reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
//===-- ReaderWriter/MachO/LayoutPass.cpp - Layout atoms ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "LayoutPass.h"
#include "lld/Core/Instrumentation.h"
#include "lld/Core/PassManager.h"
#include "lld/ReaderWriter/MachOLinkingContext.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Parallel.h"
#include <algorithm>
#include <set>
#include <utility>

using namespace lld;

#define DEBUG_TYPE "LayoutPass"

namespace lld {
namespace mach_o {

static bool compareAtoms(const LayoutPass::SortKey &,
                         const LayoutPass::SortKey &,
                         LayoutPass::SortOverride customSorter);

#ifndef NDEBUG
// Return "reason (leftval, rightval)"
static std::string formatReason(StringRef reason, int leftVal, int rightVal) {
  return (Twine(reason) + " (" + Twine(leftVal) + ", " + Twine(rightVal) + ")")
      .str();
}

// Less-than relationship of two atoms must be transitive, which is, if a < b
// and b < c, a < c must be true. This function checks the transitivity by
// checking the sort results.
static void checkTransitivity(std::vector<LayoutPass::SortKey> &vec,
                              LayoutPass::SortOverride customSorter) {
  for (auto i = vec.begin(), e = vec.end(); (i + 1) != e; ++i) {
    for (auto j = i + 1; j != e; ++j) {
      assert(compareAtoms(*i, *j, customSorter));
      assert(!compareAtoms(*j, *i, customSorter));
    }
  }
}

// Helper functions to check follow-on graph.
typedef llvm::DenseMap<const DefinedAtom *, const DefinedAtom *> AtomToAtomT;

static std::string atomToDebugString(const Atom *atom) {
  const DefinedAtom *definedAtom = dyn_cast<DefinedAtom>(atom);
  std::string str;
  llvm::raw_string_ostream s(str);
  if (definedAtom->name().empty())
    s << "<anonymous " << definedAtom << ">";
  else
    s << definedAtom->name();
  s << " in ";
  if (definedAtom->customSectionName().empty())
    s << "<anonymous>";
  else
    s << definedAtom->customSectionName();
  s.flush();
  return str;
}

static void showCycleDetectedError(const Registry &registry,
                                   AtomToAtomT &followOnNexts,
                                   const DefinedAtom *atom) {
  const DefinedAtom *start = atom;
  llvm::dbgs() << "There's a cycle in a follow-on chain!\n";
  do {
    llvm::dbgs() << "  " << atomToDebugString(atom) << "\n";
    for (const Reference *ref : *atom) {
      StringRef kindValStr;
      if (!registry.referenceKindToString(ref->kindNamespace(), ref->kindArch(),
                                          ref->kindValue(), kindValStr)) {
        kindValStr = "<unknown>";
      }
      llvm::dbgs() << "    " << kindValStr
                   << ": " << atomToDebugString(ref->target()) << "\n";
    }
    atom = followOnNexts[atom];
  } while (atom != start);
  llvm::report_fatal_error("Cycle detected");
}

/// Exit if there's a cycle in a followon chain reachable from the
/// given root atom. Uses the tortoise and hare algorithm to detect a
/// cycle.
static void checkNoCycleInFollowonChain(const Registry &registry,
                                        AtomToAtomT &followOnNexts,
                                        const DefinedAtom *root) {
  const DefinedAtom *tortoise = root;
  const DefinedAtom *hare = followOnNexts[root];
  while (true) {
    if (!tortoise || !hare)
      return;
    if (tortoise == hare)
      showCycleDetectedError(registry, followOnNexts, tortoise);
    tortoise = followOnNexts[tortoise];
    hare = followOnNexts[followOnNexts[hare]];
  }
}

static void checkReachabilityFromRoot(AtomToAtomT &followOnRoots,
                                      const DefinedAtom *atom) {
  if (!atom) return;
  auto i = followOnRoots.find(atom);
  if (i == followOnRoots.end()) {
    llvm_unreachable(((Twine("Atom <") + atomToDebugString(atom) +
                       "> has no follow-on root!"))
                         .str()
                         .c_str());
  }
  const DefinedAtom *ap = i->second;
  while (true) {
    const DefinedAtom *next = followOnRoots[ap];
    if (!next) {
      llvm_unreachable((Twine("Atom <" + atomToDebugString(atom) +
                              "> is not reachable from its root!"))
                           .str()
                           .c_str());
    }
    if (next == ap)
      return;
    ap = next;
  }
}

static void printDefinedAtoms(const File::AtomRange<DefinedAtom> &atomRange) {
  for (const DefinedAtom *atom : atomRange) {
    llvm::dbgs() << "  file=" << atom->file().path()
                 << ", name=" << atom->name()
                 << ", size=" << atom->size()
                 << ", type=" << atom->contentType()
                 << ", ordinal=" << atom->ordinal()
                 << "\n";
  }
}

/// Verify that the followon chain is sane. Should not be called in
/// release binary.
void LayoutPass::checkFollowonChain(const File::AtomRange<DefinedAtom> &range) {
  ScopedTask task(getDefaultDomain(), "LayoutPass::checkFollowonChain");

  // Verify that there's no cycle in follow-on chain.
  std::set<const DefinedAtom *> roots;
  for (const auto &ai : _followOnRoots)
    roots.insert(ai.second);
  for (const DefinedAtom *root : roots)
    checkNoCycleInFollowonChain(_registry, _followOnNexts, root);

  // Verify that all the atoms in followOnNexts have references to
  // their roots.
  for (const auto &ai : _followOnNexts) {
    checkReachabilityFromRoot(_followOnRoots, ai.first);
    checkReachabilityFromRoot(_followOnRoots, ai.second);
  }
}
#endif // #ifndef NDEBUG

/// The function compares atoms by sorting atoms in the following order
/// a) Sorts atoms by their ordinal overrides (layout-after/ingroup)
/// b) Sorts atoms by their permissions
/// c) Sorts atoms by their content
/// d) Sorts atoms by custom sorter
/// e) Sorts atoms on how they appear using File Ordinality
/// f) Sorts atoms on how they appear within the File
static bool compareAtomsSub(const LayoutPass::SortKey &lc,
                            const LayoutPass::SortKey &rc,
                            LayoutPass::SortOverride customSorter,
                            std::string &reason) {
  const DefinedAtom *left = lc._atom.get();
  const DefinedAtom *right = rc._atom.get();
  if (left == right) {
    reason = "same";
    return false;
  }

  // Find the root of the chain if it is a part of a follow-on chain.
  const DefinedAtom *leftRoot = lc._root;
  const DefinedAtom *rightRoot = rc._root;

  // Sort atoms by their ordinal overrides only if they fall in the same
  // chain.
  if (leftRoot == rightRoot) {
    LLVM_DEBUG(reason = formatReason("override", lc._override, rc._override));
    return lc._override < rc._override;
  }

  // Sort same permissions together.
  DefinedAtom::ContentPermissions leftPerms = leftRoot->permissions();
  DefinedAtom::ContentPermissions rightPerms = rightRoot->permissions();

  if (leftPerms != rightPerms) {
    LLVM_DEBUG(
        reason = formatReason("contentPerms", (int)leftPerms, (int)rightPerms));
    return leftPerms < rightPerms;
  }

  // Sort same content types together.
  DefinedAtom::ContentType leftType = leftRoot->contentType();
  DefinedAtom::ContentType rightType = rightRoot->contentType();

  if (leftType != rightType) {
    LLVM_DEBUG(reason =
                   formatReason("contentType", (int)leftType, (int)rightType));
    return leftType < rightType;
  }

  // Use custom sorter if supplied.
  if (customSorter) {
    bool leftBeforeRight;
    if (customSorter(leftRoot, rightRoot, leftBeforeRight))
      return leftBeforeRight;
  }

  // Sort by .o order.
  const File *leftFile = &leftRoot->file();
  const File *rightFile = &rightRoot->file();

  if (leftFile != rightFile) {
    LLVM_DEBUG(reason = formatReason(".o order", (int)leftFile->ordinal(),
                                     (int)rightFile->ordinal()));
    return leftFile->ordinal() < rightFile->ordinal();
  }

  // Sort by atom order with .o file.
  uint64_t leftOrdinal = leftRoot->ordinal();
  uint64_t rightOrdinal = rightRoot->ordinal();

  if (leftOrdinal != rightOrdinal) {
    LLVM_DEBUG(reason = formatReason("ordinal", (int)leftRoot->ordinal(),
                                     (int)rightRoot->ordinal()));
    return leftOrdinal < rightOrdinal;
  }

  llvm::errs() << "Unordered: <" << left->name() << "> <"
               << right->name() << ">\n";
  llvm_unreachable("Atoms with Same Ordinal!");
}

static bool compareAtoms(const LayoutPass::SortKey &lc,
                         const LayoutPass::SortKey &rc,
                         LayoutPass::SortOverride customSorter) {
  std::string reason;
  bool result = compareAtomsSub(lc, rc, customSorter, reason);
  LLVM_DEBUG({
    StringRef comp = result ? "<" : ">=";
    llvm::dbgs() << "Layout: '" << lc._atom.get()->name()
                 << "' " << comp << " '"
                 << rc._atom.get()->name() << "' (" << reason << ")\n";
  });
  return result;
}

LayoutPass::LayoutPass(const Registry &registry, SortOverride sorter)
    : _registry(registry), _customSorter(std::move(sorter)) {}

// Returns the atom immediately followed by the given atom in the followon
// chain.
const DefinedAtom *LayoutPass::findAtomFollowedBy(
    const DefinedAtom *targetAtom) {
  // Start from the beginning of the chain and follow the chain until
  // we find the targetChain.
  const DefinedAtom *atom = _followOnRoots[targetAtom];
  while (true) {
    const DefinedAtom *prevAtom = atom;
    AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
    // The target atom must be in the chain of its root.
    assert(targetFollowOnAtomsIter != _followOnNexts.end());
    atom = targetFollowOnAtomsIter->second;
    if (atom == targetAtom)
      return prevAtom;
  }
}

// Check if all the atoms followed by the given target atom are of size zero.
// When this method is called, an atom being added is not of size zero and
// will be added to the head of the followon chain. All the atoms between the
// atom and the targetAtom (specified by layout-after) need to be of size zero
// in this case. Otherwise the desired layout is impossible.
bool LayoutPass::checkAllPrevAtomsZeroSize(const DefinedAtom *targetAtom) {
  const DefinedAtom *atom = _followOnRoots[targetAtom];
  while (true) {
    if (atom == targetAtom)
      return true;
    if (atom->size() != 0)
      // TODO: print warning that an impossible layout is being desired by the
      // user.
      return false;
    AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
    // The target atom must be in the chain of its root.
    assert(targetFollowOnAtomsIter != _followOnNexts.end());
    atom = targetFollowOnAtomsIter->second;
  }
}

// Set the root of all atoms in targetAtom's chain to the given root.
void LayoutPass::setChainRoot(const DefinedAtom *targetAtom,
                              const DefinedAtom *root) {
  // Walk through the followon chain and override each node's root.
  while (true) {
    _followOnRoots[targetAtom] = root;
    AtomToAtomT::iterator targetFollowOnAtomsIter =
        _followOnNexts.find(targetAtom);
    if (targetFollowOnAtomsIter == _followOnNexts.end())
      return;
    targetAtom = targetFollowOnAtomsIter->second;
  }
}

/// This pass builds the followon tables described by two DenseMaps
/// followOnRoots and followonNexts.
/// The followOnRoots map contains a mapping of a DefinedAtom to its root
/// The followOnNexts map contains a mapping of what DefinedAtom follows the
/// current Atom
/// The algorithm follows a very simple approach
/// a) If the atom is first seen, then make that as the root atom
/// b) The targetAtom which this Atom contains, has the root thats set to the
///    root of the current atom
/// c) If the targetAtom is part of a different tree and the root of the
///    targetAtom is itself, Chain all the atoms that are contained in the tree
///    to the current Tree
/// d) If the targetAtom is part of a different chain and the root of the
///    targetAtom until the targetAtom has all atoms of size 0, then chain the
///    targetAtoms and its tree to the current chain
void LayoutPass::buildFollowOnTable(const File::AtomRange<DefinedAtom> &range) {
  ScopedTask task(getDefaultDomain(), "LayoutPass::buildFollowOnTable");
  // Set the initial size of the followon and the followonNext hash to the
  // number of atoms that we have.
  _followOnRoots.reserve(range.size());
  _followOnNexts.reserve(range.size());
  for (const DefinedAtom *ai : range) {
    for (const Reference *r : *ai) {
      if (r->kindNamespace() != lld::Reference::KindNamespace::all ||
          r->kindValue() != lld::Reference::kindLayoutAfter)
        continue;
      const DefinedAtom *targetAtom = dyn_cast<DefinedAtom>(r->target());
      _followOnNexts[ai] = targetAtom;

      // If we find a followon for the first time, let's make that atom as the
      // root atom.
      if (_followOnRoots.count(ai) == 0)
        _followOnRoots[ai] = ai;

      auto iter = _followOnRoots.find(targetAtom);
      if (iter == _followOnRoots.end()) {
        // If the targetAtom is not a root of any chain, let's make the root of
        // the targetAtom to the root of the current chain.

        // The expression m[i] = m[j] where m is a DenseMap and i != j is not
        // safe. m[j] returns a reference, which would be invalidated when a
        // rehashing occurs. If rehashing occurs to make room for m[i], m[j]
        // becomes invalid, and that invalid reference would be used as the RHS
        // value of the expression.
        // Copy the value to workaround.
        const DefinedAtom *tmp = _followOnRoots[ai];
        _followOnRoots[targetAtom] = tmp;
        continue;
      }
      if (iter->second == targetAtom) {
        // If the targetAtom is the root of a chain, the chain becomes part of
        // the current chain. Rewrite the subchain's root to the current
        // chain's root.
        setChainRoot(targetAtom, _followOnRoots[ai]);
        continue;
      }
      // The targetAtom is already a part of a chain. If the current atom is
      // of size zero, we can insert it in the middle of the chain just
      // before the target atom, while not breaking other atom's followon
      // relationships. If it's not, we can only insert the current atom at
      // the beginning of the chain. All the atoms followed by the target
      // atom must be of size zero in that case to satisfy the followon
      // relationships.
      size_t currentAtomSize = ai->size();
      if (currentAtomSize == 0) {
        const DefinedAtom *targetPrevAtom = findAtomFollowedBy(targetAtom);
        _followOnNexts[targetPrevAtom] = ai;
        const DefinedAtom *tmp = _followOnRoots[targetPrevAtom];
        _followOnRoots[ai] = tmp;
        continue;
      }
      if (!checkAllPrevAtomsZeroSize(targetAtom))
        break;
      _followOnNexts[ai] = _followOnRoots[targetAtom];
      setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]);
    }
  }
}

/// Build an ordinal override map by traversing the followon chain, and
/// assigning ordinals to each atom, if the atoms have their ordinals
/// already assigned skip the atom and move to the next. This is the
/// main map thats used to sort the atoms while comparing two atoms together
void
LayoutPass::buildOrdinalOverrideMap(const File::AtomRange<DefinedAtom> &range) {
  ScopedTask task(getDefaultDomain(), "LayoutPass::buildOrdinalOverrideMap");
  uint64_t index = 0;
  for (const DefinedAtom *ai : range) {
    const DefinedAtom *atom = ai;
    if (_ordinalOverrideMap.find(atom) != _ordinalOverrideMap.end())
      continue;
    AtomToAtomT::iterator start = _followOnRoots.find(atom);
    if (start == _followOnRoots.end())
      continue;
    for (const DefinedAtom *nextAtom = start->second; nextAtom;
         nextAtom = _followOnNexts[nextAtom]) {
      AtomToOrdinalT::iterator pos = _ordinalOverrideMap.find(nextAtom);
      if (pos == _ordinalOverrideMap.end())
        _ordinalOverrideMap[nextAtom] = index++;
    }
  }
}

std::vector<LayoutPass::SortKey>
LayoutPass::decorate(File::AtomRange<DefinedAtom> &atomRange) const {
  std::vector<SortKey> ret;
  for (OwningAtomPtr<DefinedAtom> &atom : atomRange.owning_ptrs()) {
    auto ri = _followOnRoots.find(atom.get());
    auto oi = _ordinalOverrideMap.find(atom.get());
    const auto *root = (ri == _followOnRoots.end()) ? atom.get() : ri->second;
    uint64_t override = (oi == _ordinalOverrideMap.end()) ? 0 : oi->second;
    ret.push_back(SortKey(std::move(atom), root, override));
  }
  return ret;
}

void LayoutPass::undecorate(File::AtomRange<DefinedAtom> &atomRange,
                            std::vector<SortKey> &keys) const {
  size_t i = 0;
  for (SortKey &k : keys)
    atomRange[i++] = std::move(k._atom);
}

/// Perform the actual pass
llvm::Error LayoutPass::perform(SimpleFile &mergedFile) {
  LLVM_DEBUG(llvm::dbgs() << "******** Laying out atoms:\n");
  // sort the atoms
  ScopedTask task(getDefaultDomain(), "LayoutPass");
  File::AtomRange<DefinedAtom> atomRange = mergedFile.defined();

  // Build follow on tables
  buildFollowOnTable(atomRange);

  // Check the structure of followon graph if running in debug mode.
  LLVM_DEBUG(checkFollowonChain(atomRange));

  // Build override maps
  buildOrdinalOverrideMap(atomRange);

  LLVM_DEBUG({
    llvm::dbgs() << "unsorted atoms:\n";
    printDefinedAtoms(atomRange);
  });

  std::vector<LayoutPass::SortKey> vec = decorate(atomRange);
  sort(llvm::parallel::par, vec.begin(), vec.end(),
       [&](const LayoutPass::SortKey &l, const LayoutPass::SortKey &r) -> bool {
         return compareAtoms(l, r, _customSorter);
       });
  LLVM_DEBUG(checkTransitivity(vec, _customSorter));
  undecorate(atomRange, vec);

  LLVM_DEBUG({
    llvm::dbgs() << "sorted atoms:\n";
    printDefinedAtoms(atomRange);
  });

  LLVM_DEBUG(llvm::dbgs() << "******** Finished laying out atoms\n");
  return llvm::Error::success();
}

void addLayoutPass(PassManager &pm, const MachOLinkingContext &ctx) {
  pm.add(std::make_unique<LayoutPass>(
      ctx.registry(), [&](const DefinedAtom * left, const DefinedAtom * right,
                          bool & leftBeforeRight) ->bool {
    return ctx.customAtomOrderer(left, right, leftBeforeRight);
  }));
}

} // namespace mach_o
} // namespace lld