1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
| #include <stdio.h>
#include <stdlib.h>
#include <mach-o/loader.h>
#include <vector>
#include <string>
#include <mach/thread_status.h>
#include <string.h>
#include <uuid/uuid.h>
// Create an empty corefile with a "kern ver str" LC_NOTE.
// If an existing binary is given as an optional 2nd argument on the cmd line,
// the UUID from that binary will be encoded in the corefile.
// Otherwise a pre-set UUID will be put in the corefile that
// is created.
union uint32_buf {
uint8_t bytebuf[4];
uint32_t val;
};
union uint64_buf {
uint8_t bytebuf[8];
uint64_t val;
};
void
add_uint64(std::vector<uint8_t> &buf, uint64_t val)
{
uint64_buf conv;
conv.val = val;
for (int i = 0; i < 8; i++)
buf.push_back(conv.bytebuf[i]);
}
void
add_uint32(std::vector<uint8_t> &buf, uint32_t val)
{
uint32_buf conv;
conv.val = val;
for (int i = 0; i < 4; i++)
buf.push_back(conv.bytebuf[i]);
}
std::vector<uint8_t>
x86_lc_thread_load_command ()
{
std::vector<uint8_t> data;
add_uint32 (data, LC_THREAD); // thread_command.cmd
add_uint32 (data, 184); // thread_command.cmdsize
add_uint32 (data, x86_THREAD_STATE64); // thread_command.flavor
add_uint32 (data, x86_THREAD_STATE64_COUNT); // thread_command.count
add_uint64 (data, 0x0000000000000000); // rax
add_uint64 (data, 0x0000000000000400); // rbx
add_uint64 (data, 0x0000000000000000); // rcx
add_uint64 (data, 0x0000000000000000); // rdx
add_uint64 (data, 0x0000000000000000); // rdi
add_uint64 (data, 0x0000000000000000); // rsi
add_uint64 (data, 0xffffff9246e2ba20); // rbp
add_uint64 (data, 0xffffff9246e2ba10); // rsp
add_uint64 (data, 0x0000000000000000); // r8
add_uint64 (data, 0x0000000000000000); // r9
add_uint64 (data, 0x0000000000000000); // r10
add_uint64 (data, 0x0000000000000000); // r11
add_uint64 (data, 0xffffff7f96ce5fe1); // r12
add_uint64 (data, 0x0000000000000000); // r13
add_uint64 (data, 0x0000000000000000); // r14
add_uint64 (data, 0xffffff9246e2bac0); // r15
add_uint64 (data, 0xffffff8015a8f6d0); // rip
add_uint64 (data, 0x0000000000011111); // rflags
add_uint64 (data, 0x0000000000022222); // cs
add_uint64 (data, 0x0000000000033333); // fs
add_uint64 (data, 0x0000000000044444); // gs
return data;
}
void
add_lc_note_kern_ver_str_load_command (std::vector<std::vector<uint8_t> > &loadcmds,
std::vector<uint8_t> &payload,
int payload_file_offset,
std::string ident)
{
std::vector<uint8_t> loadcmd_data;
add_uint32 (loadcmd_data, LC_NOTE); // note_command.cmd
add_uint32 (loadcmd_data, 40); // note_command.cmdsize
char lc_note_name[16];
memset (lc_note_name, 0, 16);
strcpy (lc_note_name, "kern ver str");
// lc_note.data_owner
for (int i = 0; i < 16; i++)
loadcmd_data.push_back (lc_note_name[i]);
// we start writing the payload at payload_file_offset to leave
// room at the start for the header & the load commands.
uint64_t current_payload_offset = payload.size() + payload_file_offset;
add_uint64 (loadcmd_data, current_payload_offset); // note_command.offset
add_uint64 (loadcmd_data, 4 + ident.size() + 1); // note_command.size
loadcmds.push_back (loadcmd_data);
add_uint32 (payload, 1); // kerneL_version_string.version
for (int i = 0; i < ident.size() + 1; i++)
{
payload.push_back (ident[i]);
}
}
void
add_lc_segment (std::vector<std::vector<uint8_t> > &loadcmds,
std::vector<uint8_t> &payload,
int payload_file_offset)
{
std::vector<uint8_t> loadcmd_data;
struct segment_command_64 seg;
seg.cmd = LC_SEGMENT_64;
seg.cmdsize = sizeof (struct segment_command_64); // no sections
memset (seg.segname, 0, 16);
seg.vmaddr = 0xffffff7f96400000;
seg.vmsize = 4096;
seg.fileoff = payload.size() + payload_file_offset;
seg.filesize = 0;
seg.maxprot = 1;
seg.initprot = 1;
seg.nsects = 0;
seg.flags = 0;
uint8_t *p = (uint8_t*) &seg;
for (int i = 0; i < sizeof (struct segment_command_64); i++)
{
loadcmd_data.push_back (*(p + i));
}
loadcmds.push_back (loadcmd_data);
}
std::string
get_uuid_from_binary (const char *fn)
{
FILE *f = fopen(fn, "r");
if (f == nullptr)
{
fprintf (stderr, "Unable to open binary '%s' to get uuid\n", fn);
exit(1);
}
uint32_t num_of_load_cmds = 0;
uint32_t size_of_load_cmds = 0;
std::string uuid;
off_t file_offset = 0;
uint8_t magic[4];
if (::fread (magic, 1, 4, f) != 4)
{
fprintf (stderr, "Failed to read magic number from input file %s\n", fn);
exit (1);
}
uint8_t magic_32_be[] = {0xfe, 0xed, 0xfa, 0xce};
uint8_t magic_32_le[] = {0xce, 0xfa, 0xed, 0xfe};
uint8_t magic_64_be[] = {0xfe, 0xed, 0xfa, 0xcf};
uint8_t magic_64_le[] = {0xcf, 0xfa, 0xed, 0xfe};
if (memcmp (magic, magic_32_be, 4) == 0 || memcmp (magic, magic_64_be, 4) == 0)
{
fprintf (stderr, "big endian corefiles not supported\n");
exit (1);
}
::fseeko (f, 0, SEEK_SET);
if (memcmp (magic, magic_32_le, 4) == 0)
{
struct mach_header mh;
if (::fread (&mh, 1, sizeof (mh), f) != sizeof (mh))
{
fprintf (stderr, "error reading mach header from input file\n");
exit (1);
}
if (mh.cputype != CPU_TYPE_X86_64)
{
fprintf (stderr, "This tool creates an x86_64 corefile but "
"the supplied binary '%s' is cputype 0x%x\n",
fn, (uint32_t) mh.cputype);
exit (1);
}
num_of_load_cmds = mh.ncmds;
size_of_load_cmds = mh.sizeofcmds;
file_offset += sizeof (struct mach_header);
}
else
{
struct mach_header_64 mh;
if (::fread (&mh, 1, sizeof (mh), f) != sizeof (mh))
{
fprintf (stderr, "error reading mach header from input file\n");
exit (1);
}
if (mh.cputype != CPU_TYPE_X86_64)
{
fprintf (stderr, "This tool creates an x86_64 corefile but "
"the supplied binary '%s' is cputype 0x%x\n",
fn, (uint32_t) mh.cputype);
exit (1);
}
num_of_load_cmds = mh.ncmds;
size_of_load_cmds = mh.sizeofcmds;
file_offset += sizeof (struct mach_header_64);
}
off_t load_cmds_offset = file_offset;
for (int i = 0; i < num_of_load_cmds && (file_offset - load_cmds_offset) < size_of_load_cmds; i++)
{
::fseeko (f, file_offset, SEEK_SET);
uint32_t cmd;
uint32_t cmdsize;
::fread (&cmd, sizeof (uint32_t), 1, f);
::fread (&cmdsize, sizeof (uint32_t), 1, f);
if (cmd == LC_UUID)
{
struct uuid_command uuidcmd;
::fseeko (f, file_offset, SEEK_SET);
if (::fread (&uuidcmd, 1, sizeof (uuidcmd), f) != sizeof (uuidcmd))
{
fprintf (stderr, "Unable to read LC_UUID load command.\n");
exit (1);
}
uuid_string_t uuidstr;
uuid_unparse (uuidcmd.uuid, uuidstr);
uuid = uuidstr;
break;
}
file_offset += cmdsize;
}
return uuid;
}
int main (int argc, char **argv)
{
if (argc != 2 && argc != 3)
{
fprintf (stderr, "usage: create-empty-corefile <output-core-name> [binary-to-copy-uuid-from]\n");
fprintf (stderr, "Create a Mach-O corefile with an LC_NOTE 'kern ver str' load command/payload\n");
fprintf (stderr, "If a binary is given as a second argument, the Mach-O UUID of that file will\n");
fprintf (stderr, "be read and used in the corefile's LC_NOTE payload.\n");
exit (1);
}
std::string ident = "EFI UUID=3F9BA21F-55EA-356A-A349-BBA6F51FE8B1";
if (argc == 3)
{
std::string uuid_from_file = get_uuid_from_binary (argv[2]);
if (!uuid_from_file.empty())
{
ident = "EFI UUID=";
ident += uuid_from_file;
}
}
// An array of load commands (in the form of byte arrays)
std::vector<std::vector<uint8_t> > load_commands;
// An array of corefile contents (page data, lc_note data, etc)
std::vector<uint8_t> payload;
// First add all the load commands / payload so we can figure out how large
// the load commands will actually be.
load_commands.push_back (x86_lc_thread_load_command());
add_lc_note_kern_ver_str_load_command (load_commands, payload, 0, ident);
add_lc_segment (load_commands, payload, 0);
int size_of_load_commands = 0;
for (const auto &lc : load_commands)
size_of_load_commands += lc.size();
int header_and_load_cmd_room = sizeof (struct mach_header_64) + size_of_load_commands;
// Erease the load commands / payload now that we know how much space is needed,
// redo it.
load_commands.clear();
payload.clear();
load_commands.push_back (x86_lc_thread_load_command());
add_lc_note_kern_ver_str_load_command (load_commands, payload, header_and_load_cmd_room, ident);
add_lc_segment (load_commands, payload, header_and_load_cmd_room);
struct mach_header_64 mh;
mh.magic = MH_MAGIC_64;
mh.cputype = CPU_TYPE_X86_64;
mh.cpusubtype = CPU_SUBTYPE_X86_64_ALL;
mh.filetype = MH_CORE;
mh.ncmds = load_commands.size();
mh.sizeofcmds = size_of_load_commands;
mh.flags = 0;
mh.reserved = 0;
FILE *f = fopen (argv[1], "w");
if (f == nullptr)
{
fprintf (stderr, "Unable to open file %s for writing\n", argv[1]);
exit (1);
}
fwrite (&mh, sizeof (struct mach_header_64), 1, f);
for (const auto &lc : load_commands)
fwrite (lc.data(), lc.size(), 1, f);
fseek (f, header_and_load_cmd_room, SEEK_SET);
fwrite (payload.data(), payload.size(), 1, f);
fclose (f);
}
|