reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
//===-- SectionLoadList.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Target/SectionLoadList.h"

#include "lldb/Core/Module.h"
#include "lldb/Core/Section.h"
#include "lldb/Symbol/Block.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Stream.h"

using namespace lldb;
using namespace lldb_private;

SectionLoadList::SectionLoadList(const SectionLoadList &rhs)
    : m_addr_to_sect(), m_sect_to_addr(), m_mutex() {
  std::lock_guard<std::recursive_mutex> guard(rhs.m_mutex);
  m_addr_to_sect = rhs.m_addr_to_sect;
  m_sect_to_addr = rhs.m_sect_to_addr;
}

void SectionLoadList::operator=(const SectionLoadList &rhs) {
  std::lock(m_mutex, rhs.m_mutex);
  std::lock_guard<std::recursive_mutex> lhs_guard(m_mutex, std::adopt_lock);
  std::lock_guard<std::recursive_mutex> rhs_guard(rhs.m_mutex, std::adopt_lock);
  m_addr_to_sect = rhs.m_addr_to_sect;
  m_sect_to_addr = rhs.m_sect_to_addr;
}

bool SectionLoadList::IsEmpty() const {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  return m_addr_to_sect.empty();
}

void SectionLoadList::Clear() {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  m_addr_to_sect.clear();
  m_sect_to_addr.clear();
}

addr_t
SectionLoadList::GetSectionLoadAddress(const lldb::SectionSP &section) const {
  // TODO: add support for the same section having multiple load addresses
  addr_t section_load_addr = LLDB_INVALID_ADDRESS;
  if (section) {
    std::lock_guard<std::recursive_mutex> guard(m_mutex);
    sect_to_addr_collection::const_iterator pos =
        m_sect_to_addr.find(section.get());

    if (pos != m_sect_to_addr.end())
      section_load_addr = pos->second;
  }
  return section_load_addr;
}

bool SectionLoadList::SetSectionLoadAddress(const lldb::SectionSP &section,
                                            addr_t load_addr,
                                            bool warn_multiple) {
  Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER));
  ModuleSP module_sp(section->GetModule());

  if (module_sp) {
    LLDB_LOGV(log, "(section = {0} ({1}.{2}), load_addr = {3:x}) module = {4}",
              section.get(), module_sp->GetFileSpec(), section->GetName(),
              load_addr, module_sp.get());

    if (section->GetByteSize() == 0)
      return false; // No change

    // Fill in the section -> load_addr map
    std::lock_guard<std::recursive_mutex> guard(m_mutex);
    sect_to_addr_collection::iterator sta_pos =
        m_sect_to_addr.find(section.get());
    if (sta_pos != m_sect_to_addr.end()) {
      if (load_addr == sta_pos->second)
        return false; // No change...
      else
        sta_pos->second = load_addr;
    } else
      m_sect_to_addr[section.get()] = load_addr;

    // Fill in the load_addr -> section map
    addr_to_sect_collection::iterator ats_pos = m_addr_to_sect.find(load_addr);
    if (ats_pos != m_addr_to_sect.end()) {
      // Some sections are ok to overlap, and for others we should warn. When
      // we have multiple load addresses that correspond to a section, we will
      // always attribute the section to the be last section that claims it
      // exists at that address. Sometimes it is ok for more that one section
      // to be loaded at a specific load address, and other times it isn't. The
      // "warn_multiple" parameter tells us if we should warn in this case or
      // not. The DynamicLoader plug-in subclasses should know which sections
      // should warn and which shouldn't (darwin shared cache modules all
      // shared the same "__LINKEDIT" sections, so the dynamic loader can pass
      // false for "warn_multiple").
      if (warn_multiple && section != ats_pos->second) {
        ModuleSP module_sp(section->GetModule());
        if (module_sp) {
          ModuleSP curr_module_sp(ats_pos->second->GetModule());
          if (curr_module_sp) {
            module_sp->ReportWarning(
                "address 0x%16.16" PRIx64
                " maps to more than one section: %s.%s and %s.%s",
                load_addr, module_sp->GetFileSpec().GetFilename().GetCString(),
                section->GetName().GetCString(),
                curr_module_sp->GetFileSpec().GetFilename().GetCString(),
                ats_pos->second->GetName().GetCString());
          }
        }
      }
      ats_pos->second = section;
    } else
      m_addr_to_sect[load_addr] = section;
    return true; // Changed

  } else {
    if (log) {
      LLDB_LOGF(
          log,
          "SectionLoadList::%s (section = %p (%s), load_addr = 0x%16.16" PRIx64
          ") error: module has been deleted",
          __FUNCTION__, static_cast<void *>(section.get()),
          section->GetName().AsCString(), load_addr);
    }
  }
  return false;
}

size_t SectionLoadList::SetSectionUnloaded(const lldb::SectionSP &section_sp) {
  size_t unload_count = 0;

  if (section_sp) {
    Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER));

    if (log && log->GetVerbose()) {
      ModuleSP module_sp = section_sp->GetModule();
      std::string module_name("<Unknown>");
      if (module_sp) {
        const FileSpec &module_file_spec(
            section_sp->GetModule()->GetFileSpec());
        module_name = module_file_spec.GetPath();
      }
      LLDB_LOGF(log, "SectionLoadList::%s (section = %p (%s.%s))", __FUNCTION__,
                static_cast<void *>(section_sp.get()), module_name.c_str(),
                section_sp->GetName().AsCString());
    }

    std::lock_guard<std::recursive_mutex> guard(m_mutex);

    sect_to_addr_collection::iterator sta_pos =
        m_sect_to_addr.find(section_sp.get());
    if (sta_pos != m_sect_to_addr.end()) {
      ++unload_count;
      addr_t load_addr = sta_pos->second;
      m_sect_to_addr.erase(sta_pos);

      addr_to_sect_collection::iterator ats_pos =
          m_addr_to_sect.find(load_addr);
      if (ats_pos != m_addr_to_sect.end())
        m_addr_to_sect.erase(ats_pos);
    }
  }
  return unload_count;
}

bool SectionLoadList::SetSectionUnloaded(const lldb::SectionSP &section_sp,
                                         addr_t load_addr) {
  Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER));

  if (log && log->GetVerbose()) {
    ModuleSP module_sp = section_sp->GetModule();
    std::string module_name("<Unknown>");
    if (module_sp) {
      const FileSpec &module_file_spec(section_sp->GetModule()->GetFileSpec());
      module_name = module_file_spec.GetPath();
    }
    LLDB_LOGF(
        log,
        "SectionLoadList::%s (section = %p (%s.%s), load_addr = 0x%16.16" PRIx64
        ")",
        __FUNCTION__, static_cast<void *>(section_sp.get()),
        module_name.c_str(), section_sp->GetName().AsCString(), load_addr);
  }
  bool erased = false;
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  sect_to_addr_collection::iterator sta_pos =
      m_sect_to_addr.find(section_sp.get());
  if (sta_pos != m_sect_to_addr.end()) {
    erased = true;
    m_sect_to_addr.erase(sta_pos);
  }

  addr_to_sect_collection::iterator ats_pos = m_addr_to_sect.find(load_addr);
  if (ats_pos != m_addr_to_sect.end()) {
    erased = true;
    m_addr_to_sect.erase(ats_pos);
  }

  return erased;
}

bool SectionLoadList::ResolveLoadAddress(addr_t load_addr, Address &so_addr,
                                         bool allow_section_end) const {
  // First find the top level section that this load address exists in
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  if (!m_addr_to_sect.empty()) {
    addr_to_sect_collection::const_iterator pos =
        m_addr_to_sect.lower_bound(load_addr);
    if (pos != m_addr_to_sect.end()) {
      if (load_addr != pos->first && pos != m_addr_to_sect.begin())
        --pos;
      const addr_t pos_load_addr = pos->first;
      if (load_addr >= pos_load_addr) {
        addr_t offset = load_addr - pos_load_addr;
        if (offset < pos->second->GetByteSize() + (allow_section_end ? 1 : 0)) {
          // We have found the top level section, now we need to find the
          // deepest child section.
          return pos->second->ResolveContainedAddress(offset, so_addr,
                                                      allow_section_end);
        }
      }
    } else {
      // There are no entries that have an address that is >= load_addr, so we
      // need to check the last entry on our collection.
      addr_to_sect_collection::const_reverse_iterator rpos =
          m_addr_to_sect.rbegin();
      if (load_addr >= rpos->first) {
        addr_t offset = load_addr - rpos->first;
        if (offset <
            rpos->second->GetByteSize() + (allow_section_end ? 1 : 0)) {
          // We have found the top level section, now we need to find the
          // deepest child section.
          return rpos->second->ResolveContainedAddress(offset, so_addr,
                                                       allow_section_end);
        }
      }
    }
  }
  so_addr.Clear();
  return false;
}

void SectionLoadList::Dump(Stream &s, Target *target) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  addr_to_sect_collection::const_iterator pos, end;
  for (pos = m_addr_to_sect.begin(), end = m_addr_to_sect.end(); pos != end;
       ++pos) {
    s.Printf("addr = 0x%16.16" PRIx64 ", section = %p: ", pos->first,
             static_cast<void *>(pos->second.get()));
    pos->second->Dump(&s, target, 0);
  }
}