1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
| //===-- main.cpp ------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This test is intended to create a situation in which multiple events
// (breakpoints, watchpoints, crashes, and signal generation/delivery) happen
// from multiple threads. The test expects the debugger to set a breakpoint on
// the main thread (before any worker threads are spawned) and modify variables
// which control the number of threads that are spawned for each action.
#include "pseudo_barrier.h"
#include <vector>
using namespace std;
#include <pthread.h>
#include <signal.h>
#include <sys/types.h>
#include <unistd.h>
typedef std::vector<std::pair<unsigned, void*(*)(void*)> > action_counts;
typedef std::vector<pthread_t> thread_vector;
pseudo_barrier_t g_barrier;
int g_breakpoint = 0;
int g_sigusr1_count = 0;
uint32_t g_watchme;
struct action_args {
int delay;
};
// Perform any extra actions required by thread 'input' arg
void do_action_args(void *input) {
if (input) {
action_args *args = static_cast<action_args*>(input);
sleep(args->delay);
}
}
void *
breakpoint_func (void *input)
{
// Wait until all threads are running
pseudo_barrier_wait(g_barrier);
do_action_args(input);
// Do something
g_breakpoint++; // Set breakpoint here
return 0;
}
void *
signal_func (void *input) {
// Wait until all threads are running
pseudo_barrier_wait(g_barrier);
do_action_args(input);
// Send a user-defined signal to the current process
//kill(getpid(), SIGUSR1);
// Send a user-defined signal to the current thread
pthread_kill(pthread_self(), SIGUSR1);
return 0;
}
void *
watchpoint_func (void *input) {
pseudo_barrier_wait(g_barrier);
do_action_args(input);
g_watchme = 1; // watchpoint triggers here
return 0;
}
void *
crash_func (void *input) {
pseudo_barrier_wait(g_barrier);
do_action_args(input);
int *a = 0;
*a = 5; // crash happens here
return 0;
}
void sigusr1_handler(int sig) {
if (sig == SIGUSR1)
g_sigusr1_count += 1; // Break here in signal handler
}
/// Register a simple function for to handle signal
void register_signal_handler(int signal, void (*handler)(int))
{
sigset_t empty_sigset;
sigemptyset(&empty_sigset);
struct sigaction action;
action.sa_sigaction = 0;
action.sa_mask = empty_sigset;
action.sa_flags = 0;
action.sa_handler = handler;
sigaction(SIGUSR1, &action, 0);
}
void start_threads(thread_vector& threads,
action_counts& actions,
void* args = 0) {
action_counts::iterator b = actions.begin(), e = actions.end();
for(action_counts::iterator i = b; i != e; ++i) {
for(unsigned count = 0; count < i->first; ++count) {
pthread_t t;
pthread_create(&t, 0, i->second, args);
threads.push_back(t);
}
}
}
int dotest()
{
g_watchme = 0;
// Actions are triggered immediately after the thread is spawned
unsigned num_breakpoint_threads = 1;
unsigned num_watchpoint_threads = 0;
unsigned num_signal_threads = 1;
unsigned num_crash_threads = 0;
// Actions below are triggered after a 1-second delay
unsigned num_delay_breakpoint_threads = 0;
unsigned num_delay_watchpoint_threads = 0;
unsigned num_delay_signal_threads = 0;
unsigned num_delay_crash_threads = 0;
register_signal_handler(SIGUSR1, sigusr1_handler); // Break here and adjust num_[breakpoint|watchpoint|signal|crash]_threads
unsigned total_threads = num_breakpoint_threads \
+ num_watchpoint_threads \
+ num_signal_threads \
+ num_crash_threads \
+ num_delay_breakpoint_threads \
+ num_delay_watchpoint_threads \
+ num_delay_signal_threads \
+ num_delay_crash_threads;
// Don't let either thread do anything until they're both ready.
pseudo_barrier_init(g_barrier, total_threads);
action_counts actions;
actions.push_back(std::make_pair(num_breakpoint_threads, breakpoint_func));
actions.push_back(std::make_pair(num_watchpoint_threads, watchpoint_func));
actions.push_back(std::make_pair(num_signal_threads, signal_func));
actions.push_back(std::make_pair(num_crash_threads, crash_func));
action_counts delay_actions;
delay_actions.push_back(std::make_pair(num_delay_breakpoint_threads, breakpoint_func));
delay_actions.push_back(std::make_pair(num_delay_watchpoint_threads, watchpoint_func));
delay_actions.push_back(std::make_pair(num_delay_signal_threads, signal_func));
delay_actions.push_back(std::make_pair(num_delay_crash_threads, crash_func));
// Create threads that handle instant actions
thread_vector threads;
start_threads(threads, actions);
// Create threads that handle delayed actions
action_args delay_arg;
delay_arg.delay = 1;
start_threads(threads, delay_actions, &delay_arg);
// Join all threads
typedef std::vector<pthread_t>::iterator thread_iterator;
for(thread_iterator t = threads.begin(); t != threads.end(); ++t)
pthread_join(*t, 0);
return 0;
}
int main ()
{
dotest();
return 0; // Break here and verify one thread is active.
}
|