reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
//===---- ManagedMemoryRewrite.cpp - Rewrite global & malloc'd memory -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Take a module and rewrite:
// 1. `malloc` -> `polly_mallocManaged`
// 2. `free` -> `polly_freeManaged`
// 3. global arrays with initializers -> global arrays that are initialized
//                                       with a constructor call to
//                                       `polly_mallocManaged`.
//
//===----------------------------------------------------------------------===//

#include "polly/CodeGen/IRBuilder.h"
#include "polly/CodeGen/PPCGCodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopDetection.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"

using namespace polly;

static cl::opt<bool> RewriteAllocas(
    "polly-acc-rewrite-allocas",
    cl::desc(
        "Ask the managed memory rewriter to also rewrite alloca instructions"),
    cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool> IgnoreLinkageForGlobals(
    "polly-acc-rewrite-ignore-linkage-for-globals",
    cl::desc(
        "By default, we only rewrite globals with internal linkage. This flag "
        "enables rewriting of globals regardless of linkage"),
    cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

#define DEBUG_TYPE "polly-acc-rewrite-managed-memory"
namespace {

static llvm::Function *getOrCreatePollyMallocManaged(Module &M) {
  const char *Name = "polly_mallocManaged";
  Function *F = M.getFunction(Name);

  // If F is not available, declare it.
  if (!F) {
    GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
    PollyIRBuilder Builder(M.getContext());
    // TODO: How do I get `size_t`? I assume from DataLayout?
    FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(),
                                         {Builder.getInt64Ty()}, false);
    F = Function::Create(Ty, Linkage, Name, &M);
  }

  return F;
}

static llvm::Function *getOrCreatePollyFreeManaged(Module &M) {
  const char *Name = "polly_freeManaged";
  Function *F = M.getFunction(Name);

  // If F is not available, declare it.
  if (!F) {
    GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
    PollyIRBuilder Builder(M.getContext());
    // TODO: How do I get `size_t`? I assume from DataLayout?
    FunctionType *Ty =
        FunctionType::get(Builder.getVoidTy(), {Builder.getInt8PtrTy()}, false);
    F = Function::Create(Ty, Linkage, Name, &M);
  }

  return F;
}

// Expand a constant expression `Cur`, which is used at instruction `Parent`
// at index `index`.
// Since a constant expression can expand to multiple instructions, store all
// the expands into a set called `Expands`.
// Note that this goes inorder on the constant expression tree.
// A * ((B * D) + C)
// will be processed with first A, then B * D, then B, then D, and then C.
// Though ConstantExprs are not treated as "trees" but as DAGs, since you can
// have something like this:
//    *
//   /  \
//   \  /
//    (D)
//
// For the purposes of this expansion, we expand the two occurences of D
// separately. Therefore, we expand the DAG into the tree:
//  *
// / \
// D  D
// TODO: We don't _have_to do this, but this is the simplest solution.
// We can write a solution that keeps track of which constants have been
// already expanded.
static void expandConstantExpr(ConstantExpr *Cur, PollyIRBuilder &Builder,
                               Instruction *Parent, int index,
                               SmallPtrSet<Instruction *, 4> &Expands) {
  assert(Cur && "invalid constant expression passed");
  Instruction *I = Cur->getAsInstruction();
  assert(I && "unable to convert ConstantExpr to Instruction");

  LLVM_DEBUG(dbgs() << "Expanding ConstantExpression: (" << *Cur
                    << ") in Instruction: (" << *I << ")\n";);

  // Invalidate `Cur` so that no one after this point uses `Cur`. Rather,
  // they should mutate `I`.
  Cur = nullptr;

  Expands.insert(I);
  Parent->setOperand(index, I);

  // The things that `Parent` uses (its operands) should be created
  // before `Parent`.
  Builder.SetInsertPoint(Parent);
  Builder.Insert(I);

  for (unsigned i = 0; i < I->getNumOperands(); i++) {
    Value *Op = I->getOperand(i);
    assert(isa<Constant>(Op) && "constant must have a constant operand");

    if (ConstantExpr *CExprOp = dyn_cast<ConstantExpr>(Op))
      expandConstantExpr(CExprOp, Builder, I, i, Expands);
  }
}

// Edit all uses of `OldVal` to NewVal` in `Inst`. This will rewrite
// `ConstantExpr`s that are used in the `Inst`.
// Note that `replaceAllUsesWith` is insufficient for this purpose because it
// does not rewrite values in `ConstantExpr`s.
static void rewriteOldValToNew(Instruction *Inst, Value *OldVal, Value *NewVal,
                               PollyIRBuilder &Builder) {

  // This contains a set of instructions in which OldVal must be replaced.
  // We start with `Inst`, and we fill it up with the expanded `ConstantExpr`s
  // from `Inst`s arguments.
  // We need to go through this process because `replaceAllUsesWith` does not
  // actually edit `ConstantExpr`s.
  SmallPtrSet<Instruction *, 4> InstsToVisit = {Inst};

  // Expand all `ConstantExpr`s and place it in `InstsToVisit`.
  for (unsigned i = 0; i < Inst->getNumOperands(); i++) {
    Value *Operand = Inst->getOperand(i);
    if (ConstantExpr *ValueConstExpr = dyn_cast<ConstantExpr>(Operand))
      expandConstantExpr(ValueConstExpr, Builder, Inst, i, InstsToVisit);
  }

  // Now visit each instruction and use `replaceUsesOfWith`. We know that
  // will work because `I` cannot have any `ConstantExpr` within it.
  for (Instruction *I : InstsToVisit)
    I->replaceUsesOfWith(OldVal, NewVal);
}

// Given a value `Current`, return all Instructions that may contain `Current`
// in an expression.
// We need this auxiliary function, because if we have a
// `Constant` that is a user of `V`, we need to recurse into the
// `Constant`s uses to gather the root instruciton.
static void getInstructionUsersOfValue(Value *V,
                                       SmallVector<Instruction *, 4> &Owners) {
  if (auto *I = dyn_cast<Instruction>(V)) {
    Owners.push_back(I);
  } else {
    // Anything that is a `User` must be a constant or an instruction.
    auto *C = cast<Constant>(V);
    for (Use &CUse : C->uses())
      getInstructionUsersOfValue(CUse.getUser(), Owners);
  }
}

static void
replaceGlobalArray(Module &M, const DataLayout &DL, GlobalVariable &Array,
                   SmallPtrSet<GlobalVariable *, 4> &ReplacedGlobals) {
  // We only want arrays.
  ArrayType *ArrayTy = dyn_cast<ArrayType>(Array.getType()->getElementType());
  if (!ArrayTy)
    return;
  Type *ElemTy = ArrayTy->getElementType();
  PointerType *ElemPtrTy = ElemTy->getPointerTo();

  // We only wish to replace arrays that are visible in the module they
  // inhabit. Otherwise, our type edit from [T] to T* would be illegal across
  // modules.
  const bool OnlyVisibleInsideModule = Array.hasPrivateLinkage() ||
                                       Array.hasInternalLinkage() ||
                                       IgnoreLinkageForGlobals;
  if (!OnlyVisibleInsideModule) {
    LLVM_DEBUG(
        dbgs() << "Not rewriting (" << Array
               << ") to managed memory "
                  "because it could be visible externally. To force rewrite, "
                  "use -polly-acc-rewrite-ignore-linkage-for-globals.\n");
    return;
  }

  if (!Array.hasInitializer() ||
      !isa<ConstantAggregateZero>(Array.getInitializer())) {
    LLVM_DEBUG(dbgs() << "Not rewriting (" << Array
                      << ") to managed memory "
                         "because it has an initializer which is "
                         "not a zeroinitializer.\n");
    return;
  }

  // At this point, we have committed to replacing this array.
  ReplacedGlobals.insert(&Array);

  std::string NewName = Array.getName();
  NewName += ".toptr";
  GlobalVariable *ReplacementToArr =
      cast<GlobalVariable>(M.getOrInsertGlobal(NewName, ElemPtrTy));
  ReplacementToArr->setInitializer(ConstantPointerNull::get(ElemPtrTy));

  Function *PollyMallocManaged = getOrCreatePollyMallocManaged(M);
  std::string FnName = Array.getName();
  FnName += ".constructor";
  PollyIRBuilder Builder(M.getContext());
  FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
  const GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
  Function *F = Function::Create(Ty, Linkage, FnName, &M);
  BasicBlock *Start = BasicBlock::Create(M.getContext(), "entry", F);
  Builder.SetInsertPoint(Start);

  const uint64_t ArraySizeInt = DL.getTypeAllocSize(ArrayTy);
  Value *ArraySize = Builder.getInt64(ArraySizeInt);
  ArraySize->setName("array.size");

  Value *AllocatedMemRaw =
      Builder.CreateCall(PollyMallocManaged, {ArraySize}, "mem.raw");
  Value *AllocatedMemTyped =
      Builder.CreatePointerCast(AllocatedMemRaw, ElemPtrTy, "mem.typed");
  Builder.CreateStore(AllocatedMemTyped, ReplacementToArr);
  Builder.CreateRetVoid();

  const int Priority = 0;
  appendToGlobalCtors(M, F, Priority, ReplacementToArr);

  SmallVector<Instruction *, 4> ArrayUserInstructions;
  // Get all instructions that use array. We need to do this weird thing
  // because `Constant`s that contain this array neeed to be expanded into
  // instructions so that we can replace their parameters. `Constant`s cannot
  // be edited easily, so we choose to convert all `Constant`s to
  // `Instruction`s and handle all of the uses of `Array` uniformly.
  for (Use &ArrayUse : Array.uses())
    getInstructionUsersOfValue(ArrayUse.getUser(), ArrayUserInstructions);

  for (Instruction *UserOfArrayInst : ArrayUserInstructions) {

    Builder.SetInsertPoint(UserOfArrayInst);
    // <ty>** -> <ty>*
    Value *ArrPtrLoaded = Builder.CreateLoad(ReplacementToArr, "arrptr.load");
    // <ty>* -> [ty]*
    Value *ArrPtrLoadedBitcasted = Builder.CreateBitCast(
        ArrPtrLoaded, ArrayTy->getPointerTo(), "arrptr.bitcast");
    rewriteOldValToNew(UserOfArrayInst, &Array, ArrPtrLoadedBitcasted, Builder);
  }
}

// We return all `allocas` that may need to be converted to a call to
// cudaMallocManaged.
static void getAllocasToBeManaged(Function &F,
                                  SmallSet<AllocaInst *, 4> &Allocas) {
  for (BasicBlock &BB : F) {
    for (Instruction &I : BB) {
      auto *Alloca = dyn_cast<AllocaInst>(&I);
      if (!Alloca)
        continue;
      LLVM_DEBUG(dbgs() << "Checking if (" << *Alloca << ") may be captured: ");

      if (PointerMayBeCaptured(Alloca, /* ReturnCaptures */ false,
                               /* StoreCaptures */ true)) {
        Allocas.insert(Alloca);
        LLVM_DEBUG(dbgs() << "YES (captured).\n");
      } else {
        LLVM_DEBUG(dbgs() << "NO (not captured).\n");
      }
    }
  }
}

static void rewriteAllocaAsManagedMemory(AllocaInst *Alloca,
                                         const DataLayout &DL) {
  LLVM_DEBUG(dbgs() << "rewriting: (" << *Alloca << ") to managed mem.\n");
  Module *M = Alloca->getModule();
  assert(M && "Alloca does not have a module");

  PollyIRBuilder Builder(M->getContext());
  Builder.SetInsertPoint(Alloca);

  Function *MallocManagedFn =
      getOrCreatePollyMallocManaged(*Alloca->getModule());
  const uint64_t Size =
      DL.getTypeAllocSize(Alloca->getType()->getElementType());
  Value *SizeVal = Builder.getInt64(Size);
  Value *RawManagedMem = Builder.CreateCall(MallocManagedFn, {SizeVal});
  Value *Bitcasted = Builder.CreateBitCast(RawManagedMem, Alloca->getType());

  Function *F = Alloca->getFunction();
  assert(F && "Alloca has invalid function");

  Bitcasted->takeName(Alloca);
  Alloca->replaceAllUsesWith(Bitcasted);
  Alloca->eraseFromParent();

  for (BasicBlock &BB : *F) {
    ReturnInst *Return = dyn_cast<ReturnInst>(BB.getTerminator());
    if (!Return)
      continue;
    Builder.SetInsertPoint(Return);

    Function *FreeManagedFn = getOrCreatePollyFreeManaged(*M);
    Builder.CreateCall(FreeManagedFn, {RawManagedMem});
  }
}

// Replace all uses of `Old` with `New`, even inside `ConstantExpr`.
//
// `replaceAllUsesWith` does replace values in `ConstantExpr`. This function
// actually does replace it in `ConstantExpr`. The caveat is that if there is
// a use that is *outside* a function (say, at global declarations), we fail.
// So, this is meant to be used on values which we know will only be used
// within functions.
//
// This process works by looking through the uses of `Old`. If it finds a
// `ConstantExpr`, it recursively looks for the owning instruction.
// Then, it expands all the `ConstantExpr` to instructions and replaces
// `Old` with `New` in the expanded instructions.
static void replaceAllUsesAndConstantUses(Value *Old, Value *New,
                                          PollyIRBuilder &Builder) {
  SmallVector<Instruction *, 4> UserInstructions;
  // Get all instructions that use array. We need to do this weird thing
  // because `Constant`s that contain this array neeed to be expanded into
  // instructions so that we can replace their parameters. `Constant`s cannot
  // be edited easily, so we choose to convert all `Constant`s to
  // `Instruction`s and handle all of the uses of `Array` uniformly.
  for (Use &ArrayUse : Old->uses())
    getInstructionUsersOfValue(ArrayUse.getUser(), UserInstructions);

  for (Instruction *I : UserInstructions)
    rewriteOldValToNew(I, Old, New, Builder);
}

class ManagedMemoryRewritePass : public ModulePass {
public:
  static char ID;
  GPUArch Architecture;
  GPURuntime Runtime;

  ManagedMemoryRewritePass() : ModulePass(ID) {}
  virtual bool runOnModule(Module &M) {
    const DataLayout &DL = M.getDataLayout();

    Function *Malloc = M.getFunction("malloc");

    if (Malloc) {
      PollyIRBuilder Builder(M.getContext());
      Function *PollyMallocManaged = getOrCreatePollyMallocManaged(M);
      assert(PollyMallocManaged && "unable to create polly_mallocManaged");

      replaceAllUsesAndConstantUses(Malloc, PollyMallocManaged, Builder);
      Malloc->eraseFromParent();
    }

    Function *Free = M.getFunction("free");

    if (Free) {
      PollyIRBuilder Builder(M.getContext());
      Function *PollyFreeManaged = getOrCreatePollyFreeManaged(M);
      assert(PollyFreeManaged && "unable to create polly_freeManaged");

      replaceAllUsesAndConstantUses(Free, PollyFreeManaged, Builder);
      Free->eraseFromParent();
    }

    SmallPtrSet<GlobalVariable *, 4> GlobalsToErase;
    for (GlobalVariable &Global : M.globals())
      replaceGlobalArray(M, DL, Global, GlobalsToErase);
    for (GlobalVariable *G : GlobalsToErase)
      G->eraseFromParent();

    // Rewrite allocas to cudaMallocs if we are asked to do so.
    if (RewriteAllocas) {
      SmallSet<AllocaInst *, 4> AllocasToBeManaged;
      for (Function &F : M.functions())
        getAllocasToBeManaged(F, AllocasToBeManaged);

      for (AllocaInst *Alloca : AllocasToBeManaged)
        rewriteAllocaAsManagedMemory(Alloca, DL);
    }

    return true;
  }
};
} // namespace
char ManagedMemoryRewritePass::ID = 42;

Pass *polly::createManagedMemoryRewritePassPass(GPUArch Arch,
                                                GPURuntime Runtime) {
  ManagedMemoryRewritePass *pass = new ManagedMemoryRewritePass();
  pass->Runtime = Runtime;
  pass->Architecture = Arch;
  return pass;
}

INITIALIZE_PASS_BEGIN(
    ManagedMemoryRewritePass, "polly-acc-rewrite-managed-memory",
    "Polly - Rewrite all allocations in heap & data section to managed memory",
    false, false)
INITIALIZE_PASS_DEPENDENCY(PPCGCodeGeneration);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
INITIALIZE_PASS_END(
    ManagedMemoryRewritePass, "polly-acc-rewrite-managed-memory",
    "Polly - Rewrite all allocations in heap & data section to managed memory",
    false, false)