reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
//===--- ExtractVariable.cpp ------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Logger.h"
#include "ParsedAST.h"
#include "Protocol.h"
#include "Selection.h"
#include "SourceCode.h"
#include "refactor/Tweak.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Tooling/Core/Replacement.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"

namespace clang {
namespace clangd {
namespace {
// information regarding the Expr that is being extracted
class ExtractionContext {
public:
  ExtractionContext(const SelectionTree::Node *Node, const SourceManager &SM,
                    const ASTContext &Ctx);
  const clang::Expr *getExpr() const { return Expr; }
  const SelectionTree::Node *getExprNode() const { return ExprNode; }
  bool isExtractable() const { return Extractable; }
  // The half-open range for the expression to be extracted.
  SourceRange getExtractionChars() const;
  // Generate Replacement for replacing selected expression with given VarName
  tooling::Replacement replaceWithVar(SourceRange Chars,
                                      llvm::StringRef VarName) const;
  // Generate Replacement for declaring the selected Expr as a new variable
  tooling::Replacement insertDeclaration(llvm::StringRef VarName,
                                         SourceRange InitChars) const;

private:
  bool Extractable = false;
  const clang::Expr *Expr;
  const SelectionTree::Node *ExprNode;
  // Stmt before which we will extract
  const clang::Stmt *InsertionPoint = nullptr;
  const SourceManager &SM;
  const ASTContext &Ctx;
  // Decls referenced in the Expr
  std::vector<clang::Decl *> ReferencedDecls;
  // returns true if the Expr doesn't reference any variable declared in scope
  bool exprIsValidOutside(const clang::Stmt *Scope) const;
  // computes the Stmt before which we will extract out Expr
  const clang::Stmt *computeInsertionPoint() const;
};

// Returns all the Decls referenced inside the given Expr
static std::vector<clang::Decl *>
computeReferencedDecls(const clang::Expr *Expr) {
  // RAV subclass to find all DeclRefs in a given Stmt
  class FindDeclRefsVisitor
      : public clang::RecursiveASTVisitor<FindDeclRefsVisitor> {
  public:
    std::vector<Decl *> ReferencedDecls;
    bool VisitDeclRefExpr(DeclRefExpr *DeclRef) { // NOLINT
      ReferencedDecls.push_back(DeclRef->getDecl());
      return true;
    }
  };
  FindDeclRefsVisitor Visitor;
  Visitor.TraverseStmt(const_cast<Stmt *>(dyn_cast<Stmt>(Expr)));
  return Visitor.ReferencedDecls;
}

ExtractionContext::ExtractionContext(const SelectionTree::Node *Node,
                                     const SourceManager &SM,
                                     const ASTContext &Ctx)
    : ExprNode(Node), SM(SM), Ctx(Ctx) {
  Expr = Node->ASTNode.get<clang::Expr>();
  ReferencedDecls = computeReferencedDecls(Expr);
  InsertionPoint = computeInsertionPoint();
  if (InsertionPoint)
    Extractable = true;
}

// checks whether extracting before InsertionPoint will take a
// variable reference out of scope
bool ExtractionContext::exprIsValidOutside(const clang::Stmt *Scope) const {
  SourceLocation ScopeBegin = Scope->getBeginLoc();
  SourceLocation ScopeEnd = Scope->getEndLoc();
  for (const Decl *ReferencedDecl : ReferencedDecls) {
    if (SM.isPointWithin(ReferencedDecl->getBeginLoc(), ScopeBegin, ScopeEnd) &&
        SM.isPointWithin(ReferencedDecl->getEndLoc(), ScopeBegin, ScopeEnd))
      return false;
  }
  return true;
}

// Return the Stmt before which we need to insert the extraction.
// To find the Stmt, we go up the AST Tree and if the Parent of the current
// Stmt is a CompoundStmt, we can extract inside this CompoundStmt just before
// the current Stmt. We ALWAYS insert before a Stmt whose parent is a
// CompoundStmt
//
// FIXME: Extraction from label, switch and case statements
// FIXME: Doens't work for FoldExpr
// FIXME: Ensure extraction from loops doesn't change semantics.
const clang::Stmt *ExtractionContext::computeInsertionPoint() const {
  // returns true if we can extract before InsertionPoint
  auto CanExtractOutside =
      [](const SelectionTree::Node *InsertionPoint) -> bool {
    if (const clang::Stmt *Stmt = InsertionPoint->ASTNode.get<clang::Stmt>()) {
      // Allow all expressions except LambdaExpr since we don't want to extract
      // from the captures/default arguments of a lambda
      if (isa<clang::Expr>(Stmt))
        return !isa<LambdaExpr>(Stmt);
      // We don't yet allow extraction from switch/case stmt as we would need to
      // jump over the switch stmt even if there is a CompoundStmt inside the
      // switch. And there are other Stmts which we don't care about (e.g.
      // continue and break) as there can never be anything to extract from
      // them.
      return isa<AttributedStmt>(Stmt) || isa<CompoundStmt>(Stmt) ||
             isa<CXXForRangeStmt>(Stmt) || isa<DeclStmt>(Stmt) ||
             isa<DoStmt>(Stmt) || isa<ForStmt>(Stmt) || isa<IfStmt>(Stmt) ||
             isa<ReturnStmt>(Stmt) || isa<WhileStmt>(Stmt);
    }
    if (InsertionPoint->ASTNode.get<VarDecl>())
      return true;
    return false;
  };
  for (const SelectionTree::Node *CurNode = getExprNode();
       CurNode->Parent && CanExtractOutside(CurNode);
       CurNode = CurNode->Parent) {
    const clang::Stmt *CurInsertionPoint = CurNode->ASTNode.get<Stmt>();
    // give up if extraction will take a variable out of scope
    if (CurInsertionPoint && !exprIsValidOutside(CurInsertionPoint))
      break;
    if (const clang::Stmt *CurParent = CurNode->Parent->ASTNode.get<Stmt>()) {
      if (isa<CompoundStmt>(CurParent)) {
        // Ensure we don't write inside a macro.
        if (CurParent->getBeginLoc().isMacroID())
          continue;
        return CurInsertionPoint;
      }
    }
  }
  return nullptr;
}

// returns the replacement for substituting the extraction with VarName
tooling::Replacement
ExtractionContext::replaceWithVar(SourceRange Chars,
                                  llvm::StringRef VarName) const {
  unsigned ExtractionLength =
      SM.getFileOffset(Chars.getEnd()) - SM.getFileOffset(Chars.getBegin());
  return tooling::Replacement(SM, Chars.getBegin(), ExtractionLength, VarName);
}
// returns the Replacement for declaring a new variable storing the extraction
tooling::Replacement
ExtractionContext::insertDeclaration(llvm::StringRef VarName,
                                     SourceRange InitializerChars) const {
  llvm::StringRef ExtractionCode = toSourceCode(SM, InitializerChars);
  const SourceLocation InsertionLoc =
      toHalfOpenFileRange(SM, Ctx.getLangOpts(),
                          InsertionPoint->getSourceRange())
          ->getBegin();
  // FIXME: Replace auto with explicit type and add &/&& as necessary
  std::string ExtractedVarDecl = std::string("auto ") + VarName.str() + " = " +
                                 ExtractionCode.str() + "; ";
  return tooling::Replacement(SM, InsertionLoc, 0, ExtractedVarDecl);
}

// Helpers for handling "binary subexpressions" like a + [[b + c]] + d.
//
// These are special, because the formal AST doesn't match what users expect:
// - the AST is ((a + b) + c) + d, so the ancestor expression is `a + b + c`.
// - but extracting `b + c` is reasonable, as + is (mathematically) associative.
//
// So we try to support these cases with some restrictions:
//  - the operator must be associative
//  - no mixing of operators is allowed
//  - we don't look inside macro expansions in the subexpressions
//  - we only adjust the extracted range, so references in the unselected parts
//    of the AST expression (e.g. `a`) are still considered referenced for
//    the purposes of calculating the insertion point.
//    FIXME: it would be nice to exclude these references, by micromanaging
//    the computeReferencedDecls() calls around the binary operator tree.

// Information extracted about a binary operator encounted in a SelectionTree.
// It can represent either an overloaded or built-in operator.
struct ParsedBinaryOperator {
  BinaryOperatorKind Kind;
  SourceLocation ExprLoc;
  llvm::SmallVector<const SelectionTree::Node*, 8> SelectedOperands;

  // If N is a binary operator, populate this and return true.
  bool parse(const SelectionTree::Node &N) {
    SelectedOperands.clear();

    if (const BinaryOperator *Op =
        llvm::dyn_cast_or_null<BinaryOperator>(N.ASTNode.get<Expr>())) {
      Kind = Op->getOpcode();
      ExprLoc = Op->getExprLoc();
      SelectedOperands = N.Children;
      return true;
    }
    if (const CXXOperatorCallExpr *Op =
            llvm::dyn_cast_or_null<CXXOperatorCallExpr>(
                N.ASTNode.get<Expr>())) {
      if (!Op->isInfixBinaryOp())
        return false;

      Kind = BinaryOperator::getOverloadedOpcode(Op->getOperator());
      ExprLoc = Op->getExprLoc();
      // Not all children are args, there's also the callee (operator).
      for (const auto* Child : N.Children) {
        const Expr *E = Child->ASTNode.get<Expr>();
        assert(E && "callee and args should be Exprs!");
        if (E == Op->getArg(0) || E == Op->getArg(1))
          SelectedOperands.push_back(Child);
      }
      return true;
    }
    return false;
  }

  bool associative() const {
    // Must also be left-associative, or update getBinaryOperatorRange()!
    switch (Kind) {
    case BO_Add:
    case BO_Mul:
    case BO_And:
    case BO_Or:
    case BO_Xor:
    case BO_LAnd:
    case BO_LOr:
      return true;
    default:
      return false;
    }
  }

  bool crossesMacroBoundary(const SourceManager &SM) {
    FileID F = SM.getFileID(ExprLoc);
    for (const SelectionTree::Node *Child : SelectedOperands)
      if (SM.getFileID(Child->ASTNode.get<Expr>()->getExprLoc()) != F)
        return true;
    return false;
  }
};

// If have an associative operator at the top level, then we must find
// the start point (rightmost in LHS) and end point (leftmost in RHS).
// We can only descend into subtrees where the operator matches.
//
// e.g. for a + [[b + c]] + d
//        +
//       / \
//  N-> +   d
//     / \
//    +   c <- End
//   / \
//  a   b <- Start
const SourceRange getBinaryOperatorRange(const SelectionTree::Node &N,
                                         const SourceManager &SM,
                                         const LangOptions &LangOpts) {
  // If N is not a suitable binary operator, bail out.
  ParsedBinaryOperator Op;
  if (!Op.parse(N.ignoreImplicit()) || !Op.associative() ||
      Op.crossesMacroBoundary(SM) || Op.SelectedOperands.size() != 2)
    return SourceRange();
  BinaryOperatorKind OuterOp = Op.Kind;

  // Because the tree we're interested in contains only one operator type, and
  // all eligible operators are left-associative, the shape of the tree is
  // very restricted: it's a linked list along the left edges.
  // This simplifies our implementation.
  const SelectionTree::Node *Start = Op.SelectedOperands.front(); // LHS
  const SelectionTree::Node *End = Op.SelectedOperands.back();    // RHS
  // End is already correct: it can't be an OuterOp (as it's left-associative).
  // Start needs to be pushed down int the subtree to the right spot.
  while (Op.parse(Start->ignoreImplicit()) && Op.Kind == OuterOp &&
         !Op.crossesMacroBoundary(SM)) {
    assert(!Op.SelectedOperands.empty() && "got only operator on one side!");
    if (Op.SelectedOperands.size() == 1) { // Only Op.RHS selected
      Start = Op.SelectedOperands.back();
      break;
    }
    // Op.LHS is (at least partially) selected, so descend into it.
    Start = Op.SelectedOperands.front();
  }

  return SourceRange(
      toHalfOpenFileRange(SM, LangOpts, Start->ASTNode.getSourceRange())
          ->getBegin(),
      toHalfOpenFileRange(SM, LangOpts, End->ASTNode.getSourceRange())
          ->getEnd());
}

SourceRange ExtractionContext::getExtractionChars() const {
  // Special case: we're extracting an associative binary subexpression.
  SourceRange BinaryOperatorRange =
      getBinaryOperatorRange(*ExprNode, SM, Ctx.getLangOpts());
  if (BinaryOperatorRange.isValid())
    return BinaryOperatorRange;

  // Usual case: we're extracting the whole expression.
  return *toHalfOpenFileRange(SM, Ctx.getLangOpts(), Expr->getSourceRange());
}

// Find the CallExpr whose callee is the (possibly wrapped) DeclRef
const SelectionTree::Node *getCallExpr(const SelectionTree::Node *DeclRef) {
  const SelectionTree::Node &MaybeCallee = DeclRef->outerImplicit();
  const SelectionTree::Node *MaybeCall = MaybeCallee.Parent;
  if (!MaybeCall)
    return nullptr;
  const CallExpr *CE =
      llvm::dyn_cast_or_null<CallExpr>(MaybeCall->ASTNode.get<Expr>());
  if (!CE)
    return nullptr;
  if (CE->getCallee() != MaybeCallee.ASTNode.get<Expr>())
    return nullptr;
  return MaybeCall;
}

// Returns true if Inner (which is a direct child of Outer) is appearing as
// a statement rather than an expression whose value can be used.
bool childExprIsStmt(const Stmt *Outer, const Expr *Inner) {
  if (!Outer || !Inner)
    return false;
  // Blacklist the most common places where an expr can appear but be unused.
  if (llvm::isa<CompoundStmt>(Outer))
    return true;
  if (llvm::isa<SwitchCase>(Outer))
    return true;
  // Control flow statements use condition etc, but not the body.
  if (const auto* WS = llvm::dyn_cast<WhileStmt>(Outer))
    return Inner == WS->getBody();
  if (const auto* DS = llvm::dyn_cast<DoStmt>(Outer))
    return Inner == DS->getBody();
  if (const auto* FS = llvm::dyn_cast<ForStmt>(Outer))
    return Inner == FS->getBody();
  if (const auto* FS = llvm::dyn_cast<CXXForRangeStmt>(Outer))
    return Inner == FS->getBody();
  if (const auto* IS = llvm::dyn_cast<IfStmt>(Outer))
    return Inner == IS->getThen() || Inner == IS->getElse();
  // Assume all other cases may be actual expressions.
  // This includes the important case of subexpressions (where Outer is Expr).
  return false;
}

// check if N can and should be extracted (e.g. is not void-typed).
bool eligibleForExtraction(const SelectionTree::Node *N) {
  const Expr *E = N->ASTNode.get<Expr>();
  if (!E)
    return false;

  // Void expressions can't be assigned to variables.
  if (const Type *ExprType = E->getType().getTypePtrOrNull())
    if (ExprType->isVoidType())
      return false;

  // A plain reference to a name (e.g. variable) isn't  worth extracting.
  // FIXME: really? What if it's e.g. `std::is_same<void, void>::value`?
  if (llvm::isa<DeclRefExpr>(E) || llvm::isa<MemberExpr>(E))
    return false;

  // Extracting Exprs like a = 1 gives dummy = a = 1 which isn't useful.
  // FIXME: we could still hoist the assignment, and leave the variable there?
  ParsedBinaryOperator BinOp;
  if (BinOp.parse(*N) && BinaryOperator::isAssignmentOp(BinOp.Kind))
    return false;

  // We don't want to extract expressions used as statements, that would leave
  // a `dummy;` around that has no effect.
  // Unfortunately because the AST doesn't have ExprStmt, we have to check in
  // this roundabout way.
  const SelectionTree::Node &OuterImplicit = N->outerImplicit();
  if (!OuterImplicit.Parent ||
      childExprIsStmt(OuterImplicit.Parent->ASTNode.get<Stmt>(),
                      OuterImplicit.ASTNode.get<Expr>()))
    return false;

  // FIXME: ban extracting the RHS of an assignment: `a = [[foo()]]`
  return true;
}

// Find the Expr node that we're going to extract.
// We don't want to trigger for assignment expressions and variable/field
// DeclRefs. For function/member function, we want to extract the entire
// function call.
const SelectionTree::Node *computeExtractedExpr(const SelectionTree::Node *N) {
  if (!N)
    return nullptr;
  const SelectionTree::Node *TargetNode = N;
  const clang::Expr *SelectedExpr = N->ASTNode.get<clang::Expr>();
  if (!SelectedExpr)
    return nullptr;
  // For function and member function DeclRefs, extract the whole call.
  if (llvm::isa<DeclRefExpr>(SelectedExpr) ||
      llvm::isa<MemberExpr>(SelectedExpr))
    if (const SelectionTree::Node *Call = getCallExpr(N))
      TargetNode = Call;
  // Extracting Exprs like a = 1 gives dummy = a = 1 which isn't useful.
  if (const BinaryOperator *BinOpExpr =
          dyn_cast_or_null<BinaryOperator>(SelectedExpr)) {
    if (BinOpExpr->getOpcode() == BinaryOperatorKind::BO_Assign)
      return nullptr;
  }
  if (!TargetNode || !eligibleForExtraction(TargetNode))
    return nullptr;
  return TargetNode;
}

/// Extracts an expression to the variable dummy
/// Before:
/// int x = 5 + 4 * 3;
///         ^^^^^
/// After:
/// auto dummy = 5 + 4;
/// int x = dummy * 3;
class ExtractVariable : public Tweak {
public:
  const char *id() const override final;
  bool prepare(const Selection &Inputs) override;
  Expected<Effect> apply(const Selection &Inputs) override;
  std::string title() const override {
    return "Extract subexpression to variable";
  }
  Intent intent() const override { return Refactor; }

private:
  // the expression to extract
  std::unique_ptr<ExtractionContext> Target;
};
REGISTER_TWEAK(ExtractVariable)
bool ExtractVariable::prepare(const Selection &Inputs) {
  // we don't trigger on empty selections for now
  if (Inputs.SelectionBegin == Inputs.SelectionEnd)
    return false;
  const ASTContext &Ctx = Inputs.AST.getASTContext();
  const SourceManager &SM = Inputs.AST.getSourceManager();
  if (const SelectionTree::Node *N =
          computeExtractedExpr(Inputs.ASTSelection.commonAncestor()))
    Target = std::make_unique<ExtractionContext>(N, SM, Ctx);
  return Target && Target->isExtractable();
}

Expected<Tweak::Effect> ExtractVariable::apply(const Selection &Inputs) {
  tooling::Replacements Result;
  // FIXME: get variable name from user or suggest based on type
  std::string VarName = "dummy";
  SourceRange Range = Target->getExtractionChars();
  // insert new variable declaration
  if (auto Err = Result.add(Target->insertDeclaration(VarName, Range)))
    return std::move(Err);
  // replace expression with variable name
  if (auto Err = Result.add(Target->replaceWithVar(Range, VarName)))
    return std::move(Err);
  return Effect::mainFileEdit(Inputs.AST.getSourceManager(), std::move(Result));
}

} // namespace
} // namespace clangd
} // namespace clang