_pw_aff *pa1,
__isl_take isl_pw_aff *pa2);
__isl_give isl_pw_aff *isl_pw_aff_tdiv_r(
__isl_take isl_pw_aff *pa1,
__isl_take isl_pw_aff *pa2);
When multiplying two affine expressions, at least one of the two needs
to be a constant. Similarly, when dividing an affine expression by another,
the second expression needs to be a constant.
C<isl_pw_aff_tdiv_q> computes the quotient of an integer division with
rounding towards zero. C<isl_pw_aff_tdiv_r> computes the corresponding
remainder.
#include <isl/polynomial.h>
__isl_give isl_qpolynomial *isl_qpolynomial_mul(
__isl_take isl_qpolynomial *qp1,
__isl_take isl_qpolynomial *qp2);
__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
__isl_take isl_pw_qpolynomial *pwqp1,
__isl_take isl_pw_qpolynomial *pwqp2);
__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
__isl_take isl_union_pw_qpolynomial *upwqp1,
__isl_take isl_union_pw_qpolynomial *upwqp2);
=back
=head3 Lexicographic Optimization
Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
the following functions
compute a set that contains the lexicographic minimum or maximum
of the elements in C<set> (or C<bset>) for those values of the parameters
that satisfy C<dom>.
If C<empty> is not C<NULL>, then C<*empty> is assigned a set
that contains the parameter values in C<dom> for which C<set> (or C<bset>)
has no elements.
In other words, the union of the parameter values
for which the result is non-empty and of C<*empty>
is equal to C<dom>.
#include <isl/set.h>
__isl_give isl_set *isl_basic_set_partial_lexmin(
__isl_take isl_basic_set *bset,
__isl_take isl_basic_set *dom,
__isl_give isl_set **empty);
__isl_give isl_set *isl_basic_set_partial_lexmax(
__isl_take isl_basic_set *bset,
__isl_take isl_basic_set *dom,
__isl_give isl_set **empty);
__isl_give isl_set *isl_set_partial_lexmin(
__isl_take isl_set *set, __isl_take isl_set *dom,
__isl_give isl_set **empty);
__isl_give isl_set *isl_set_partial_lexmax(
__isl_take isl_set *set, __isl_take isl_set *dom,
__isl_give isl_set **empty);
Given a (basic) set C<set> (or C<bset>), the following functions simply
return a set containing the lexicographic minimum or maximum
of the elements in C<set> (or C<bset>).
In case of union sets, the optimum is computed per space.
#include <isl/set.h>
__isl_give isl_set *isl_basic_set_lexmin(
__isl_take isl_basic_set *bset);
__isl_give isl_set *isl_basic_set_lexmax(
__isl_take isl_basic_set *bset);
__isl_give isl_set *isl_set_lexmin(
__isl_take isl_set *set);
__isl_give isl_set *isl_set_lexmax(
__isl_take isl_set *set);
__isl_give isl_union_set *isl_union_set_lexmin(
__isl_take isl_union_set *uset);
__isl_give isl_union_set *isl_union_set_lexmax(
__isl_take isl_union_set *uset);
Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
the following functions
compute a relation that maps each element of C<dom>
to the single lexicographic minimum or maximum
of the elements that are associated to that same
element in C<map> (or C<bmap>).
If C<empty> is not C<NULL>, then C<*empty> is assigned a set
that contains the elements in C<dom> that do not map
to any elements in C<map> (or C<bmap>).
In other words, the union of the domain of the result and of C<*empty>
is equal to C<dom>.
#include <isl/map.h>
__isl_give isl_map *isl_basic_map_partial_lexmax(
__isl_take isl_basic_map *bmap,
__isl_take isl_basic_set *dom,
__isl_give isl_set **empty);
__isl_give isl_map *isl_basic_map_partial_lexmin(
__isl_take isl_basic_map *bmap,
__isl_take isl_basic_set *dom,
__isl_give isl_set **empty);
__isl_give isl_map *isl_map_partial_lexmax(
__isl_take isl_map *map, __isl_take isl_set *dom,
__isl_give isl_set **empty);
__isl_give isl_map *isl_map_partial_lexmin(
__isl_take isl_map *map, __isl_take isl_set *dom,
__isl_give isl_set **empty);
Given a (basic) map C<map> (or C<bmap>), the following functions simply
return a map mapping each element in the domain of
C<map> (or C<bmap>) to the lexicographic minimum or maximum
of all elements associated to that element.
In case of union relations, the optimum is computed per space.
#include <isl/map.h>
__isl_give isl_map *isl_basic_map_lexmin(
__isl_take isl_basic_map *bmap);
__isl_give isl_map *isl_basic_map_lexmax(
__isl_take isl_basic_map *bmap);
__isl_give isl_map *isl_map_lexmin(
__isl_take isl_map *map);
__isl_give isl_map *isl_map_lexmax(
__isl_take isl_map *map);
__isl_give isl_union_map *isl_union_map_lexmin(
__isl_take isl_union_map *umap);
__isl_give isl_union_map *isl_union_map_lexmax(
__isl_take isl_union_map *umap);
The following functions return their result in the form of
a piecewise multi-affine expression,
but are otherwise equivalent to the corresponding functions
returning a basic set or relation.
#include <isl/set.h>
__isl_give isl_pw_multi_aff *
isl_basic_set_partial_lexmin_pw_multi_aff(
__isl_take isl_basic_set *bset,
__isl_take isl_basic_set *dom,
__isl_give isl_set **empty);
__isl_give isl_pw_multi_aff *
isl_basic_set_partial_lexmax_pw_multi_aff(
__isl_take isl_basic_set *bset,
__isl_take isl_basic_set *dom,
__isl_give isl_set **empty);
__isl_give isl_pw_multi_aff *isl_set_lexmin_pw_multi_aff(
__isl_take isl_set *set);
__isl_give isl_pw_multi_aff *isl_set_lexmax_pw_multi_aff(
__isl_take isl_set *set);
#include <isl/map.h>
__isl_give isl_pw_multi_aff *
isl_basic_map_lexmin_pw_multi_aff(
__isl_take isl_basic_map *bmap);
__isl_give isl_pw_multi_aff *
isl_basic_map_partial_lexmin_pw_multi_aff(
__isl_take isl_basic_map *bmap,
__isl_take isl_basic_set *dom,
__isl_give isl_set **empty);
__isl_give isl_pw_multi_aff *
isl_basic_map_partial_lexmax_pw_multi_aff(
__isl_take isl_basic_map *bmap,
__isl_take isl_basic_set *dom,
__isl_give isl_set **empty);
__isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff(
__isl_take isl_map *map);
__isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff(
__isl_take isl_map *map);
The following functions return the lexicographic minimum or maximum
on the shared domain of the inputs and the single defined function
on those parts of the domain where only a single function is defined.
#include <isl/aff.h>
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
__isl_take isl_pw_multi_aff *pma1,
__isl_take isl_pw_multi_aff *pma2);
__isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
__isl_take isl_pw_multi_aff *pma1,
__isl_take isl_pw_multi_aff *pma2);
If the input to a lexicographic optimization problem has
multiple constraints with the same coefficients for the optimized
variables, then, by default, this symmetry is exploited by
replacing those constraints by a single constraint with
an abstract bound, which is in turn bounded by the corresponding terms
in the original constraints.
Without this optimization, the solver would typically consider
all possible orderings of those original bounds, resulting in a needless
decomposition of the domain.
However, the optimization can also result in slowdowns since
an extra parameter is introduced that may get used in additional
integer divisions.
The following option determines whether symmetry detection is applied
during lexicographic optimization.
#include <isl/options.h>
isl_stat isl_options_set_pip_symmetry(isl_ctx *ctx,
int val);
int isl_options_get_pip_symmetry(isl_ctx *ctx);
=begin latex
See also \autoref{s:offline}.
=end latex
=head2 Ternary Operations
#include <isl/aff.h>
__isl_give isl_pw_aff *isl_pw_aff_cond(
__isl_take isl_pw_aff *cond,
__isl_take isl_pw_aff *pwaff_true,
__isl_take isl_pw_aff *pwaff_false);
The function C<isl_pw_aff_cond> performs a conditional operator
and returns an expression that is equal to C<pwaff_true>
for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
where C<cond> is zero.
=head2 Lists
Lists are defined over several element types, including
C<isl_val>, C<isl_id>, C<isl_aff>, C<isl_pw_aff>, C<isl_pw_multi_aff>,
C<isl_union_pw_aff>,
C<isl_union_pw_multi_aff>,
C<isl_pw_qpolynomial>, C<isl_pw_qpolynomial_fold>,
C<isl_constraint>,
C<isl_basic_set>, C<isl_set>, C<isl_basic_map>, C<isl_map>, C<isl_union_set>,
C<isl_union_map>, C<isl_ast_expr> and C<isl_ast_node>.
Here we take lists of C<isl_set>s as an example.
Lists can be created, copied, modified and freed using the following functions.
#include <isl/set.h>
__isl_give isl_set_list *isl_set_list_from_set(
__isl_take isl_set *el);
__isl_give isl_set_list *isl_set_list_alloc(
isl_ctx *ctx, int n);
__isl_give isl_set_list *isl_set_list_copy(
__isl_keep isl_set_list *list);
__isl_give isl_set_list *isl_set_list_insert(
__isl_take isl_set_list *list, unsigned pos,
__isl_take isl_set *el);
__isl_give isl_set_list *isl_set_list_add(
__isl_take isl_set_list *list,
__isl_take isl_set *el);
__isl_give isl_set_list *isl_set_list_drop(
__isl_take isl_set_list *list,
unsigned first, unsigned n);
__isl_give isl_set_list *isl_set_list_swap(
__isl_take isl_set_list *list,
unsigned pos1, unsigned pos2);
__isl_give isl_set_list *isl_set_list_reverse(
__isl_take isl_set_list *list);
__isl_give isl_set_list *isl_set_list_set_set(
__isl_take isl_set_list *list, int index,
__isl_take isl_set *set);
__isl_give isl_set_list *isl_set_list_concat(
__isl_take isl_set_list *list1,
__isl_take isl_set_list *list2);
__isl_give isl_set_list *isl_set_list_map(
__isl_take isl_set_list *list,
__isl_give isl_set *(*fn)(__isl_take isl_set *el,
void *user),
void *user);
__isl_give isl_set_list *isl_set_list_sort(
__isl_take isl_set_list *list,
int (*cmp)(__isl_keep isl_set *a,
__isl_keep isl_set *b, void *user),
void *user);
__isl_null isl_set_list *isl_set_list_free(
__isl_take isl_set_list *list);
C<isl_set_list_alloc> creates an empty list with an initial capacity
for C<n> elements. C<isl_set_list_insert> and C<isl_set_list_add>
add elements to a list, increasing its capacity as needed.
C<isl_set_list_from_set> creates a list with a single element.
C<isl_set_list_swap> swaps the elements at the specified locations.
C<isl_set_list_reverse> reverses the elements in the list.
Lists can be inspected using the following functions.
#include <isl/set.h>
int isl_set_list_size(__isl_keep isl_set_list *list);
int isl_set_list_n_set(__isl_keep isl_set_list *list);
__isl_give isl_set *isl_set_list_get_at(
__isl_keep isl_set_list *list, int index);
__isl_give isl_set *isl_set_list_get_set(
__isl_keep isl_set_list *list, int index);
isl_stat isl_set_list_foreach(__isl_keep isl_set_list *list,
isl_stat (*fn)(__isl_take isl_set *el, void *user),
void *user);
isl_stat isl_set_list_foreach_scc(
__isl_keep isl_set_list *list,
isl_bool (*follows)(__isl_keep isl_set *a,
__isl_keep isl_set *b, void *user),
void *follows_user,
isl_stat (*fn)(__isl_take isl_set *el, void *user),
void *fn_user);
C<isl_set_list_n_set> is an alternative name for C<isl_set_list_size>.
Similarly,
C<isl_set_list_get_set> is an alternative name for C<isl_set_list_get_at>.
The function C<isl_set_list_foreach_scc> calls C<fn> on each of the
strongly connected components of the graph with as vertices the elements
of C<list> and a directed edge from vertex C<b> to vertex C<a>
iff C<follows(a, b)> returns C<isl_bool_true>. The callbacks C<follows> and
C<fn> should return C<isl_bool_error> or C<isl_stat_error> on error.
Lists can be printed using
#include <isl/set.h>
__isl_give isl_printer *isl_printer_print_set_list(
__isl_take isl_printer *p,
__isl_keep isl_set_list *list);
=head2 Associative arrays
Associative arrays map isl objects of a specific type to isl objects
of some (other) specific type. They are defined for several pairs
of types, including (C<isl_map>, C<isl_basic_set>),
(C<isl_id>, C<isl_ast_expr>),
(C<isl_id>, C<isl_id>) and
(C<isl_id>, C<isl_pw_aff>).
Here, we take associative arrays that map C<isl_id>s to C<isl_ast_expr>s
as an example.
Associative arrays can be created, copied and freed using
the following functions.
#include <isl/id_to_ast_expr.h>
__isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_alloc(
isl_ctx *ctx, int min_size);
__isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_copy(
__isl_keep isl_id_to_ast_expr *id2expr);
__isl_null isl_id_to_ast_expr *isl_id_to_ast_expr_free(
__isl_take isl_id_to_ast_expr *id2expr);
The C<min_size> argument to C<isl_id_to_ast_expr_alloc> can be used
to specify the expected size of the associative array.
The associative array will be grown automatically as needed.
Associative arrays can be inspected using the following functions.
#include <isl/id_to_ast_expr.h>
__isl_give isl_maybe_isl_ast_expr
isl_id_to_ast_expr_try_get(
__isl_keep isl_id_to_ast_expr *id2expr,
__isl_keep isl_id *key);
isl_bool isl_id_to_ast_expr_has(
__isl_keep isl_id_to_ast_expr *id2expr,
__isl_keep isl_id *key);
__isl_give isl_ast_expr *isl_id_to_ast_expr_get(
__isl_keep isl_id_to_ast_expr *id2expr,
__isl_take isl_id *key);
isl_stat isl_id_to_ast_expr_foreach(
__isl_keep isl_id_to_ast_expr *id2expr,
isl_stat (*fn)(__isl_take isl_id *key,
__isl_take isl_ast_expr *val, void *user),
void *user);
The function C<isl_id_to_ast_expr_try_get> returns a structure
containing two elements, C<valid> and C<value>.
If there is a value associated to the key, then C<valid>
is set to C<isl_bool_true> and C<value> contains a copy of
the associated value. Otherwise C<value> is C<NULL> and
C<valid> may be C<isl_bool_error> or C<isl_bool_false> depending
on whether some error has occurred or there simply is no associated value.
The function C<isl_id_to_ast_expr_has> returns the C<valid> field
in the structure and
the function C<isl_id_to_ast_expr_get> returns the C<value> field.
Associative arrays can be modified using the following functions.
#include <isl/id_to_ast_expr.h>
__isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_set(
__isl_take isl_id_to_ast_expr *id2expr,
__isl_take isl_id *key,
__isl_take isl_ast_expr *val);
__isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_drop(
__isl_take isl_id_to_ast_expr *id2expr,
__isl_take isl_id *key);
Associative arrays can be printed using the following function.
#include <isl/id_to_ast_expr.h>
__isl_give isl_printer *isl_printer_print_id_to_ast_expr(
__isl_take isl_printer *p,
__isl_keep isl_id_to_ast_expr *id2expr);
=head2 Vectors
Vectors can be created, copied and freed using the following functions.
#include <isl/vec.h>
__isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
unsigned size);
__isl_give isl_vec *isl_vec_zero(isl_ctx *ctx,
unsigned size);
__isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
__isl_null isl_vec *isl_vec_free(__isl_take isl_vec *vec);
Note that the elements of a vector created by C<isl_vec_alloc>
may have arbitrary values.
A vector created by C<isl_vec_zero> has elements with value zero.
The elements can be changed and inspected using the following functions.
int isl_vec_size(__isl_keep isl_vec *vec);
__isl_give isl_val *isl_vec_get_element_val(
__isl_keep isl_vec *vec, int pos);
__isl_give isl_vec *isl_vec_set_element_si(
__isl_take isl_vec *vec, int pos, int v);
__isl_give isl_vec *isl_vec_set_element_val(
__isl_take isl_vec *vec, int pos,
__isl_take isl_val *v);
__isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
int v);
__isl_give isl_vec *isl_vec_set_val(
__isl_take isl_vec *vec, __isl_take isl_val *v);
int isl_vec_cmp_element(__isl_keep isl_vec *vec1,
__isl_keep isl_vec *vec2, int pos);
C<isl_vec_get_element> will return a negative value if anything went wrong.
In that case, the value of C<*v> is undefined.
The following function can be used to concatenate two vectors.
__isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1,
__isl_take isl_vec *vec2);
=head2 Matrices
Matrices can be created, copied and freed using the following functions.
#include <isl/mat.h>
__isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
unsigned n_row, unsigned n_col);
__isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
__isl_null isl_mat *isl_mat_free(__isl_take isl_mat *mat);
Note that the elements of a newly created matrix may have arbitrary values.
The elements can be changed and inspected using the following functions.
int isl_mat_rows(__isl_keep isl_mat *mat);
int isl_mat_cols(__isl_keep isl_mat *mat);
__isl_give isl_val *isl_mat_get_element_val(
__isl_keep isl_mat *mat, int row, int col);
__isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
int row, int col, int v);
__isl_give isl_mat *isl_mat_set_element_val(
__isl_take isl_mat *mat, int row, int col,
__isl_take isl_val *v);
The following function computes the rank of a matrix.
The return value may be -1 if some error occurred.
#include <isl/mat.h>
int isl_mat_rank(__isl_keep isl_mat *mat);
The following function can be used to compute the (right) inverse
of a matrix, i.e., a matrix such that the product of the original
and the inverse (in that order) is a multiple of the identity matrix.
The input matrix is assumed to be of full row-rank.
__isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
The following function can be used to compute the (right) kernel
(or null space) of a matrix, i.e., a matrix such that the product of
the original and the kernel (in that order) is the zero matrix.
__isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
The following function computes a basis for the space spanned
by the rows of a matrix.
__isl_give isl_mat *isl_mat_row_basis(
__isl_take isl_mat *mat);
The following function computes rows that extend a basis of C<mat1>
to a basis that also covers C<mat2>.
__isl_give isl_mat *isl_mat_row_basis_extension(
__isl_take isl_mat *mat1,
__isl_take isl_mat *mat2);
The following function checks whether there is no linear dependence
among the combined rows of "mat1" and "mat2" that is not already present
in "mat1" or "mat2" individually.
If "mat1" and "mat2" have linearly independent rows by themselves,
then this means that there is no linear dependence among all rows together.
isl_bool isl_mat_has_linearly_independent_rows(
__isl_keep isl_mat *mat1,
__isl_keep isl_mat *mat2);
=head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
The following functions determine
an upper or lower bound on a quasipolynomial over its domain.
__isl_give isl_pw_qpolynomial_fold *
isl_pw_qpolynomial_bound(
__isl_take isl_pw_qpolynomial *pwqp,
enum isl_fold type, int *tight);
__isl_give isl_union_pw_qpolynomial_fold *
isl_union_pw_qpolynomial_bound(
__isl_take isl_union_pw_qpolynomial *upwqp,
enum isl_fold type, int *tight);
The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
is the returned bound is known be tight, i.e., for each value
of the parameters there is at least
one element in the domain that reaches the bound.
If the domain of C<pwqp> is not wrapping, then the bound is computed
over all elements in that domain and the result has a purely parametric
domain. If the domain of C<pwqp> is wrapping, then the bound is
computed over the range of the wrapped relation. The domain of the
wrapped relation becomes the domain of the result.
=head2 Parametric Vertex Enumeration
The parametric vertex enumeration described in this section
is mainly intended to be used internally and by the C<barvinok>
library.
#include <isl/vertices.h>
__isl_give isl_vertices *isl_basic_set_compute_vertices(
__isl_keep isl_basic_set *bset);
The function C<isl_basic_set_compute_vertices> performs the
actual computation of the parametric vertices and the chamber
decomposition and stores the result in an C<isl_vertices> object.
This information can be queried by either iterating over all
the vertices or iterating over all the chambers or cells
and then iterating over all vertices that are active on the chamber.
isl_stat isl_vertices_foreach_vertex(
__isl_keep isl_vertices *vertices,
isl_stat (*fn)(__isl_take isl_vertex *vertex,
void *user), void *user);
isl_stat isl_vertices_foreach_cell(
__isl_keep isl_vertices *vertices,
isl_stat (*fn)(__isl_take isl_cell *cell,
void *user), void *user);
isl_stat isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
isl_stat (*fn)(__isl_take isl_vertex *vertex,
void *user), void *user);
Other operations that can be performed on an C<isl_vertices> object are
the following.
int isl_vertices_get_n_vertices(
__isl_keep isl_vertices *vertices);
__isl_null isl_vertices *isl_vertices_free(
__isl_take isl_vertices *vertices);
Vertices can be inspected and destroyed using the following functions.
int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
__isl_give isl_basic_set *isl_vertex_get_domain(
__isl_keep isl_vertex *vertex);
__isl_give isl_multi_aff *isl_vertex_get_expr(
__isl_keep isl_vertex *vertex);
void isl_vertex_free(__isl_take isl_vertex *vertex);
C<isl_vertex_get_expr> returns a multiple quasi-affine expression
describing the vertex in terms of the parameters,
while C<isl_vertex_get_domain> returns the activity domain
of the vertex.
Chambers can be inspected and destroyed using the following functions.
__isl_give isl_basic_set *isl_cell_get_domain(
__isl_keep isl_cell *cell);
void isl_cell_free(__isl_take isl_cell *cell);
=head1 Polyhedral Compilation Library
This section collects functionality in C<isl> that has been specifically
designed for use during polyhedral compilation.
=head2 Schedule Trees
A schedule tree is a structured representation of a schedule,
assigning a relative order to a set of domain elements.
The relative order expressed by the schedule tree is
defined recursively. In particular, the order between
two domain elements is determined by the node that is closest
to the root that refers to both elements and that orders them apart.
Each node in the tree is of one of several types.
The root node is always of type C<isl_schedule_node_domain>
(or C<isl_schedule_node_extension>)
and it describes the (extra) domain elements to which the schedule applies.
The other types of nodes are as follows.
=over
=item C<isl_schedule_node_band>
A band of schedule dimensions. Each schedule dimension is represented
by a union piecewise quasi-affine expression. If this expression
assigns a different value to two domain elements, while all previous
schedule dimensions in the same band assign them the same value,
then the two domain elements are ordered according to these two
different values.
Each expression is required to be total in the domain elements
that reach the band node.
=item C<isl_schedule_node_expansion>
An expansion node maps each of the domain elements that reach the node
to one or more domain elements. The image of this mapping forms
the set of domain elements that reach the child of the expansion node.
The function that maps each of the expanded domain elements
to the original domain element from which it was expanded
is called the contraction.
=item C<isl_schedule_node_filter>
A filter node does not impose any ordering, but rather intersects
the set of domain elements that the current subtree refers to
with a given union set. The subtree of the filter node only
refers to domain elements in the intersection.
A filter node is typically only used as a child of a sequence or
set node.
=item C<isl_schedule_node_leaf>
A leaf of the schedule tree. Leaf nodes do not impose any ordering.
=item C<isl_schedule_node_mark>
A mark node can be used to attach any kind of information to a subtree
of the schedule tree.
=item C<isl_schedule_node_sequence>
A sequence node has one or more children, each of which is a filter node.
The filters on these filter nodes form a partition of
the domain elements that the current subtree refers to.
If two domain elements appear in distinct filters then the sequence
node orders them according to the child positions of the corresponding
filter nodes.
=item C<isl_schedule_node_set>
A set node is similar to a sequence node, except that
it expresses that domain elements appearing in distinct filters
may have any order. The order of the children of a set node
is therefore also immaterial.
=back
The following node types are only supported by the AST generator.
=over
=item C<isl_schedule_node_context>
The context describes constraints on the parameters and
the schedule dimensions of outer
bands that the AST generator may assume to hold. It is also the only
kind of node that may introduce additional parameters.
The space of the context is that of the flat product of the outer
band nodes. In particular, if there are no outer band nodes, then
this space is the unnamed zero-dimensional space.
Since a context node references the outer band nodes, any tree
containing a context node is considered to be anchored.
=item C<isl_schedule_node_extension>
An extension node instructs the AST generator to add additional
domain elements that need to be scheduled.
The additional domain elements are described by the range of
the extension map in terms of the outer schedule dimensions,
i.e., the flat product of the outer band nodes.
Note that domain elements are added whenever the AST generator
reaches the extension node, meaning that there are still some
active domain elements for which an AST needs to be generated.
The conditions under which some domain elements are still active
may however not be completely described by the outer AST nodes
generated at that point.
Since an extension node references the outer band nodes, any tree
containing an extension node is considered to be anchored.
An extension node may also appear as the root of a schedule tree,
when it is intended to be inserted into another tree
using C<isl_schedule_node_graft_before> or C<isl_schedule_node_graft_after>.
In this case, the domain of the extension node should
correspond to the flat product of the outer band nodes
in this other schedule tree at the point where the extension tree
will be inserted.
=item C<isl_schedule_node_guard>
The guard describes constraints on the parameters and
the schedule dimensions of outer
bands that need to be enforced by the outer nodes
in the generated AST.
That is, the part of the AST that is generated from descendants
of the guard node can assume that these constraints are satisfied.
The space of the guard is that of the flat product of the outer
band nodes. In particular, if there are no outer band nodes, then
this space is the unnamed zero-dimensional space.
Since a guard node references the outer band nodes, any tree
containing a guard node is considered to be anchored.
=back
Except for the C<isl_schedule_node_context> nodes,
none of the nodes may introduce any parameters that were not
already present in the root domain node.
A schedule tree is encapsulated in an C<isl_schedule> object.
The simplest such objects, those with a tree consisting of single domain node,
can be created using the following functions with either an empty
domain or a given domain.
#include <isl/schedule.h>
__isl_give isl_schedule *isl_schedule_empty(
__isl_take isl_space *space);
__isl_give isl_schedule *isl_schedule_from_domain(
__isl_take isl_union_set *domain);
The function C<isl_schedule_constraints_compute_schedule> described
in L</"Scheduling"> can also be used to construct schedules.
C<isl_schedule> objects may be copied and freed using the following functions.
#include <isl/schedule.h>
__isl_give isl_schedule *isl_schedule_copy(
__isl_keep isl_schedule *sched);
__isl_null isl_schedule *isl_schedule_free(
__isl_take isl_schedule *sched);
The following functions checks whether two C<isl_schedule> objects
are obviously the same.
#include <isl/schedule.h>
isl_bool isl_schedule_plain_is_equal(
__isl_keep isl_schedule *schedule1,
__isl_keep isl_schedule *schedule2);
The domain of the schedule, i.e., the domain described by the root node,
can be obtained using the following function.
#include <isl/schedule.h>
__isl_give isl_union_set *isl_schedule_get_domain(
__isl_keep isl_schedule *schedule);
An extra top-level band node (right underneath the domain node) can
be introduced into the schedule using the following function.
The schedule tree is assumed not to have any anchored nodes.
#include <isl/schedule.h>
__isl_give isl_schedule *
isl_schedule_insert_partial_schedule(
__isl_take isl_schedule *schedule,
__isl_take isl_multi_union_pw_aff *partial);
A top-level context node (right underneath the domain node) can
be introduced into the schedule using the following function.
#include <isl/schedule.h>
__isl_give isl_schedule *isl_schedule_insert_context(
__isl_take isl_schedule *schedule,
__isl_take isl_set *context)
A top-level guard node (right underneath the domain node) can
be introduced into the schedule using the following function.
#include <isl/schedule.h>
__isl_give isl_schedule *isl_schedule_insert_guard(
__isl_take isl_schedule *schedule,
__isl_take isl_set *guard)
A schedule that combines two schedules either in the given
order or in an arbitrary order, i.e., with an C<isl_schedule_node_sequence>
or an C<isl_schedule_node_set> node,
can be created using the following functions.
#include <isl/schedule.h>
__isl_give isl_schedule *isl_schedule_sequence(
__isl_take isl_schedule *schedule1,
__isl_take isl_schedule *schedule2);
__isl_give isl_schedule *isl_schedule_set(
__isl_take isl_schedule *schedule1,
__isl_take isl_schedule *schedule2);
The domains of the two input schedules need to be disjoint.
The following function can be used to restrict the domain
of a schedule with a domain node as root to be a subset of the given union set.
This operation may remove nodes in the tree that have become
redundant.
#include <isl/schedule.h>
__isl_give isl_schedule *isl_schedule_intersect_domain(
__isl_take isl_schedule *schedule,
__isl_take isl_union_set *domain);
The following function can be used to simplify the domain
of a schedule with a domain node as root with respect to the given
parameter domain.
#include <isl/schedule.h>
__isl_give isl_schedule *isl_schedule_gist_domain_params(
__isl_take isl_schedule *schedule,
__isl_take isl_set *context);
The following function resets the user pointers on all parameter
and tuple identifiers referenced by the nodes of the given schedule.
#include <isl/schedule.h>
__isl_give isl_schedule *isl_schedule_reset_user(
__isl_take isl_schedule *schedule);
The following function aligns the parameters of all nodes
in the given schedule to the given space.
#include <isl/schedule.h>
__isl_give isl_schedule *isl_schedule_align_params(
__isl_take isl_schedule *schedule,
__isl_take isl_space *space);
The following function allows the user to plug in a given function
in the iteration domains. The input schedule is not allowed to contain
any expansion nodes.
#include <isl/schedule.h>
__isl_give isl_schedule *
isl_schedule_pullback_union_pw_multi_aff(
__isl_take isl_schedule *schedule,
__isl_take isl_union_pw_multi_aff *upma);
The following function can be used to plug in the schedule C<expansion>
in the leaves of C<schedule>, where C<contraction> describes how
the domain elements of C<expansion> map to the domain elements
at the original leaves of C<schedule>.
The resulting schedule will contain expansion nodes, unless
C<contraction> is an identity function.
#include <isl/schedule.h>
__isl_give isl_schedule *isl_schedule_expand(
__isl_take isl_schedule *schedule,
__isl_take isl_union_pw_multi_aff *contraction,
__isl_take isl_schedule *expansion);
An C<isl_union_map> representation of the schedule can be obtained
from an C<isl_schedule> using the following function.
#include <isl/schedule.h>
__isl_give isl_union_map *isl_schedule_get_map(
__isl_keep isl_schedule *sched);
The resulting relation encodes the same relative ordering as
the schedule by mapping the domain elements to a common schedule space.
If the schedule_separate_components option is set, then the order
of the children of a set node is explicitly encoded in the result.
If the tree contains any expansion nodes, then the relation
is formulated in terms of the expanded domain elements.
Schedules can be read from input using the following functions.
#include <isl/schedule.h>
__isl_give isl_schedule *isl_schedule_read_from_file(
isl_ctx *ctx, FILE *input);
__isl_give isl_schedule *isl_schedule_read_from_str(
isl_ctx *ctx, const char *str);
A representation of the schedule can be printed using
#include <isl/schedule.h>
__isl_give isl_printer *isl_printer_print_schedule(
__isl_take isl_printer *p,
__isl_keep isl_schedule *schedule);
__isl_give char *isl_schedule_to_str(
__isl_keep isl_schedule *schedule);
C<isl_schedule_to_str> prints the schedule in flow format.
The schedule tree can be traversed through the use of
C<isl_schedule_node> objects that point to a particular
position in the schedule tree. Whenever a C<isl_schedule_node>
is used to modify a node in the schedule tree, the original schedule
tree is left untouched and the modifications are performed to a copy
of the tree. The returned C<isl_schedule_node> then points to
this modified copy of the tree.
The root of the schedule tree can be obtained using the following function.
#include <isl/schedule.h>
__isl_give isl_schedule_node *isl_schedule_get_root(
__isl_keep isl_schedule *schedule);
A pointer to a newly created schedule tree with a single domain
node can be created using the following functions.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_from_domain(
__isl_take isl_union_set *domain);
__isl_give isl_schedule_node *
isl_schedule_node_from_extension(
__isl_take isl_union_map *extension);
C<isl_schedule_node_from_extension> creates a tree with an extension
node as root.
Schedule nodes can be copied and freed using the following functions.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *isl_schedule_node_copy(
__isl_keep isl_schedule_node *node);
__isl_null isl_schedule_node *isl_schedule_node_free(
__isl_take isl_schedule_node *node);
The following functions can be used to check if two schedule
nodes point to the same position in the same schedule.
#include <isl/schedule_node.h>
isl_bool isl_schedule_node_is_equal(
__isl_keep isl_schedule_node *node1,
__isl_keep isl_schedule_node *node2);
The following properties can be obtained from a schedule node.
#include <isl/schedule_node.h>
enum isl_schedule_node_type isl_schedule_node_get_type(
__isl_keep isl_schedule_node *node);
enum isl_schedule_node_type
isl_schedule_node_get_parent_type(
__isl_keep isl_schedule_node *node);
__isl_give isl_schedule *isl_schedule_node_get_schedule(
__isl_keep isl_schedule_node *node);
The function C<isl_schedule_node_get_type> returns the type of
the node, while C<isl_schedule_node_get_parent_type> returns
type of the parent of the node, which is required to exist.
The function C<isl_schedule_node_get_schedule> returns a copy
to the schedule to which the node belongs.
The following functions can be used to move the schedule node
to a different position in the tree or to check if such a position
exists.
#include <isl/schedule_node.h>
isl_bool isl_schedule_node_has_parent(
__isl_keep isl_schedule_node *node);
__isl_give isl_schedule_node *isl_schedule_node_parent(
__isl_take isl_schedule_node *node);
__isl_give isl_schedule_node *isl_schedule_node_root(
__isl_take isl_schedule_node *node);
__isl_give isl_schedule_node *isl_schedule_node_ancestor(
__isl_take isl_schedule_node *node,
int generation);
int isl_schedule_node_n_children(
__isl_keep isl_schedule_node *node);
__isl_give isl_schedule_node *isl_schedule_node_child(
__isl_take isl_schedule_node *node, int pos);
isl_bool isl_schedule_node_has_children(
__isl_keep isl_schedule_node *node);
__isl_give isl_schedule_node *isl_schedule_node_first_child(
__isl_take isl_schedule_node *node);
isl_bool isl_schedule_node_has_previous_sibling(
__isl_keep isl_schedule_node *node);
__isl_give isl_schedule_node *
isl_schedule_node_previous_sibling(
__isl_take isl_schedule_node *node);
isl_bool isl_schedule_node_has_next_sibling(
__isl_keep isl_schedule_node *node);
__isl_give isl_schedule_node *
isl_schedule_node_next_sibling(
__isl_take isl_schedule_node *node);
For C<isl_schedule_node_ancestor>, the ancestor of generation 0
is the node itself, the ancestor of generation 1 is its parent and so on.
It is also possible to query the number of ancestors of a node,
the position of the current node
within the children of its parent, the position of the subtree
containing a node within the children of an ancestor
or to obtain a copy of a given
child without destroying the current node.
Given two nodes that point to the same schedule, their closest
shared ancestor can be obtained using
C<isl_schedule_node_get_shared_ancestor>.
#include <isl/schedule_node.h>
int isl_schedule_node_get_tree_depth(
__isl_keep isl_schedule_node *node);
int isl_schedule_node_get_child_position(
__isl_keep isl_schedule_node *node);
int isl_schedule_node_get_ancestor_child_position(
__isl_keep isl_schedule_node *node,
__isl_keep isl_schedule_node *ancestor);
__isl_give isl_schedule_node *isl_schedule_node_get_child(
__isl_keep isl_schedule_node *node, int pos);
__isl_give isl_schedule_node *
isl_schedule_node_get_shared_ancestor(
__isl_keep isl_schedule_node *node1,
__isl_keep isl_schedule_node *node2);
All nodes in a schedule tree or
all descendants of a specific node (including the node) can be visited
in depth-first pre-order using the following functions.
#include <isl/schedule.h>
isl_stat isl_schedule_foreach_schedule_node_top_down(
__isl_keep isl_schedule *sched,
isl_bool (*fn)(__isl_keep isl_schedule_node *node,
void *user), void *user);
#include <isl/schedule_node.h>
isl_stat isl_schedule_node_foreach_descendant_top_down(
__isl_keep isl_schedule_node *node,
isl_bool (*fn)(__isl_keep isl_schedule_node *node,
void *user), void *user);
The callback function is slightly different from the usual
callbacks in that it not only indicates success (non-negative result)
or failure (negative result), but also indicates whether the children
of the given node should be visited. In particular, if the callback
returns a positive value, then the children are visited, but if
the callback returns zero, then the children are not visited.
The following functions checks whether
all descendants of a specific node (including the node itself)
satisfy a user-specified test.
#include <isl/schedule_node.h>
isl_bool isl_schedule_node_every_descendant(
__isl_keep isl_schedule_node *node,
isl_bool (*test)(__isl_keep isl_schedule_node *node,
void *user), void *user)
The ancestors of a node in a schedule tree can be visited from
the root down to and including the parent of the node using
the following function.
#include <isl/schedule_node.h>
isl_stat isl_schedule_node_foreach_ancestor_top_down(
__isl_keep isl_schedule_node *node,
isl_stat (*fn)(__isl_keep isl_schedule_node *node,
void *user), void *user);
The following functions allows for a depth-first post-order
traversal of the nodes in a schedule tree or
of the descendants of a specific node (including the node
itself), where the user callback is allowed to modify the
visited node.
#include <isl/schedule.h>
__isl_give isl_schedule *
isl_schedule_map_schedule_node_bottom_up(
__isl_take isl_schedule *schedule,
__isl_give isl_schedule_node *(*fn)(
__isl_take isl_schedule_node *node,
void *user), void *user);
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_map_descendant_bottom_up(
__isl_take isl_schedule_node *node,
__isl_give isl_schedule_node *(*fn)(
__isl_take isl_schedule_node *node,
void *user), void *user);
The traversal continues from the node returned by the callback function.
It is the responsibility of the user to ensure that this does not
lead to an infinite loop. It is safest to always return a pointer
to the same position (same ancestors and child positions) as the input node.
The following function removes a node (along with its descendants)
from a schedule tree and returns a pointer to the leaf at the
same position in the updated tree.
It is not allowed to remove the root of a schedule tree or
a child of a set or sequence node.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *isl_schedule_node_cut(
__isl_take isl_schedule_node *node);
The following function removes a single node
from a schedule tree and returns a pointer to the child
of the node, now located at the position of the original node
or to a leaf node at that position if there was no child.
It is not allowed to remove the root of a schedule tree,
a set or sequence node, a child of a set or sequence node or
a band node with an anchored subtree.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *isl_schedule_node_delete(
__isl_take isl_schedule_node *node);
Most nodes in a schedule tree only contain local information.
In some cases, however, a node may also refer to the schedule dimensions
of its outer band nodes.
This means that the position of the node within the tree should
not be changed, or at least that no changes are performed to the
outer band nodes. The following function can be used to test
whether the subtree rooted at a given node contains any such nodes.
#include <isl/schedule_node.h>
isl_bool isl_schedule_node_is_subtree_anchored(
__isl_keep isl_schedule_node *node);
The following function resets the user pointers on all parameter
and tuple identifiers referenced by the given schedule node.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *isl_schedule_node_reset_user(
__isl_take isl_schedule_node *node);
The following function aligns the parameters of the given schedule
node to the given space.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_align_params(
__isl_take isl_schedule_node *node,
__isl_take isl_space *space);
Several node types have their own functions for querying
(and in some cases setting) some node type specific properties.
#include <isl/schedule_node.h>
__isl_give isl_space *isl_schedule_node_band_get_space(
__isl_keep isl_schedule_node *node);
__isl_give isl_multi_union_pw_aff *
isl_schedule_node_band_get_partial_schedule(
__isl_keep isl_schedule_node *node);
__isl_give isl_union_map *
isl_schedule_node_band_get_partial_schedule_union_map(
__isl_keep isl_schedule_node *node);
unsigned isl_schedule_node_band_n_member(
__isl_keep isl_schedule_node *node);
isl_bool isl_schedule_node_band_member_get_coincident(
__isl_keep isl_schedule_node *node, int pos);
__isl_give isl_schedule_node *
isl_schedule_node_band_member_set_coincident(
__isl_take isl_schedule_node *node, int pos,
int coincident);
isl_bool isl_schedule_node_band_get_permutable(
__isl_keep isl_schedule_node *node);
__isl_give isl_schedule_node *
isl_schedule_node_band_set_permutable(
__isl_take isl_schedule_node *node, int permutable);
enum isl_ast_loop_type
isl_schedule_node_band_member_get_ast_loop_type(
__isl_keep isl_schedule_node *node, int pos);
__isl_give isl_schedule_node *
isl_schedule_node_band_member_set_ast_loop_type(
__isl_take isl_schedule_node *node, int pos,
enum isl_ast_loop_type type);
__isl_give isl_union_set *
enum isl_ast_loop_type
isl_schedule_node_band_member_get_isolate_ast_loop_type(
__isl_keep isl_schedule_node *node, int pos);
__isl_give isl_schedule_node *
isl_schedule_node_band_member_set_isolate_ast_loop_type(
__isl_take isl_schedule_node *node, int pos,
enum isl_ast_loop_type type);
isl_schedule_node_band_get_ast_build_options(
__isl_keep isl_schedule_node *node);
__isl_give isl_schedule_node *
isl_schedule_node_band_set_ast_build_options(
__isl_take isl_schedule_node *node,
__isl_take isl_union_set *options);
__isl_give isl_set *
isl_schedule_node_band_get_ast_isolate_option(
__isl_keep isl_schedule_node *node);
The function C<isl_schedule_node_band_get_space> returns the space
of the partial schedule of the band.
The function C<isl_schedule_node_band_get_partial_schedule_union_map>
returns a representation of the partial schedule of the band node
in the form of an C<isl_union_map>.
The coincident and permutable properties are set by
C<isl_schedule_constraints_compute_schedule> on the schedule tree
it produces.
A scheduling dimension is considered to be ``coincident''
if it satisfies the coincidence constraints within its band.
That is, if the dependence distances of the coincidence
constraints are all zero in that direction (for fixed
iterations of outer bands).
A band is marked permutable if it was produced using the Pluto-like scheduler.
Note that the scheduler may have to resort to a Feautrier style scheduling
step even if the default scheduler is used.
An C<isl_ast_loop_type> is one of C<isl_ast_loop_default>,
C<isl_ast_loop_atomic>, C<isl_ast_loop_unroll> or C<isl_ast_loop_separate>.
For the meaning of these loop AST generation types and the difference
between the regular loop AST generation type and the isolate
loop AST generation type, see L</"AST Generation Options (Schedule Tree)">.
The functions C<isl_schedule_node_band_member_get_ast_loop_type>
and C<isl_schedule_node_band_member_get_isolate_ast_loop_type>
may return C<isl_ast_loop_error> if an error occurs.
The AST build options govern how an AST is generated for
the individual schedule dimensions during AST generation.
See L</"AST Generation Options (Schedule Tree)">.
The isolate option for the given node can be extracted from these
AST build options using the function
C<isl_schedule_node_band_get_ast_isolate_option>.
#include <isl/schedule_node.h>
__isl_give isl_set *
isl_schedule_node_context_get_context(
__isl_keep isl_schedule_node *node);
#include <isl/schedule_node.h>
__isl_give isl_union_set *
isl_schedule_node_domain_get_domain(
__isl_keep isl_schedule_node *node);
#include <isl/schedule_node.h>
__isl_give isl_union_map *
isl_schedule_node_expansion_get_expansion(
__isl_keep isl_schedule_node *node);
__isl_give isl_union_pw_multi_aff *
isl_schedule_node_expansion_get_contraction(
__isl_keep isl_schedule_node *node);
#include <isl/schedule_node.h>
__isl_give isl_union_map *
isl_schedule_node_extension_get_extension(
__isl_keep isl_schedule_node *node);
#include <isl/schedule_node.h>
__isl_give isl_union_set *
isl_schedule_node_filter_get_filter(
__isl_keep isl_schedule_node *node);
#include <isl/schedule_node.h>
__isl_give isl_set *isl_schedule_node_guard_get_guard(
__isl_keep isl_schedule_node *node);
#include <isl/schedule_node.h>
__isl_give isl_id *isl_schedule_node_mark_get_id(
__isl_keep isl_schedule_node *node);
The following functions can be used to obtain an C<isl_multi_union_pw_aff>,
an C<isl_union_pw_multi_aff> or C<isl_union_map> representation of
partial schedules related to the node.
#include <isl/schedule_node.h>
__isl_give isl_multi_union_pw_aff *
isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(
__isl_keep isl_schedule_node *node);
__isl_give isl_union_pw_multi_aff *
isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(
__isl_keep isl_schedule_node *node);
__isl_give isl_union_map *
isl_schedule_node_get_prefix_schedule_union_map(
__isl_keep isl_schedule_node *node);
__isl_give isl_union_map *
isl_schedule_node_get_prefix_schedule_relation(
__isl_keep isl_schedule_node *node);
__isl_give isl_union_map *
isl_schedule_node_get_subtree_schedule_union_map(
__isl_keep isl_schedule_node *node);
In particular, the functions
C<isl_schedule_node_get_prefix_schedule_multi_union_pw_aff>,
C<isl_schedule_node_get_prefix_schedule_union_pw_multi_aff>
and C<isl_schedule_node_get_prefix_schedule_union_map>
return a relative ordering on the domain elements that reach the given
node determined by its ancestors.
The function C<isl_schedule_node_get_prefix_schedule_relation>
additionally includes the domain constraints in the result.
The function C<isl_schedule_node_get_subtree_schedule_union_map>
returns a representation of the partial schedule defined by the
subtree rooted at the given node.
If the tree contains any expansion nodes, then the subtree schedule
is formulated in terms of the expanded domain elements.
The tree passed to functions returning a prefix schedule
may only contain extension nodes if these would not affect
the result of these functions. That is, if one of the ancestors
is an extension node, then all of the domain elements that were
added by the extension node need to have been filtered out
by filter nodes between the extension node and the input node.
The tree passed to C<isl_schedule_node_get_subtree_schedule_union_map>
may not contain in extension nodes in the selected subtree.
The expansion/contraction defined by an entire subtree, combining
the expansions/contractions
on the expansion nodes in the subtree, can be obtained using
the following functions.
#include <isl/schedule_node.h>
__isl_give isl_union_map *
isl_schedule_node_get_subtree_expansion(
__isl_keep isl_schedule_node *node);
__isl_give isl_union_pw_multi_aff *
isl_schedule_node_get_subtree_contraction(
__isl_keep isl_schedule_node *node);
The total number of outer band members of given node, i.e.,
the shared output dimension of the maps in the result
of C<isl_schedule_node_get_prefix_schedule_union_map> can be obtained
using the following function.
#include <isl/schedule_node.h>
int isl_schedule_node_get_schedule_depth(
__isl_keep isl_schedule_node *node);
The following functions return the elements that reach the given node
or the union of universes in the spaces that contain these elements.
#include <isl/schedule_node.h>
__isl_give isl_union_set *
isl_schedule_node_get_domain(
__isl_keep isl_schedule_node *node);
__isl_give isl_union_set *
isl_schedule_node_get_universe_domain(
__isl_keep isl_schedule_node *node);
The input tree of C<isl_schedule_node_get_domain>
may only contain extension nodes if these would not affect
the result of this function. That is, if one of the ancestors
is an extension node, then all of the domain elements that were
added by the extension node need to have been filtered out
by filter nodes between the extension node and the input node.
The following functions can be used to introduce additional nodes
in the schedule tree. The new node is introduced at the point
in the tree where the C<isl_schedule_node> points to and
the results points to the new node.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_insert_partial_schedule(
__isl_take isl_schedule_node *node,
__isl_take isl_multi_union_pw_aff *schedule);
This function inserts a new band node with (the greatest integer
part of) the given partial schedule.
The subtree rooted at the given node is assumed not to have
any anchored nodes.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_insert_context(
__isl_take isl_schedule_node *node,
__isl_take isl_set *context);
This function inserts a new context node with the given context constraints.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_insert_filter(
__isl_take isl_schedule_node *node,
__isl_take isl_union_set *filter);
This function inserts a new filter node with the given filter.
If the original node already pointed to a filter node, then the
two filter nodes are merged into one.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_insert_guard(
__isl_take isl_schedule_node *node,
__isl_take isl_set *guard);
This function inserts a new guard node with the given guard constraints.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_insert_mark(
__isl_take isl_schedule_node *node,
__isl_take isl_id *mark);
This function inserts a new mark node with the give mark identifier.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_insert_sequence(
__isl_take isl_schedule_node *node,
__isl_take isl_union_set_list *filters);
__isl_give isl_schedule_node *
isl_schedule_node_insert_set(
__isl_take isl_schedule_node *node,
__isl_take isl_union_set_list *filters);
These functions insert a new sequence or set node with the given
filters as children.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *isl_schedule_node_group(
__isl_take isl_schedule_node *node,
__isl_take isl_id *group_id);
This function introduces an expansion node in between the current
node and its parent that expands instances of a space with tuple
identifier C<group_id> to the original domain elements that reach
the node. The group instances are identified by the prefix schedule
of those domain elements. The ancestors of the node are adjusted
to refer to the group instances instead of the original domain
elements. The return value points to the same node in the updated
schedule tree as the input node, i.e., to the child of the newly
introduced expansion node. Grouping instances of different statements
ensures that they will be treated as a single statement by the
AST generator up to the point of the expansion node.
The following function can be used to flatten a nested
sequence.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_sequence_splice_child(
__isl_take isl_schedule_node *node, int pos);
That is, given a sequence node C<node> that has another sequence node
in its child at position C<pos> (in particular, the child of that filter
node is a sequence node), attach the children of that other sequence
node as children of C<node>, replacing the original child at position
C<pos>.
The partial schedule of a band node can be scaled (down) or reduced using
the following functions.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_band_scale(
__isl_take isl_schedule_node *node,
__isl_take isl_multi_val *mv);
__isl_give isl_schedule_node *
isl_schedule_node_band_scale_down(
__isl_take isl_schedule_node *node,
__isl_take isl_multi_val *mv);
__isl_give isl_schedule_node *
isl_schedule_node_band_mod(
__isl_take isl_schedule_node *node,
__isl_take isl_multi_val *mv);
The spaces of the two arguments need to match.
After scaling, the partial schedule is replaced by its greatest
integer part to ensure that the schedule remains integral.
The partial schedule of a band node can be shifted by an
C<isl_multi_union_pw_aff> with a domain that is a superset
of the domain of the partial schedule using
the following function.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_band_shift(
__isl_take isl_schedule_node *node,
__isl_take isl_multi_union_pw_aff *shift);
A band node can be tiled using the following function.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *isl_schedule_node_band_tile(
__isl_take isl_schedule_node *node,
__isl_take isl_multi_val *sizes);
isl_stat isl_options_set_tile_scale_tile_loops(isl_ctx *ctx,
int val);
int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx);
isl_stat isl_options_set_tile_shift_point_loops(isl_ctx *ctx,
int val);
int isl_options_get_tile_shift_point_loops(isl_ctx *ctx);
The C<isl_schedule_node_band_tile> function tiles
the band using the given tile sizes inside its schedule.
A new child band node is created to represent the point loops and it is
inserted between the modified band and its children.
The subtree rooted at the given node is assumed not to have
any anchored nodes.
The C<tile_scale_tile_loops> option specifies whether the tile
loops iterators should be scaled by the tile sizes.
If the C<tile_shift_point_loops> option is set, then the point loops
are shifted to start at zero.
A band node can be split into two nested band nodes
using the following function.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *isl_schedule_node_band_split(
__isl_take isl_schedule_node *node, int pos);
The resulting outer band node contains the first C<pos> dimensions of
the schedule of C<node> while the inner band contains the remaining dimensions.
The schedules of the two band nodes live in anonymous spaces.
The loop AST generation type options and the isolate option
are split over the two band nodes.
A band node can be moved down to the leaves of the subtree rooted
at the band node using the following function.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *isl_schedule_node_band_sink(
__isl_take isl_schedule_node *node);
The subtree rooted at the given node is assumed not to have
any anchored nodes.
The result points to the node in the resulting tree that is in the same
position as the node pointed to by C<node> in the original tree.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_order_before(
__isl_take isl_schedule_node *node,
__isl_take isl_union_set *filter);
__isl_give isl_schedule_node *
isl_schedule_node_order_after(
__isl_take isl_schedule_node *node,
__isl_take isl_union_set *filter);
These functions split the domain elements that reach C<node>
into those that satisfy C<filter> and those that do not and
arranges for the elements that do satisfy the filter to be
executed before (in case of C<isl_schedule_node_order_before>)
or after (in case of C<isl_schedule_node_order_after>)
those that do not. The order is imposed by
a sequence node, possibly reusing the grandparent of C<node>
on two copies of the subtree attached to the original C<node>.
Both copies are simplified with respect to their filter.
Return a pointer to the copy of the subtree that does not
satisfy C<filter>. If there is no such copy (because all
reaching domain elements satisfy the filter), then return
the original pointer.
#include <isl/schedule_node.h>
__isl_give isl_schedule_node *
isl_schedule_node_graft_before(
__isl_take isl_schedule_node *node,
__isl_take isl_schedule_node *graft);
__isl_give isl_schedule_node *
isl_schedule_node_graft_after(
__isl_take isl_schedule_node *node,
__isl_take isl_schedule_node *graft);
This function inserts the C<graft> tree into the tree containing C<node>
such that it is executed before (in case of C<isl_schedule_node_graft_before>)
or after (in case of C<isl_schedule_node_graft_after>) C<node>.
The root node of C<graft>
should be an extension node where the domain of the extension
is the flat product of all outer band nodes of C<node>.
The root node may also be a domain node.
The elements of the domain or the range of the extension may not
intersect with the domain elements that reach "node".
The schedule tree of C<graft> may not be anchored.
The schedule tree of C<node> is modified to include an extension node
corresponding to the root node of C<graft> as a child of the original
parent of C<node>. The original node that C<node> points to and the
child of the root node of C<graft> are attached to this extension node
through a sequence, with appropriate filters and with the child
of C<graft> appearing before or after the original C<node>.
If C<node> already appears inside a sequence that is the child of
an extension node and if the spaces of the new domain elements
do not overlap with those of the original domain elements,
then that extension node is extended with the new extension
rather than introducing a new segment of extension and sequence nodes.
Return a pointer to the same node in the modified tree that
C<node> pointed to in the original tree.
A representation of the schedule node can be printed using
#include <isl/schedule_node.h>
__isl_give isl_printer *isl_printer_print_schedule_node(
__isl_take isl_printer *p,
__isl_keep isl_schedule_node *node);
__isl_give char *isl_schedule_node_to_str(
__isl_keep isl_schedule_node *node);
C<isl_schedule_node_to_str> prints the schedule node in block format.
=head2 Dependence Analysis
C<isl> contains specialized functionality for performing
array dataflow analysis. That is, given a I<sink> access relation,
a collection of possible I<source> accesses and
a collection of I<kill> accesses,
C<isl> can compute relations that describe
for each iteration of the sink access, which iterations
of which of the source access relations may have
accessed the same data element before the given iteration
of the sink access without any intermediate kill of that data element.
The resulting dependence relations map source iterations
to either the corresponding sink iterations or
pairs of corresponding sink iterations and accessed data elements.
To compute standard flow dependences, the sink should be
a read, while the sources should be writes.
If no kills are specified,
then memory based dependence analysis is performed.
If, on the other hand, all sources are also kills,
then value based dependence analysis is performed.
If any of the source accesses are marked as being I<must>
accesses, then they are also treated as kills.
Furthermore, the specification of must-sources results
in the computation of must-dependences.
Only dependences originating in a must access not coscheduled
with any other access to the same element and without
any may accesses between the must access and the sink access
are considered to be must dependences.
=head3 High-level Interface
A high-level interface to dependence analysis is provided
by the following function.
#include <isl/flow.h>
__isl_give isl_union_flow *
isl_union_access_info_compute_flow(
__isl_take isl_union_access_info *access);
The input C<isl_union_access_info> object describes the sink
access relations, the source access relations and a schedule,
while the output C<isl_union_flow> object describes
the resulting dependence relations and the subsets of the
sink relations for which no source was found.
An C<isl_union_access_info> is created, modified, copied and freed using
the following functions.
#include <isl/flow.h>
__isl_give isl_union_access_info *
isl_union_access_info_from_sink(
__isl_take isl_union_map *sink);
__isl_give isl_union_access_info *
isl_union_access_info_set_kill(
__isl_take isl_union_access_info *access,
__isl_take isl_union_map *kill);
__isl_give isl_union_access_info *
isl_union_access_info_set_may_source(
__isl_take isl_union_access_info *access,
__isl_take isl_union_map *may_source);
__isl_give isl_union_access_info *
isl_union_access_info_set_must_source(
__isl_take isl_union_access_info *access,
__isl_take isl_union_map *must_source);
__isl_give isl_union_access_info *
isl_union_access_info_set_schedule(
__isl_take isl_union_access_info *access,
__isl_take isl_schedule *schedule);
__isl_give isl_union_access_info *
isl_union_access_info_set_schedule_map(
__isl_take isl_union_access_info *access,
__isl_take isl_union_map *schedule_map);
__isl_give isl_union_access_info *
isl_union_access_info_copy(
__isl_keep isl_union_access_info *access);
__isl_null isl_union_access_info *
isl_union_access_info_free(
__isl_take isl_union_access_info *access);
The may sources set by C<isl_union_access_info_set_may_source>
do not need to include the must sources set by
C<isl_union_access_info_set_must_source> as a subset.
The kills set by C<isl_union_access_info_set_kill> may overlap
with the may-sources and/or must-sources.
The user is free not to call one (or more) of these functions,
in which case the corresponding set is kept to its empty default.
Similarly, the default schedule initialized by
C<isl_union_access_info_from_sink> is empty.
The current schedule is determined by the last call to either
C<isl_union_access_info_set_schedule> or
C<isl_union_access_info_set_schedule_map>.
The domain of the schedule corresponds to the domains of
the access relations. In particular, the domains of the access
relations are effectively intersected with the domain of the schedule
and only the resulting accesses are considered by the dependence analysis.
An C<isl_union_access_info> object can be read from input
using the following function.
#include <isl/flow.h>
__isl_give isl_union_access_info *
isl_union_access_info_read_from_file(isl_ctx *ctx,
FILE *input);
A representation of the information contained in an object
of type C<isl_union_access_info> can be obtained using
#include <isl/flow.h>
__isl_give isl_printer *
isl_printer_print_union_access_info(
__isl_take isl_printer *p,
__isl_keep isl_union_access_info *access);
__isl_give char *isl_union_access_info_to_str(
__isl_keep isl_union_access_info *access);
C<isl_union_access_info_to_str> prints the information in flow format.
The output of C<isl_union_access_info_compute_flow> can be examined,
copied, and freed using the following functions.
#include <isl/flow.h>
__isl_give isl_union_map *isl_union_flow_get_must_dependence(
__isl_keep isl_union_flow *flow);
__isl_give isl_union_map *isl_union_flow_get_may_dependence(
__isl_keep isl_union_flow *flow);
__isl_give isl_union_map *
isl_union_flow_get_full_must_dependence(
__isl_keep isl_union_flow *flow);
__isl_give isl_union_map *
isl_union_flow_get_full_may_dependence(
__isl_keep isl_union_flow *flow);
__isl_give isl_union_map *isl_union_flow_get_must_no_source(
__isl_keep isl_union_flow *flow);
__isl_give isl_union_map *isl_union_flow_get_may_no_source(
__isl_keep isl_union_flow *flow);
__isl_give isl_union_flow *isl_union_flow_copy(
__isl_keep isl_union_flow *flow);
__isl_null isl_union_flow *isl_union_flow_free(
__isl_take isl_union_flow *flow);
The relation returned by C<isl_union_flow_get_must_dependence>
relates domain elements of must sources to domain elements of the sink.
The relation returned by C<isl_union_flow_get_may_dependence>
relates domain elements of must or may sources to domain elements of the sink
and includes the previous relation as a subset.
The relation returned by C<isl_union_flow_get_full_must_dependence>
relates domain elements of must sources to pairs of domain elements of the sink
and accessed data elements.
The relation returned by C<isl_union_flow_get_full_may_dependence>
relates domain elements of must or may sources to pairs of
domain elements of the sink and accessed data elements.
This relation includes the previous relation as a subset.
The relation returned by C<isl_union_flow_get_must_no_source> is the subset
of the sink relation for which no dependences have been found.
The relation returned by C<isl_union_flow_get_may_no_source> is the subset
of the sink relation for which no definite dependences have been found.
That is, it contains those sink access that do not contribute to any
of the elements in the relation returned
by C<isl_union_flow_get_must_dependence>.
A representation of the information contained in an object
of type C<isl_union_flow> can be obtained using
#include <isl/flow.h>
__isl_give isl_printer *isl_printer_print_union_flow(
__isl_take isl_printer *p,
__isl_keep isl_union_flow *flow);
__isl_give char *isl_union_flow_to_str(
__isl_keep isl_union_flow *flow);
C<isl_union_flow_to_str> prints the information in flow format.
=head3 Low-level Interface
A lower-level interface is provided by the following functions.
#include <isl/flow.h>
typedef int (*isl_access_level_before)(void *first, void *second);
__isl_give isl_access_info *isl_access_info_alloc(
__isl_take isl_map *sink,
void *sink_user, isl_access_level_before fn,
int max_source);
__isl_give isl_access_info *isl_access_info_add_source(
__isl_take isl_access_info *acc,
__isl_take isl_map *source, int must,
void *source_user);
__isl_null isl_access_info *isl_access_info_free(
__isl_take isl_access_info *acc);
__isl_give isl_flow *isl_access_info_compute_flow(
__isl_take isl_access_info *acc);
isl_stat isl_flow_foreach(__isl_keep isl_flow *deps,
isl_stat (*fn)(__isl_take isl_map *dep, int must,
void *dep_user, void *user),
void *user);
__isl_give isl_map *isl_flow_get_no_source(
__isl_keep isl_flow *deps, int must);
void isl_flow_free(__isl_take isl_flow *deps);
The function C<isl_access_info_compute_flow> performs the actual
dependence analysis. The other functions are used to construct
the input for this function or to read off the output.
The input is collected in an C<isl_access_info>, which can
be created through a call to C<isl_access_info_alloc>.
The arguments to this functions are the sink access relation
C<sink>, a token C<sink_user> used to identify the sink
access to the user, a callback function for specifying the
relative order of source and sink accesses, and the number
of source access relations that will be added.
The callback function has type C<int (*)(void *first, void *second)>.
The function is called with two user supplied tokens identifying
either a source or the sink and it should return the shared nesting
level and the relative order of the two accesses.
In particular, let I<n> be the number of loops shared by
the two accesses. If C<first> precedes C<second> textually,
then the function should return I<2 * n + 1>; otherwise,
it should return I<2 * n>.
The low-level interface assumes that no sources are coscheduled.
If the information returned by the callback does not allow
the relative order to be determined, then one of the sources
is arbitrarily taken to be executed after the other(s).
The sources can be added to the C<isl_access_info> object by performing
(at most) C<max_source> calls to C<isl_access_info_add_source>.
C<must> indicates whether the source is a I<must> access
or a I<may> access. Note that a multi-valued access relation
should only be marked I<must> if every iteration in the domain
of the relation accesses I<all> elements in its image.
The C<source_user> token is again used to identify
the source access. The range of the source access relation
C<source> should have the same dimension as the range
of the sink access relation.
The C<isl_access_info_free> function should usually not be
called explicitly, because it is already called implicitly by
C<isl_access_info_compute_flow>.
The result of the dependence analysis is collected in an
C<isl_flow>. There may be elements of
the sink access for which no preceding source access could be
found or for which all preceding sources are I<may> accesses.
The relations containing these elements can be obtained through
calls to C<isl_flow_get_no_source>, the first with C<must> set
and the second with C<must> unset.
In the case of standard flow dependence analysis,
with the sink a read and the sources I<must> writes,
the first relation corresponds to the reads from uninitialized
array elements and the second relation is empty.
The actual flow dependences can be extracted using
C<isl_flow_foreach>. This function will call the user-specified
callback function C<fn> for each B<non-empty> dependence between
a source and the sink. The callback function is called
with four arguments, the actual flow dependence relation
mapping source iterations to sink iterations, a boolean that
indicates whether it is a I<must> or I<may> dependence, a token
identifying the source and an additional C<void *> with value
equal to the third argument of the C<isl_flow_foreach> call.
A dependence is marked I<must> if it originates from a I<must>
source and if it is not followed by any I<may> sources.
After finishing with an C<isl_flow>, the user should call
C<isl_flow_free> to free all associated memory.
=head3 Interaction with the Low-level Interface
During the dependence analysis, we frequently need to perform
the following operation. Given a relation between sink iterations
and potential source iterations from a particular source domain,
what is the last potential source iteration corresponding to each
sink iteration. It can sometimes be convenient to adjust
the set of potential source iterations before or after each such operation.
The prototypical example is fuzzy array dataflow analysis,
where we need to analyze if, based on data-dependent constraints,
the sink iteration can ever be executed without one or more of
the corresponding potential source iterations being executed.
If so, we can introduce extra parameters and select an unknown
but fixed source iteration from the potential source iterations.
To be able to perform such manipulations, C<isl> provides the following
function.
#include <isl/flow.h>
typedef __isl_give isl_restriction *(*isl_access_restrict)(
__isl_keep isl_map *source_map,
__isl_keep isl_set *sink, void *source_user,
void *user);
__isl_give isl_access_info *isl_access_info_set_restrict(
__isl_take isl_access_info *acc,
isl_access_restrict fn, void *user);
The function C<isl_access_info_set_restrict> should be called
before calling C<isl_access_info_compute_flow> and registers a callback function
that will be called any time C<isl> is about to compute the last
potential source. The first argument is the (reverse) proto-dependence,
mapping sink iterations to potential source iterations.
The second argument represents the sink iterations for which
we want to compute the last source iteration.
The third argument is the token corresponding to the source
and the final argument is the token passed to C<isl_access_info_set_restrict>.
The callback is expected to return a restriction on either the input or
the output of the operation computing the last potential source.
If the input needs to be restricted then restrictions are needed
for both the source and the sink iterations. The sink iterations
and the potential source iterations will be intersected with these sets.
If the output needs to be restricted then only a restriction on the source
iterations is required.
If any error occurs, the callback should return C<NULL>.
An C<isl_restriction> object can be created, freed and inspected
using the following functions.
#include <isl/flow.h>
__isl_give isl_restriction *isl_restriction_input(
__isl_take isl_set *source_restr,
__isl_take isl_set *sink_restr);
__isl_give isl_restriction *isl_restriction_output(
__isl_take isl_set *source_restr);
__isl_give isl_restriction *isl_restriction_none(
__isl_take isl_map *source_map);
__isl_give isl_restriction *isl_restriction_empty(
__isl_take isl_map *source_map);
__isl_null isl_restriction *isl_restriction_free(
__isl_take isl_restriction *restr);
C<isl_restriction_none> and C<isl_restriction_empty> are special
cases of C<isl_restriction_input>. C<isl_restriction_none>
is essentially equivalent to
isl_restriction_input(isl_set_universe(
isl_space_range(isl_map_get_space(source_map))),
isl_set_universe(
isl_space_domain(isl_map_get_space(source_map))));
whereas C<isl_restriction_empty> is essentially equivalent to
isl_restriction_input(isl_set_empty(
isl_space_range(isl_map_get_space(source_map))),
isl_set_universe(
isl_space_domain(isl_map_get_space(source_map))));
=head2 Scheduling
#include <isl/schedule.h>
__isl_give isl_schedule *
isl_schedule_constraints_compute_schedule(
__isl_take isl_schedule_constraints *sc);
The function C<isl_schedule_constraints_compute_schedule> can be
used to compute a schedule that satisfies the given schedule constraints.
These schedule constraints include the iteration domain for which
a schedule should be computed and dependences between pairs of
iterations. In particular, these dependences include
I<validity> dependences and I<proximity> dependences.
By default, the algorithm used to construct the schedule is similar
to that of C<Pluto>.
Alternatively, Feautrier's multi-dimensional scheduling algorithm can
be selected.
The generated schedule respects all validity dependences.
That is, all dependence distances over these dependences in the
scheduled space are lexicographically positive.
The default algorithm tries to ensure that the dependence distances
over coincidence constraints are zero and to minimize the
dependence distances over proximity dependences.
Moreover, it tries to obtain sequences (bands) of schedule dimensions
for groups of domains where the dependence distances over validity
dependences have only non-negative values.
Note that when minimizing the maximal dependence distance
over proximity dependences, a single affine expression in the parameters
is constructed that bounds all dependence distances. If no such expression
exists, then the algorithm will fail and resort to an alternative
scheduling algorithm. In particular, this means that adding proximity
dependences may eliminate valid solutions. A typical example where this
phenomenon may occur is when some subset of the proximity dependences
has no restriction on some parameter, forcing the coefficient of that
parameter to be zero, while some other subset forces the dependence
distance to depend on that parameter, requiring the same coefficient
to be non-zero.
When using Feautrier's algorithm, the coincidence and proximity constraints
are only taken into account during the extension to a
full-dimensional schedule.
An C<isl_schedule_constraints> object can be constructed
and manipulated using the following functions.
#include <isl/schedule.h>
__isl_give isl_schedule_constraints *
isl_schedule_constraints_copy(
__isl_keep isl_schedule_constraints *sc);
__isl_give isl_schedule_constraints *
isl_schedule_constraints_on_domain(
__isl_take isl_union_set *domain);
__isl_give isl_schedule_constraints *
isl_schedule_constraints_set_context(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_set *context);
__isl_give isl_schedule_constraints *
isl_schedule_constraints_set_validity(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_union_map *validity);
__isl_give isl_schedule_constraints *
isl_schedule_constraints_set_coincidence(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_union_map *coincidence);
__isl_give isl_schedule_constraints *
isl_schedule_constraints_set_proximity(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_union_map *proximity);
__isl_give isl_schedule_constraints *
isl_schedule_constraints_set_conditional_validity(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_union_map *condition,
__isl_take isl_union_map *validity);
__isl_give isl_schedule_constraints *
isl_schedule_constraints_apply(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_union_map *umap);
__isl_null isl_schedule_constraints *
isl_schedule_constraints_free(
__isl_take isl_schedule_constraints *sc);
The initial C<isl_schedule_constraints> object created by
C<isl_schedule_constraints_on_domain> does not impose any constraints.
That is, it has an empty set of dependences.
The function C<isl_schedule_constraints_set_context> allows the user
to specify additional constraints on the parameters that may
be assumed to hold during the construction of the schedule.
The function C<isl_schedule_constraints_set_validity> replaces the
validity dependences, mapping domain elements I<i> to domain
elements that should be scheduled after I<i>.
The function C<isl_schedule_constraints_set_coincidence> replaces the
coincidence dependences, mapping domain elements I<i> to domain
elements that should be scheduled together with I<I>, if possible.
The function C<isl_schedule_constraints_set_proximity> replaces the
proximity dependences, mapping domain elements I<i> to domain
elements that should be scheduled either before I<I>
or as early as possible after I<i>.
The function C<isl_schedule_constraints_set_conditional_validity>
replaces the conditional validity constraints.
A conditional validity constraint is only imposed when any of the corresponding
conditions is satisfied, i.e., when any of them is non-zero.
That is, the scheduler ensures that within each band if the dependence
distances over the condition constraints are not all zero
then all corresponding conditional validity constraints are respected.
A conditional validity constraint corresponds to a condition
if the two are adjacent, i.e., if the domain of one relation intersect
the range of the other relation.
The typical use case of conditional validity constraints is
to allow order constraints between live ranges to be violated
as long as the live ranges themselves are local to the band.
To allow more fine-grained control over which conditions correspond
to which conditional validity constraints, the domains and ranges
of these relations may include I<tags>. That is, the domains and
ranges of those relation may themselves be wrapped relations
where the iteration domain appears in the domain of those wrapped relations
and the range of the wrapped relations can be arbitrarily chosen
by the user. Conditions and conditional validity constraints are only
considered adjacent to each other if the entire wrapped relation matches.
In particular, a relation with a tag will never be considered adjacent
to a relation without a tag.
The function C<isl_schedule_constraints_apply> takes
schedule constraints that are defined on some set of domain elements
and transforms them to schedule constraints on the elements
to which these domain elements are mapped by the given transformation.
An C<isl_schedule_constraints> object can be inspected
using the following functions.
#include <isl/schedule.h>
__isl_give isl_union_set *
isl_schedule_constraints_get_domain(
__isl_keep isl_schedule_constraints *sc);
__isl_give isl_set *isl_schedule_constraints_get_context(
__isl_keep isl_schedule_constraints *sc);
__isl_give isl_union_map *
isl_schedule_constraints_get_validity(
__isl_keep isl_schedule_constraints *sc);
__isl_give isl_union_map *
isl_schedule_constraints_get_coincidence(
__isl_keep isl_schedule_constraints *sc);
__isl_give isl_union_map *
isl_schedule_constraints_get_proximity(
__isl_keep isl_schedule_constraints *sc);
__isl_give isl_union_map *
isl_schedule_constraints_get_conditional_validity(
__isl_keep isl_schedule_constraints *sc);
__isl_give isl_union_map *
isl_schedule_constraints_get_conditional_validity_condition(
__isl_keep isl_schedule_constraints *sc);
An C<isl_schedule_constraints> object can be read from input
using the following functions.
#include <isl/schedule.h>
__isl_give isl_schedule_constraints *
isl_schedule_constraints_read_from_str(isl_ctx *ctx,
const char *str);
__isl_give isl_schedule_constraints *
isl_schedule_constraints_read_from_file(isl_ctx *ctx,
FILE *input);
The contents of an C<isl_schedule_constraints> object can be printed
using the following functions.
#include <isl/schedule.h>
__isl_give isl_printer *
isl_printer_print_schedule_constraints(
__isl_take isl_printer *p,
__isl_keep isl_schedule_constraints *sc);
__isl_give char *isl_schedule_constraints_to_str(
__isl_keep isl_schedule_constraints *sc);
The following function computes a schedule directly from
an iteration domain and validity and proximity dependences
and is implemented in terms of the functions described above.
The use of C<isl_union_set_compute_schedule> is discouraged.
#include <isl/schedule.h>
__isl_give isl_schedule *isl_union_set_compute_schedule(
__isl_take isl_union_set *domain,
__isl_take isl_union_map *validity,
__isl_take isl_union_map *proximity);
The generated schedule represents a schedule tree.
For more information on schedule trees, see
L</"Schedule Trees">.
=head3 Options
#include <isl/schedule.h>
isl_stat isl_options_set_schedule_max_coefficient(
isl_ctx *ctx, int val);
int isl_options_get_schedule_max_coefficient(
isl_ctx *ctx);
isl_stat isl_options_set_schedule_max_constant_term(
isl_ctx *ctx, int val);
int isl_options_get_schedule_max_constant_term(
isl_ctx *ctx);
isl_stat isl_options_set_schedule_serialize_sccs(
isl_ctx *ctx, int val);
int isl_options_get_schedule_serialize_sccs(isl_ctx *ctx);
isl_stat isl_options_set_schedule_whole_component(
isl_ctx *ctx, int val);
int isl_options_get_schedule_whole_component(
isl_ctx *ctx);
isl_stat isl_options_set_schedule_maximize_band_depth(
isl_ctx *ctx, int val);
int isl_options_get_schedule_maximize_band_depth(
isl_ctx *ctx);
isl_stat isl_options_set_schedule_maximize_coincidence(
isl_ctx *ctx, int val);
int isl_options_get_schedule_maximize_coincidence(
isl_ctx *ctx);
isl_stat isl_options_set_schedule_outer_coincidence(
isl_ctx *ctx, int val);
int isl_options_get_schedule_outer_coincidence(
isl_ctx *ctx);
isl_stat isl_options_set_schedule_split_scaled(
isl_ctx *ctx, int val);
int isl_options_get_schedule_split_scaled(
isl_ctx *ctx);
isl_stat isl_options_set_schedule_treat_coalescing(
isl_ctx *ctx, int val);
int isl_options_get_schedule_treat_coalescing(
isl_ctx *ctx);
isl_stat isl_options_set_schedule_algorithm(
isl_ctx *ctx, int val);
int isl_options_get_schedule_algorithm(
isl_ctx *ctx);
isl_stat isl_options_set_schedule_carry_self_first(
isl_ctx *ctx, int val);
int isl_options_get_schedule_carry_self_first(
isl_ctx *ctx);
isl_stat isl_options_set_schedule_separate_components(
isl_ctx *ctx, int val);
int isl_options_get_schedule_separate_components(
isl_ctx *ctx);
=over
=item * schedule_max_coefficient
This option enforces that the coefficients for variable and parameter
dimensions in the calculated schedule are not larger than the specified value.
This option can significantly increase the speed of the scheduling calculation
and may also prevent fusing of unrelated dimensions. A value of -1 means that
this option does not introduce bounds on the variable or parameter
coefficients.
This option has no effect on the Feautrier style scheduler.
=item * schedule_max_constant_term
This option enforces that the constant coefficients in the calculated schedule
are not larger than the maximal constant term. This option can significantly
increase the speed of the scheduling calculation and may also prevent fusing of
unrelated dimensions. A value of -1 means that this option does not introduce
bounds on the constant coefficients.
=item * schedule_serialize_sccs
If this option is set, then all strongly connected components
in the dependence graph are serialized as soon as they are detected.
This means in particular that instances of statements will only
appear in the same band node if these statements belong
to the same strongly connected component at the point where
the band node is constructed.
=item * schedule_whole_component
If this option is set, then entire (weakly) connected
components in the dependence graph are scheduled together
as a whole.
Otherwise, each strongly connected component within
such a weakly connected component is first scheduled separately
and then combined with other strongly connected components.
This option has no effect if C<schedule_serialize_sccs> is set.
=item * schedule_maximize_band_depth
If this option is set, then the scheduler tries to maximize
the width of the bands. Wider bands give more possibilities for tiling.
In particular, if the C<schedule_whole_component> option is set,
then bands are split if this might result in wider bands.
Otherwise, the effect of this option is to only allow
strongly connected components to be combined if this does
not reduce the width of the bands.
Note that if the C<schedule_serialize_sccs> options is set, then
the C<schedule_maximize_band_depth> option therefore has no effect.
=item * schedule_maximize_coincidence
This option is only effective if the C<schedule_whole_component>
option is turned off.
If the C<schedule_maximize_coincidence> option is set, then (clusters of)
strongly connected components are only combined with each other
if this does not reduce the number of coincident band members.
=item * schedule_outer_coincidence
If this option is set, then we try to construct schedules
where the outermost scheduling dimension in each band
satisfies the coincidence constraints.
=item * schedule_algorithm
Selects the scheduling algorithm to be used.
Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
=item * schedule_split_scaled
If this option is set, then we try to construct schedules in which the
constant term is split off from the linear part if the linear parts of
the scheduling rows for all nodes in the graph have a common non-trivial
divisor.
The constant term is then dropped and the linear
part is reduced.
This option is only effective when the Feautrier style scheduler is
being used, either as the main scheduler or as a fallback for the
Pluto-like scheduler.
=item * schedule_treat_coalescing
If this option is set, then the scheduler will try and avoid
producing schedules that perform loop coalescing.
In particular, for the Pluto-like scheduler, this option places
bounds on the schedule coefficients based on the sizes of the instance sets.
For the Feautrier style scheduler, this option detects potentially
coalescing schedules and then tries to adjust the schedule to avoid
the coalescing.
=item * schedule_carry_self_first
If this option is set, then the Feautrier style scheduler
(when used as a fallback for the Pluto-like scheduler) will
first try to only carry self-dependences.
=item * schedule_separate_components
If this option is set then the function C<isl_schedule_get_map>
will treat set nodes in the same way as sequence nodes.
=back
=head2 AST Generation
This section describes the C<isl> functionality for generating
ASTs that visit all the elements
in a domain in an order specified by a schedule tree or
a schedule map.
In case the schedule given as a C<isl_union_map>, an AST is generated
that visits all the elements in the domain of the C<isl_union_map>
according to the lexicographic order of the corresponding image
element(s). If the range of the C<isl_union_map> consists of
elements in more than one space, then each of these spaces is handled
separately in an arbitrary order.
It should be noted that the schedule tree or the image elements
in a schedule map only specify the I<order>
in which the corresponding domain elements should be visited.
No direct relation between the partial schedule values
or the image elements on the one hand and the loop iterators
in the generated AST on the other hand should be assumed.
Each AST is generated within a build. The initial build
simply specifies the constraints on the parameters (if any)
and can be created, inspected, copied and freed using the following functions.
#include <isl/ast_build.h>
__isl_give isl_ast_build *isl_ast_build_alloc(
isl_ctx *ctx);
__isl_give isl_ast_build *isl_ast_build_from_context(
__isl_take isl_set *set);
__isl_give isl_ast_build *isl_ast_build_copy(
__isl_keep isl_ast_build *build);
__isl_null isl_ast_build *isl_ast_build_free(
__isl_take isl_ast_build *build);
The C<set> argument is usually a parameter set with zero or more parameters.
In fact, when creating an AST using C<isl_ast_build_node_from_schedule>,
this set is required to be a parameter set.
An C<isl_ast_build> created using C<isl_ast_build_alloc> does not
specify any parameter constraints.
More C<isl_ast_build> functions are described in L</"Nested AST Generation">
and L</"Fine-grained Control over AST Generation">.
Finally, the AST itself can be constructed using one of the following
functions.
#include <isl/ast_build.h>
__isl_give isl_ast_node *isl_ast_build_node_from_schedule(
__isl_keep isl_ast_build *build,
__isl_take isl_schedule *schedule);
__isl_give isl_ast_node *
isl_ast_build_node_from_schedule_map(
__isl_keep isl_ast_build *build,
__isl_take isl_union_map *schedule);
=head3 Inspecting the AST
The basic properties of an AST node can be obtained as follows.
#include <isl/ast.h>
enum isl_ast_node_type isl_ast_node_get_type(
__isl_keep isl_ast_node *node);
The type of an AST node is one of
C<isl_ast_node_for>,
C<isl_ast_node_if>,
C<isl_ast_node_block>,
C<isl_ast_node_mark> or
C<isl_ast_node_user>.
An C<isl_ast_node_for> represents a for node.
An C<isl_ast_node_if> represents an if node.
An C<isl_ast_node_block> represents a compound node.
An C<isl_ast_node_mark> introduces a mark in the AST.
An C<isl_ast_node_user> represents an expression statement.
An expression statement typically corresponds to a domain element, i.e.,
one of the elements that is visited by the AST.
Each type of node has its own additional properties.
#include <isl/ast.h>
__isl_give isl_ast_expr *isl_ast_node_for_get_iterator(
__isl_keep isl_ast_node *node);
__isl_give isl_ast_expr *isl_ast_node_for_get_init(
__isl_keep isl_ast_node *node);
__isl_give isl_ast_expr *isl_ast_node_for_get_cond(
__isl_keep isl_ast_node *node);
__isl_give isl_ast_expr *isl_ast_node_for_get_inc(
__isl_keep isl_ast_node *node);
__isl_give isl_ast_node *isl_ast_node_for_get_body(
__isl_keep isl_ast_node *node);
isl_bool isl_ast_node_for_is_degenerate(
__isl_keep isl_ast_node *node);
An C<isl_ast_for> is considered degenerate if it is known to execute
exactly once.
#include <isl/ast.h>
__isl_give isl_ast_expr *isl_ast_node_if_get_cond(
__isl_keep isl_ast_node *node);
__isl_give isl_ast_node *isl_ast_node_if_get_then(
__isl_keep isl_ast_node *node);
isl_bool isl_ast_node_if_has_else(
__isl_keep isl_ast_node *node);
__isl_give isl_ast_node *isl_ast_node_if_get_else(
__isl_keep isl_ast_node *node);
__isl_give isl_ast_node_list *
isl_ast_node_block_get_children(
__isl_keep isl_ast_node *node);
__isl_give isl_id *isl_ast_node_mark_get_id(
__isl_keep isl_ast_node *node);
__isl_give isl_ast_node *isl_ast_node_mark_get_node(
__isl_keep isl_ast_node *node);
C<isl_ast_node_mark_get_id> returns the identifier of the mark.
C<isl_ast_node_mark_get_node> returns the child node that is being marked.
#include <isl/ast.h>
__isl_give isl_ast_expr *isl_ast_node_user_get_expr(
__isl_keep isl_ast_node *node);
All descendants of a specific node in the AST (including the node itself)
can be visited
in depth-first pre-order using the following function.
#include <isl/ast.h>
isl_stat isl_ast_node_foreach_descendant_top_down(
__isl_keep isl_ast_node *node,
isl_bool (*fn)(__isl_keep isl_ast_node *node,
void *user), void *user);
The callback function should return C<isl_bool_true> if the children
of the given node should be visited and C<isl_bool_false> if they should not.
It should return C<isl_bool_error> in case of failure, in which case
the entire traversal is aborted.
Each of the returned C<isl_ast_expr>s can in turn be inspected using
the following functions.
#include <isl/ast.h>
enum isl_ast_expr_type isl_ast_expr_get_type(
__isl_keep isl_ast_expr *expr);
The type of an AST expression is one of
C<isl_ast_expr_op>,
C<isl_ast_expr_id> or
C<isl_ast_expr_int>.
An C<isl_ast_expr_op> represents the result of an operation.
An C<isl_ast_expr_id> represents an identifier.
An C<isl_ast_expr_int> represents an integer value.
Each type of expression has its own additional properties.
#include <isl/ast.h>
enum isl_ast_op_type isl_ast_expr_get_op_type(
__isl_keep isl_ast_expr *expr);
int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr);
__isl_give isl_ast_expr *isl_ast_expr_get_op_arg(
__isl_keep isl_ast_expr *expr, int pos);
isl_stat isl_ast_expr_foreach_ast_op_type(
__isl_keep isl_ast_expr *expr,
isl_stat (*fn)(enum isl_ast_op_type type,
void *user), void *user);
isl_stat isl_ast_node_foreach_ast_op_type(
__isl_keep isl_ast_node *node,
isl_stat (*fn)(enum isl_ast_op_type type,
void *user), void *user);
C<isl_ast_expr_get_op_type> returns the type of the operation
performed. C<isl_ast_expr_get_op_n_arg> returns the number of
arguments. C<isl_ast_expr_get_op_arg> returns the specified
argument.
C<isl_ast_expr_foreach_ast_op_type> calls C<fn> for each distinct
C<isl_ast_op_type> that appears in C<expr>.
C<isl_ast_node_foreach_ast_op_type> does the same for each distinct
C<isl_ast_op_type> that appears in C<node>.
The operation type is one of the following.
=over
=item C<isl_ast_op_and>
Logical I<and> of two arguments.
Both arguments can be evaluated.
=item C<isl_ast_op_and_then>
Logical I<and> of two arguments.
The second argument can only be evaluated if the first evaluates to true.
=item C<isl_ast_op_or>
Logical I<or> of two arguments.
Both arguments can be evaluated.
=item C<isl_ast_op_or_else>
Logical I<or> of two arguments.
The second argument can only be evaluated if the first evaluates to false.
=item C<isl_ast_op_max>
Maximum of two or more arguments.
=item C<isl_ast_op_min>
Minimum of two or more arguments.
=item C<isl_ast_op_minus>
Change sign.
=item C<isl_ast_op_add>
Sum of two arguments.
=item C<isl_ast_op_sub>
Difference of two arguments.
=item C<isl_ast_op_mul>
Product of two arguments.
=item C<isl_ast_op_div>
Exact division. That is, the result is known to be an integer.
=item C<isl_ast_op_fdiv_q>
Result of integer division, rounded towards negative
infinity.
The divisor is known to be positive.
=item C<isl_ast_op_pdiv_q>
Result of integer division, where dividend is known to be non-negative.
The divisor is known to be positive.
=item C<isl_ast_op_pdiv_r>
Remainder of integer division, where dividend is known to be non-negative.
The divisor is known to be positive.
=item C<isl_ast_op_zdiv_r>
Equal to zero iff the remainder on integer division is zero.
The divisor is known to be positive.
=item C<isl_ast_op_cond>
Conditional operator defined on three arguments.
If the first argument evaluates to true, then the result
is equal to the second argument. Otherwise, the result
is equal to the third argument.
The second and third argument may only be evaluated if
the first argument evaluates to true and false, respectively.
Corresponds to C<a ? b : c> in C.
=item C<isl_ast_op_select>
Conditional operator defined on three arguments.
If the first argument evaluates to true, then the result
is equal to the second argument. Otherwise, the result
is equal to the third argument.
The second and third argument may be evaluated independently
of the value of the first argument.
Corresponds to C<a * b + (1 - a) * c> in C.
=item C<isl_ast_op_eq>
Equality relation.
=item C<isl_ast_op_le>
Less than or equal relation.
=item C<isl_ast_op_lt>
Less than relation.
=item C<isl_ast_op_ge>
Greater than or equal relation.
=item C<isl_ast_op_gt>
Greater than relation.
=item C<isl_ast_op_call>
A function call.
The number of arguments of the C<isl_ast_expr> is one more than
the number of arguments in the function call, the first argument
representing the function being called.
=item C<isl_ast_op_access>
An array access.
The number of arguments of the C<isl_ast_expr> is one more than
the number of index expressions in the array access, the first argument
representing the array being accessed.
=item C<isl_ast_op_member>
A member access.
This operation has two arguments, a structure and the name of
the member of the structure being accessed.
=back
#include <isl/ast.h>
__isl_give isl_id *isl_ast_expr_get_id(
__isl_keep isl_ast_expr *expr);
Return the identifier represented by the AST expression.
#include <isl/ast.h>
__isl_give isl_val *isl_ast_expr_get_val(
__isl_keep isl_ast_expr *expr);
Return the integer represented by the AST expression.
=head3 Properties of ASTs
#include <isl/ast.h>
isl_bool isl_ast_expr_is_equal(
__isl_keep isl_ast_expr *expr1,
__isl_keep isl_ast_expr *expr2);
Check if two C<isl_ast_expr>s are equal to each other.
=head3 Manipulating and printing the AST
AST nodes can be copied and freed using the following functions.
#include <isl/ast.h>
__isl_give isl_ast_node *isl_ast_node_copy(
__isl_keep isl_ast_node *node);
__isl_null isl_ast_node *isl_ast_node_free(
__isl_take isl_ast_node *node);
AST expressions can be copied and freed using the following functions.
#include <isl/ast.h>
__isl_give isl_ast_expr *isl_ast_expr_copy(
__isl_keep isl_ast_expr *expr);
__isl_null isl_ast_expr *isl_ast_expr_free(
__isl_take isl_ast_expr *expr);
New AST expressions can be created either directly or within
the context of an C<isl_ast_build>.
#include <isl/ast.h>
__isl_give isl_ast_expr *isl_ast_expr_from_val(
__isl_take isl_val *v);
__isl_give isl_ast_expr *isl_ast_expr_from_id(
__isl_take isl_id *id);
__isl_give isl_ast_expr *isl_ast_expr_neg(
__isl_take isl_ast_expr *expr);
__isl_give isl_ast_expr *isl_ast_expr_address_of(
__isl_take isl_ast_expr *expr);
__isl_give isl_ast_expr *isl_ast_expr_add(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2);
__isl_give isl_ast_expr *isl_ast_expr_sub(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2);
__isl_give isl_ast_expr *isl_ast_expr_mul(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2);
__isl_give isl_ast_expr *isl_ast_expr_div(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2);
__isl_give isl_ast_expr *isl_ast_expr_pdiv_q(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2);
__isl_give isl_ast_expr *isl_ast_expr_pdiv_r(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2);
__isl_give isl_ast_expr *isl_ast_expr_and(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2)
__isl_give isl_ast_expr *isl_ast_expr_and_then(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2)
__isl_give isl_ast_expr *isl_ast_expr_or(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2)
__isl_give isl_ast_expr *isl_ast_expr_or_else(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2)
__isl_give isl_ast_expr *isl_ast_expr_eq(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2);
__isl_give isl_ast_expr *isl_ast_expr_le(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2);
__isl_give isl_ast_expr *isl_ast_expr_lt(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2);
__isl_give isl_ast_expr *isl_ast_expr_ge(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2);
__isl_give isl_ast_expr *isl_ast_expr_gt(
__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2);
__isl_give isl_ast_expr *isl_ast_expr_access(
__isl_take isl_ast_expr *array,
__isl_take isl_ast_expr_list *indices);
__isl_give isl_ast_expr *isl_ast_expr_call(
__isl_take isl_ast_expr *function,
__isl_take isl_ast_expr_list *arguments);
The function C<isl_ast_expr_address_of> can be applied to an
C<isl_ast_expr> of type C<isl_ast_op_access> only. It is meant
to represent the address of the C<isl_ast_expr_access>.
The second argument of the functions C<isl_ast_expr_pdiv_q> and
C<isl_ast_expr_pdiv_r> should always evaluate to a positive number.
The function
C<isl_ast_expr_and_then> as well as C<isl_ast_expr_or_else> are short-circuit
versions of C<isl_ast_expr_and> and C<isl_ast_expr_or>, respectively.
#include <isl/ast_build.h>
__isl_give isl_ast_expr *isl_ast_build_expr_from_set(
__isl_keep isl_ast_build *build,
__isl_take isl_set *set);
__isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
__isl_keep isl_ast_build *build,
__isl_take isl_pw_aff *pa);
__isl_give isl_ast_expr *
isl_ast_build_access_from_pw_multi_aff(
__isl_keep isl_ast_build *build,
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_ast_expr *
isl_ast_build_access_from_multi_pw_aff(
__isl_keep isl_ast_build *build,
__isl_take isl_multi_pw_aff *mpa);
__isl_give isl_ast_expr *
isl_ast_build_call_from_pw_multi_aff(
__isl_keep isl_ast_build *build,
__isl_take isl_pw_multi_aff *pma);
__isl_give isl_ast_expr *
isl_ast_build_call_from_multi_pw_aff(
__isl_keep isl_ast_build *build,
__isl_take isl_multi_pw_aff *mpa);
The set C<set> and
the domains of C<pa>, C<mpa> and C<pma> should correspond
to the schedule space of C<build>.
The tuple id of C<mpa> or C<pma> is used as the array being accessed or
the function being called.
If the accessed space is a nested relation, then it is taken
to represent an access of the member specified by the range
of this nested relation of the structure specified by the domain
of the nested relation.
The following functions can be used to modify an C<isl_ast_expr>.
#include <isl/ast.h>
__isl_give isl_ast_expr *isl_ast_expr_set_op_arg(
__isl_take isl_ast_expr *expr, int pos,
__isl_take isl_ast_expr *arg);
Replace the argument of C<expr> at position C<pos> by C<arg>.
#include <isl/ast.h>
__isl_give isl_ast_expr *isl_ast_expr_substitute_ids(
__isl_take isl_ast_expr *expr,
__isl_take isl_id_to_ast_expr *id2expr);
The function C<isl_ast_expr_substitute_ids> replaces the
subexpressions of C<expr> of type C<isl_ast_expr_id>
by the corresponding expression in C<id2expr>, if there is any.
User specified data can be attached to an C<isl_ast_node> and obtained
from the same C<isl_ast_node> using the following functions.
#include <isl/ast.h>
__isl_give isl_ast_node *isl_ast_node_set_annotation(
__isl_take isl_ast_node *node,
__isl_take isl_id *annotation);
__isl_give isl_id *isl_ast_node_get_annotation(
__isl_keep isl_ast_node *node);
Basic printing can be performed using the following functions.
#include <isl/ast.h>
__isl_give isl_printer *isl_printer_print_ast_expr(
__isl_take isl_printer *p,
__isl_keep isl_ast_expr *expr);
__isl_give isl_printer *isl_printer_print_ast_node(
__isl_take isl_printer *p,
__isl_keep isl_ast_node *node);
__isl_give char *isl_ast_expr_to_str(
__isl_keep isl_ast_expr *expr);
__isl_give char *isl_ast_node_to_str(
__isl_keep isl_ast_node *node);
__isl_give char *isl_ast_expr_to_C_str(
__isl_keep isl_ast_expr *expr);
__isl_give char *isl_ast_node_to_C_str(
__isl_keep isl_ast_node *node);
The functions C<isl_ast_expr_to_C_str> and
C<isl_ast_node_to_C_str> are convenience functions
that return a string representation of the input in C format.
More advanced printing can be performed using the following functions.
#include <isl/ast.h>
__isl_give isl_printer *isl_ast_op_type_set_print_name(
__isl_take isl_printer *p,
enum isl_ast_op_type type,
__isl_keep const char *name);
isl_stat isl_options_set_ast_print_macro_once(
isl_ctx *ctx, int val);
int isl_options_get_ast_print_macro_once(isl_ctx *ctx);
__isl_give isl_printer *isl_ast_op_type_print_macro(
enum isl_ast_op_type type,
__isl_take isl_printer *p);
__isl_give isl_printer *isl_ast_expr_print_macros(
__isl_keep isl_ast_expr *expr,
__isl_take isl_printer *p);
__isl_give isl_printer *isl_ast_node_print_macros(
__isl_keep isl_ast_node *node,
__isl_take isl_printer *p);
__isl_give isl_printer *isl_ast_node_print(
__isl_keep isl_ast_node *node,
__isl_take isl_printer *p,
__isl_take isl_ast_print_options *options);
__isl_give isl_printer *isl_ast_node_for_print(
__isl_keep isl_ast_node *node,
__isl_take isl_printer *p,
__isl_take isl_ast_print_options *options);
__isl_give isl_printer *isl_ast_node_if_print(
__isl_keep isl_ast_node *node,
__isl_take isl_printer *p,
__isl_take isl_ast_print_options *options);
While printing an C<isl_ast_node> in C<ISL_FORMAT_C>,
C<isl> may print out an AST that makes use of macros such
as C<floord>, C<min> and C<max>.
The names of these macros may be modified by a call
to C<isl_ast_op_type_set_print_name>. The user-specified
names are associated to the printer object.
C<isl_ast_op_type_print_macro> prints out the macro
corresponding to a specific C<isl_ast_op_type>.
If the print-macro-once option is set, then a given macro definition
is only printed once to any given printer object.
C<isl_ast_expr_print_macros> scans the C<isl_ast_expr>
for subexpressions where these macros would be used and prints
out the required macro definitions.
Essentially, C<isl_ast_expr_print_macros> calls
C<isl_ast_expr_foreach_ast_op_type> with C<isl_ast_op_type_print_macro>
as function argument.
C<isl_ast_node_print_macros> does the same
for expressions in its C<isl_ast_node> argument.
C<isl_ast_node_print>, C<isl_ast_node_for_print> and
C<isl_ast_node_if_print> print an C<isl_ast_node>
in C<ISL_FORMAT_C>, but allow for some extra control
through an C<isl_ast_print_options> object.
This object can be created using the following functions.
#include <isl/ast.h>
__isl_give isl_ast_print_options *
isl_ast_print_options_alloc(isl_ctx *ctx);
__isl_give isl_ast_print_options *
isl_ast_print_options_copy(
__isl_keep isl_ast_print_options *options);
__isl_null isl_ast_print_options *
isl_ast_print_options_free(
__isl_take isl_ast_print_options *options);
__isl_give isl_ast_print_options *
isl_ast_print_options_set_print_user(
__isl_take isl_ast_print_options *options,
__isl_give isl_printer *(*print_user)(
__isl_take isl_printer *p,
__isl_take isl_ast_print_options *options,
__isl_keep isl_ast_node *node, void *user),
void *user);
__isl_give isl_ast_print_options *
isl_ast_print_options_set_print_for(
__isl_take isl_ast_print_options *options,
__isl_give isl_printer *(*print_for)(
__isl_take isl_printer *p,
__isl_take isl_ast_print_options *options,
__isl_keep isl_ast_node *node, void *user),
void *user);
The callback set by C<isl_ast_print_options_set_print_user>
is called whenever a node of type C<isl_ast_node_user> needs to
be printed.
The callback set by C<isl_ast_print_options_set_print_for>
is called whenever a node of type C<isl_ast_node_for> needs to
be printed.
Note that C<isl_ast_node_for_print> will I<not> call the
callback set by C<isl_ast_print_options_set_print_for> on the node
on which C<isl_ast_node_for_print> is called, but only on nested
nodes of type C<isl_ast_node_for>. It is therefore safe to
call C<isl_ast_node_for_print> from within the callback set by
C<isl_ast_print_options_set_print_for>.
The following option determines the type to be used for iterators
while printing the AST.
isl_stat isl_options_set_ast_iterator_type(
isl_ctx *ctx, const char *val);
const char *isl_options_get_ast_iterator_type(
isl_ctx *ctx);
The AST printer only prints body nodes as blocks if these
blocks cannot be safely omitted.
For example, a C<for> node with one body node will not be
surrounded with braces in C<ISL_FORMAT_C>.
A block will always be printed by setting the following option.
isl_stat isl_options_set_ast_always_print_block(isl_ctx *ctx,
int val);
int isl_options_get_ast_always_print_block(isl_ctx *ctx);
=head3 Options
#include <isl/ast_build.h>
isl_stat isl_options_set_ast_build_atomic_upper_bound(
isl_ctx *ctx, int val);
int isl_options_get_ast_build_atomic_upper_bound(
isl_ctx *ctx);
isl_stat isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx,
int val);
int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx);
isl_stat isl_options_set_ast_build_detect_min_max(
isl_ctx *ctx, int val);
int isl_options_get_ast_build_detect_min_max(
isl_ctx *ctx);
isl_stat isl_options_set_ast_build_exploit_nested_bounds(
isl_ctx *ctx, int val);
int isl_options_get_ast_build_exploit_nested_bounds(
isl_ctx *ctx);
isl_stat isl_options_set_ast_build_group_coscheduled(
isl_ctx *ctx, int val);
int isl_options_get_ast_build_group_coscheduled(
isl_ctx *ctx);
isl_stat isl_options_set_ast_build_separation_bounds(
isl_ctx *ctx, int val);
int isl_options_get_ast_build_separation_bounds(
isl_ctx *ctx);
isl_stat isl_options_set_ast_build_scale_strides(
isl_ctx *ctx, int val);
int isl_options_get_ast_build_scale_strides(
isl_ctx *ctx);
isl_stat isl_options_set_ast_build_allow_else(isl_ctx *ctx,
int val);
int isl_options_get_ast_build_allow_else(isl_ctx *ctx);
isl_stat isl_options_set_ast_build_allow_or(isl_ctx *ctx,
int val);
int isl_options_get_ast_build_allow_or(isl_ctx *ctx);
=over
=item * ast_build_atomic_upper_bound
Generate loop upper bounds that consist of the current loop iterator,
an operator and an expression not involving the iterator.
If this option is not set, then the current loop iterator may appear
several times in the upper bound.
For example, when this option is turned off, AST generation
for the schedule
[n] -> { A[i] -> [i] : 0 <= i <= 100, n }
produces
for (int c0 = 0; c0 <= 100 && n >= c0; c0 += 1)
A(c0);
When the option is turned on, the following AST is generated
for (int c0 = 0; c0 <= min(100, n); c0 += 1)
A(c0);
=item * ast_build_prefer_pdiv
If this option is turned off, then the AST generation will
produce ASTs that may only contain C<isl_ast_op_fdiv_q>
operators, but no C<isl_ast_op_pdiv_q> or
C<isl_ast_op_pdiv_r> operators.
If this option is turned on, then C<isl> will try to convert
some of the C<isl_ast_op_fdiv_q> operators to (expressions containing)
C<isl_ast_op_pdiv_q> or C<isl_ast_op_pdiv_r> operators.
=item * ast_build_detect_min_max
If this option is turned on, then C<isl> will try and detect
min or max-expressions when building AST expressions from
piecewise affine expressions.
=item * ast_build_exploit_nested_bounds
Simplify conditions based on bounds of nested for loops.
In particular, remove conditions that are implied by the fact
that one or more nested loops have at least one iteration,
meaning that the upper bound is at least as large as the lower bound.
For example, when this option is turned off, AST generation
for the schedule
[N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and
0 <= j <= M }
produces
if (M >= 0)
for (int c0 = 0; c0 <= N; c0 += 1)
for (int c1 = 0; c1 <= M; c1 += 1)
A(c0, c1);
When the option is turned on, the following AST is generated
for (int c0 = 0; c0 <= N; c0 += 1)
for (int c1 = 0; c1 <= M; c1 += 1)
A(c0, c1);
=item * ast_build_group_coscheduled
If two domain elements are assigned the same schedule point, then
they may be executed in any order and they may even appear in different
loops. If this options is set, then the AST generator will make
sure that coscheduled domain elements do not appear in separate parts
of the AST. This is useful in case of nested AST generation
if the outer AST generation is given only part of a schedule
and the inner AST generation should handle the domains that are
coscheduled by this initial part of the schedule together.
For example if an AST is generated for a schedule
{ A[i] -> [0]; B[i] -> [0] }
then the C<isl_ast_build_set_create_leaf> callback described
below may get called twice, once for each domain.
Setting this option ensures that the callback is only called once
on both domains together.
=item * ast_build_separation_bounds
This option specifies which bounds to use during separation.
If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_IMPLICIT>
then all (possibly implicit) bounds on the current dimension will
be used during separation.
If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT>
then only those bounds that are explicitly available will
be used during separation.
=item * ast_build_scale_strides
This option specifies whether the AST generator is allowed
to scale down iterators of strided loops.
=item * ast_build_allow_else
This option specifies whether the AST generator is allowed
to construct if statements with else branches.
=item * ast_build_allow_or
This option specifies whether the AST generator is allowed
to construct if conditions with disjunctions.
=back
=head3 AST Generation Options (Schedule Tree)
In case of AST construction from a schedule tree, the options
that control how an AST is created from the individual schedule
dimensions are stored in the band nodes of the tree
(see L</"Schedule Trees">).
In particular, a schedule dimension can be handled in four
different ways, atomic, separate, unroll or the default.
This loop AST generation type can be set using
C<isl_schedule_node_band_member_set_ast_loop_type>.
Alternatively,
the first three can be selected by including a one-dimensional
element with as value the position of the schedule dimension
within the band and as name one of C<atomic>, C<separate>
or C<unroll> in the options
set by C<isl_schedule_node_band_set_ast_build_options>.
Only one of these three may be specified for
any given schedule dimension within a band node.
If none of these is specified, then the default
is used. The meaning of the options is as follows.
=over
=item C<atomic>
When this option is specified, the AST generator will make
sure that a given domains space only appears in a single
loop at the specified level.
For example, for the schedule tree
domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }"
child:
schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]"
options: "{ atomic[x] }"
the following AST will be generated
for (int c0 = 0; c0 <= 10; c0 += 1) {
if (c0 >= 1)
b(c0 - 1);
if (c0 <= 9)
a(c0);
}
On the other hand, for the schedule tree
domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }"
child:
schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]"
options: "{ separate[x] }"
the following AST will be generated
{
a(0);
for (int c0 = 1; c0 <= 9; c0 += 1) {
b(c0 - 1);
a(c0);
}
b(9);
}
If neither C<atomic> nor C<separate> is specified, then the AST generator
may produce either of these two results or some intermediate form.
=item C<separate>
When this option is specified, the AST generator will
split the domain of the specified schedule dimension
into pieces with a fixed set of statements for which
instances need to be executed by the iterations in
the schedule domain part. This option tends to avoid
the generation of guards inside the corresponding loops.
See also the C<atomic> option.
=item C<unroll>
When this option is specified, the AST generator will
I<completely> unroll the corresponding schedule dimension.
It is the responsibility of the user to ensure that such
unrolling is possible.
To obtain a partial unrolling, the user should apply an additional
strip-mining to the schedule and fully unroll the inner schedule
dimension.
=back
The C<isolate> option is a bit more involved. It allows the user
to isolate a range of schedule dimension values from smaller and
greater values. Additionally, the user may specify a different
atomic/separate/unroll choice for the isolated part and the remaining
parts. The typical use case of the C<isolate> option is to isolate
full tiles from partial tiles.
The part that needs to be isolated may depend on outer schedule dimensions.
The option therefore needs to be able to reference those outer schedule
dimensions. In particular, the space of the C<isolate> option is that
of a wrapped map with as domain the flat product of all outer band nodes
and as range the space of the current band node.
The atomic/separate/unroll choice for the isolated part is determined
by an option that lives in an unnamed wrapped space with as domain
a zero-dimensional C<isolate> space and as range the regular
C<atomic>, C<separate> or C<unroll> space.
This option may also be set directly using
C<isl_schedule_node_band_member_set_isolate_ast_loop_type>.
The atomic/separate/unroll choice for the remaining part is determined
by the regular C<atomic>, C<separate> or C<unroll> option.
Since the C<isolate> option references outer schedule dimensions,
its use in a band node causes any tree containing the node
to be considered anchored.
As an example, consider the isolation of full tiles from partial tiles
in a tiling of a triangular domain. The original schedule is as follows.
domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
child:
schedule: "[{ A[i,j] -> [floor(i/10)] }, \
{ A[i,j] -> [floor(j/10)] }, \
{ A[i,j] -> [i] }, { A[i,j] -> [j] }]"
The output is
for (int c0 = 0; c0 <= 10; c0 += 1)
for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
for (int c2 = 10 * c0;
c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
for (int c3 = 10 * c1;
c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
A(c2, c3);
Isolating the full tiles, we have the following input
domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
child:
schedule: "[{ A[i,j] -> [floor(i/10)] }, \
{ A[i,j] -> [floor(j/10)] }, \
{ A[i,j] -> [i] }, { A[i,j] -> [j] }]"
options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \
10a+9+10b+9 <= 100 }"
and output
{
for (int c0 = 0; c0 <= 8; c0 += 1) {
for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
for (int c2 = 10 * c0;
c2 <= 10 * c0 + 9; c2 += 1)
for (int c3 = 10 * c1;
c3 <= 10 * c1 + 9; c3 += 1)
A(c2, c3);
for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
for (int c2 = 10 * c0;
c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
for (int c3 = 10 * c1;
c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
A(c2, c3);
}
for (int c0 = 9; c0 <= 10; c0 += 1)
for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
for (int c2 = 10 * c0;
c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
for (int c3 = 10 * c1;
c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
A(c2, c3);
}
We may then additionally unroll the innermost loop of the isolated part
domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
child:
schedule: "[{ A[i,j] -> [floor(i/10)] }, \
{ A[i,j] -> [floor(j/10)] }, \
{ A[i,j] -> [i] }, { A[i,j] -> [j] }]"
options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \
10a+9+10b+9 <= 100; [isolate[] -> unroll[3]] }"
to obtain
{
for (int c0 = 0; c0 <= 8; c0 += 1) {
for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
for (int c2 = 10 * c0; c2 <= 10 * c0 + 9; c2 += 1) {
A(c2, 10 * c1);
A(c2, 10 * c1 + 1);
A(c2, 10 * c1 + 2);
A(c2, 10 * c1 + 3);
A(c2, 10 * c1 + 4);
A(c2, 10 * c1 + 5);
A(c2, 10 * c1 + 6);
A(c2, 10 * c1 + 7);
A(c2, 10 * c1 + 8);
A(c2, 10 * c1 + 9);
}
for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
for (int c2 = 10 * c0;
c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
for (int c3 = 10 * c1;
c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
A(c2, c3);
}
for (int c0 = 9; c0 <= 10; c0 += 1)
for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
for (int c2 = 10 * c0;
c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
for (int c3 = 10 * c1;
c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
A(c2, c3);
}
=head3 AST Generation Options (Schedule Map)
In case of AST construction using
C<isl_ast_build_node_from_schedule_map>, the options
that control how an AST is created from the individual schedule
dimensions are stored in the C<isl_ast_build>.
They can be set using the following function.
#include <isl/ast_build.h>
__isl_give isl_ast_build *
isl_ast_build_set_options(
__isl_take isl_ast_build *build,
__isl_take isl_union_map *options);
The options are encoded in an C<isl_union_map>.
The domain of this union relation refers to the schedule domain,
i.e., the range of the schedule passed
to C<isl_ast_build_node_from_schedule_map>.
In the case of nested AST generation (see L</"Nested AST Generation">),
the domain of C<options> should refer to the extra piece of the schedule.
That is, it should be equal to the range of the wrapped relation in the
range of the schedule.
The range of the options can consist of elements in one or more spaces,
the names of which determine the effect of the option.
The values of the range typically also refer to the schedule dimension
to which the option applies, with value C<0> representing
the outermost schedule dimension. In case of nested AST generation
(see L</"Nested AST Generation">), these values refer to the position
of the schedule dimension within the innermost AST generation.
The constraints on the domain elements of
the option should only refer to this dimension and earlier dimensions.
We consider the following spaces.
=over
=item C<separation_class>
B<This option has been deprecated. Use the isolate option on
schedule trees instead.>
This space is a wrapped relation between two one dimensional spaces.
The input space represents the schedule dimension to which the option
applies and the output space represents the separation class.
While constructing a loop corresponding to the specified schedule
dimension(s), the AST generator will try to generate separate loops
for domain elements that are assigned different classes.
If only some of the elements are assigned a class, then those elements
that are not assigned any class will be treated as belonging to a class
that is separate from the explicitly assigned classes.
The typical use case for this option is to separate full tiles from
partial tiles.
The other options, described below, are applied after the separation
into classes.
As an example, consider the separation into full and partial tiles
of a tiling of a triangular domain.
Take, for example, the domain
{ A[i,j] : 0 <= i,j and i + j <= 100 }
and a tiling into tiles of 10 by 10. The input to the AST generator
is then the schedule
{ A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and
i + j <= 100 }
Without any options, the following AST is generated
for (int c0 = 0; c0 <= 10; c0 += 1)
for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
for (int c2 = 10 * c0;
c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
c2 += 1)
for (int c3 = 10 * c1;
c3 <= min(10 * c1 + 9, -c2 + 100);
c3 += 1)
A(c2, c3);
Separation into full and partial tiles can be obtained by assigning
a class, say C<0>, to the full tiles. The full tiles are represented by those
values of the first and second schedule dimensions for which there are
values of the third and fourth dimensions to cover an entire tile.
That is, we need to specify the following option
{ [a,b,c,d] -> separation_class[[0]->[0]] :
exists b': 0 <= 10a,10b' and
10a+9+10b'+9 <= 100;
[a,b,c,d] -> separation_class[[1]->[0]] :
0 <= 10a,10b and 10a+9+10b+9 <= 100 }
which simplifies to
{ [a, b, c, d] -> separation_class[[1] -> [0]] :
a >= 0 and b >= 0 and b <= 8 - a;
[a, b, c, d] -> separation_class[[0] -> [0]] :
a >= 0 and a <= 8 }
With this option, the generated AST is as follows
{
for (int c0 = 0; c0 <= 8; c0 += 1) {
for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
for (int c2 = 10 * c0;
c2 <= 10 * c0 + 9; c2 += 1)
for (int c3 = 10 * c1;
c3 <= 10 * c1 + 9; c3 += 1)
A(c2, c3);
for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
for (int c2 = 10 * c0;
c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
c2 += 1)
for (int c3 = 10 * c1;
c3 <= min(-c2 + 100, 10 * c1 + 9);
c3 += 1)
A(c2, c3);
}
for (int c0 = 9; c0 <= 10; c0 += 1)
for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
for (int c2 = 10 * c0;
c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
c2 += 1)
for (int c3 = 10 * c1;
c3 <= min(10 * c1 + 9, -c2 + 100);
c3 += 1)
A(c2, c3);
}
=item C<separate>
This is a single-dimensional space representing the schedule dimension(s)
to which ``separation'' should be applied. Separation tries to split
a loop into several pieces if this can avoid the generation of guards
inside the loop.
See also the C<atomic> option.
=item C<atomic>
This is a single-dimensional space representing the schedule dimension(s)
for which the domains should be considered ``atomic''. That is, the
AST generator will make sure that any given domain space will only appear
in a single loop at the specified level.
Consider the following schedule
{ a[i] -> [i] : 0 <= i < 10;
b[i] -> [i+1] : 0 <= i < 10 }
If the following option is specified
{ [i] -> separate[x] }
then the following AST will be generated
{
a(0);
for (int c0 = 1; c0 <= 9; c0 += 1) {
a(c0);
b(c0 - 1);
}
b(9);
}
If, on the other hand, the following option is specified
{ [i] -> atomic[x] }
then the following AST will be generated
for (int c0 = 0; c0 <= 10; c0 += 1) {
if (c0 <= 9)
a(c0);
if (c0 >= 1)
b(c0 - 1);
}
If neither C<atomic> nor C<separate> is specified, then the AST generator
may produce either of these two results or some intermediate form.
=item C<unroll>
This is a single-dimensional space representing the schedule dimension(s)
that should be I<completely> unrolled.
To obtain a partial unrolling, the user should apply an additional
strip-mining to the schedule and fully unroll the inner loop.
=back
=head3 Fine-grained Control over AST Generation
Besides specifying the constraints on the parameters,
an C<isl_ast_build> object can be used to control
various aspects of the AST generation process.
In case of AST construction using
C<isl_ast_build_node_from_schedule_map>,
the most prominent way of control is through ``options'',
as explained above.
Additional control is available through the following functions.
#include <isl/ast_build.h>
__isl_give isl_ast_build *
isl_ast_build_set_iterators(
__isl_take isl_ast_build *build,
__isl_take isl_id_list *iterators);
The function C<isl_ast_build_set_iterators> allows the user to
specify a list of iterator C<isl_id>s to be used as iterators.
If the input schedule is injective, then
the number of elements in this list should be as large as the dimension
of the schedule space, but no direct correspondence should be assumed
between dimensions and elements.
If the input schedule is not injective, then an additional number
of C<isl_id>s equal to the largest dimension of the input domains
may be required.
If the number of provided C<isl_id>s is insufficient, then additional
names are automatically generated.
#include <isl/ast_build.h>
__isl_give isl_ast_build *
isl_ast_build_set_create_leaf(
__isl_take isl_ast_build *build,
__isl_give isl_ast_node *(*fn)(
__isl_take isl_ast_build *build,
void *user), void *user);
The
C<isl_ast_build_set_create_leaf> function allows for the
specification of a callback that should be called whenever the AST
generator arrives at an element of the schedule domain.
The callback should return an AST node that should be inserted
at the corresponding position of the AST. The default action (when
the callback is not set) is to continue generating parts of the AST to scan
all the domain elements associated to the schedule domain element
and to insert user nodes, ``calling'' the domain element, for each of them.
The C<build> argument contains the current state of the C<isl_ast_build>.
To ease nested AST generation (see L</"Nested AST Generation">),
all control information that is
specific to the current AST generation such as the options and
the callbacks has been removed from this C<isl_ast_build>.
The callback would typically return the result of a nested
AST generation or a
user defined node created using the following function.
#include <isl/ast.h>
__isl_give isl_ast_node *isl_ast_node_alloc_user(
__isl_take isl_ast_expr *expr);
#include <isl/ast_build.h>
__isl_give isl_ast_build *
isl_ast_build_set_at_each_domain(
__isl_take isl_ast_build *build,
__isl_give isl_ast_node *(*fn)(
__isl_take isl_ast_node *node,
__isl_keep isl_ast_build *build,
void *user), void *user);
__isl_give isl_ast_build *
isl_ast_build_set_before_each_for(
__isl_take isl_ast_build *build,
__isl_give isl_id *(*fn)(
__isl_keep isl_ast_build *build,
void *user), void *user);
__isl_give isl_ast_build *
isl_ast_build_set_after_each_for(
__isl_take isl_ast_build *build,
__isl_give isl_ast_node *(*fn)(
__isl_take isl_ast_node *node,
__isl_keep isl_ast_build *build,
void *user), void *user);
__isl_give isl_ast_build *
isl_ast_build_set_before_each_mark(
__isl_take isl_ast_build *build,
isl_stat (*fn)(__isl_keep isl_id *mark,
__isl_keep isl_ast_build *build,
void *user), void *user);
__isl_give isl_ast_build *
isl_ast_build_set_after_each_mark(
__isl_take isl_ast_build *build,
__isl_give isl_ast_node *(*fn)(
__isl_take isl_ast_node *node,
__isl_keep isl_ast_build *build,
void *user), void *user);
The callback set by C<isl_ast_build_set_at_each_domain> will
be called for each domain AST node.
The callbacks set by C<isl_ast_build_set_before_each_for>
and C<isl_ast_build_set_after_each_for> will be called
for each for AST node. The first will be called in depth-first
pre-order, while the second will be called in depth-first post-order.
Since C<isl_ast_build_set_before_each_for> is called before the for
node is actually constructed, it is only passed an C<isl_ast_build>.
The returned C<isl_id> will be added as an annotation (using
C<isl_ast_node_set_annotation>) to the constructed for node.
In particular, if the user has also specified an C<after_each_for>
callback, then the annotation can be retrieved from the node passed to
that callback using C<isl_ast_node_get_annotation>.
The callbacks set by C<isl_ast_build_set_before_each_mark>
and C<isl_ast_build_set_after_each_mark> will be called for each
mark AST node that is created, i.e., for each mark schedule node
in the input schedule tree. The first will be called in depth-first
pre-order, while the second will be called in depth-first post-order.
Since the callback set by C<isl_ast_build_set_before_each_mark>
is called before the mark AST node is actually constructed, it is passed
the identifier of the mark node.
All callbacks should C<NULL> (or C<isl_stat_error>) on failure.
The given C<isl_ast_build> can be used to create new
C<isl_ast_expr> objects using C<isl_ast_build_expr_from_pw_aff>
or C<isl_ast_build_call_from_pw_multi_aff>.
=head3 Nested AST Generation
C<isl> allows the user to create an AST within the context
of another AST. These nested ASTs are created using the
same C<isl_ast_build_node_from_schedule_map> function that is used to create
the outer AST. The C<build> argument should be an C<isl_ast_build>
passed to a callback set by
C<isl_ast_build_set_create_leaf>.
The space of the range of the C<schedule> argument should refer
to this build. In particular, the space should be a wrapped
relation and the domain of this wrapped relation should be the
same as that of the range of the schedule returned by
C<isl_ast_build_get_schedule> below.
In practice, the new schedule is typically
created by calling C<isl_union_map_range_product> on the old schedule
and some extra piece of the schedule.
The space of the schedule domain is also available from
the C<isl_ast_build>.
#include <isl/ast_build.h>
__isl_give isl_union_map *isl_ast_build_get_schedule(
__isl_keep isl_ast_build *build);
__isl_give isl_space *isl_ast_build_get_schedule_space(
__isl_keep isl_ast_build *build);
__isl_give isl_ast_build *isl_ast_build_restrict(
__isl_take isl_ast_build *build,
__isl_take isl_set *set);
The C<isl_ast_build_get_schedule> function returns a (partial)
schedule for the domains elements for which part of the AST still needs to
be generated in the current build.
In particular, the domain elements are mapped to those iterations of the loops
enclosing the current point of the AST generation inside which
the domain elements are executed.
No direct correspondence between
the input schedule and this schedule should be assumed.
The space obtained from C<isl_ast_build_get_schedule_space> can be used
to create a set for C<isl_ast_build_restrict> to intersect
with the current build. In particular, the set passed to
C<isl_ast_build_restrict> can have additional parameters.
The ids of the set dimensions in the space returned by
C<isl_ast_build_get_schedule_space> correspond to the
iterators of the already generated loops.
The user should not rely on the ids of the output dimensions
of the relations in the union relation returned by
C<isl_ast_build_get_schedule> having any particular value.
=head1 Applications
Although C<isl> is mainly meant to be used as a library,
it also contains some basic applications that use some
of the functionality of C<isl>.
For applications that take one or more polytopes or polyhedra
as input, this input may be specified in either the L<isl format>
or the L<PolyLib format>.
=head2 C<isl_polyhedron_sample>
C<isl_polyhedron_sample> takes a polyhedron as input and prints
an integer element of the polyhedron, if there is any.
The first column in the output is the denominator and is always
equal to 1. If the polyhedron contains no integer points,
then a vector of length zero is printed.
=head2 C<isl_pip>
C<isl_pip> takes the same input as the C<example> program
from the C<piplib> distribution, i.e., a set of constraints
on the parameters, a line containing only -1 and finally a set
of constraints on a parametric polyhedron.
The coefficients of the parameters appear in the last columns
(but before the final constant column).
The output is the lexicographic minimum of the parametric polyhedron.
As C<isl> currently does not have its own output format, the output
is just a dump of the internal state.
=head2 C<isl_polyhedron_minimize>
C<isl_polyhedron_minimize> computes the minimum of some linear
or affine objective function over the integer points in a polyhedron.
If an affine objective function
is given, then the constant should appear in the last column.
=head2 C<isl_polytope_scan>
Given a polytope, C<isl_polytope_scan> prints
all integer points in the polytope.
=head2 C<isl_flow>
Given an C<isl_union_access_info> object as input,
C<isl_flow> prints out the corresponding dependences,
as computed by C<isl_union_access_info_compute_flow>.
=head2 C<isl_codegen>
Given either a schedule tree or a sequence consisting of
a schedule map, a context set and an options relation,
C<isl_codegen> prints out an AST that scans the domain elements
of the schedule in the order of their image(s) taking into account
the constraints in the context set.
=head2 C<isl_schedule>
Given an C<isl_schedule_constraints> object as input,
C<isl_schedule> prints out a schedule that satisfies the given
constraints.
|