reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
//===--- NarrowingConversionsCheck.cpp - clang-tidy------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "NarrowingConversionsCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Type.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"

#include <cstdint>

using namespace clang::ast_matchers;

namespace clang {
namespace tidy {
namespace cppcoreguidelines {

NarrowingConversionsCheck::NarrowingConversionsCheck(StringRef Name,
                                                     ClangTidyContext *Context)
    : ClangTidyCheck(Name, Context),
      WarnOnFloatingPointNarrowingConversion(
          Options.get("WarnOnFloatingPointNarrowingConversion", 1)),
      PedanticMode(Options.get("PedanticMode", 0)) {}

void NarrowingConversionsCheck::registerMatchers(MatchFinder *Finder) {
  // ceil() and floor() are guaranteed to return integers, even though the type
  // is not integral.
  const auto IsCeilFloorCallExpr = expr(callExpr(callee(functionDecl(
      hasAnyName("::ceil", "::std::ceil", "::floor", "::std::floor")))));

  // Casts:
  //   i = 0.5;
  //   void f(int); f(0.5);
  Finder->addMatcher(
      implicitCastExpr(hasImplicitDestinationType(builtinType()),
                       hasSourceExpression(hasType(builtinType())),
                       unless(hasSourceExpression(IsCeilFloorCallExpr)),
                       unless(hasParent(castExpr())),
                       unless(isInTemplateInstantiation()))
          .bind("cast"),
      this);

  // Binary operators:
  //   i += 0.5;
  Finder->addMatcher(binaryOperator(isAssignmentOperator(),
                                    hasLHS(expr(hasType(builtinType()))),
                                    hasRHS(expr(hasType(builtinType()))),
                                    unless(hasRHS(IsCeilFloorCallExpr)),
                                    unless(isInTemplateInstantiation()),
                                    // The `=` case generates an implicit cast
                                    // which is covered by the previous matcher.
                                    unless(hasOperatorName("=")))
                         .bind("binary_op"),
                     this);
}

static const BuiltinType *getBuiltinType(const Expr &E) {
  return E.getType().getCanonicalType().getTypePtr()->getAs<BuiltinType>();
}

static QualType getUnqualifiedType(const Expr &E) {
  return E.getType().getUnqualifiedType();
}

static APValue getConstantExprValue(const ASTContext &Ctx, const Expr &E) {
  llvm::APSInt IntegerConstant;
  if (E.isIntegerConstantExpr(IntegerConstant, Ctx))
    return APValue(IntegerConstant);
  APValue Constant;
  if (Ctx.getLangOpts().CPlusPlus && E.isCXX11ConstantExpr(Ctx, &Constant))
    return Constant;
  return {};
}

static bool getIntegerConstantExprValue(const ASTContext &Context,
                                        const Expr &E, llvm::APSInt &Value) {
  APValue Constant = getConstantExprValue(Context, E);
  if (!Constant.isInt())
    return false;
  Value = Constant.getInt();
  return true;
}

static bool getFloatingConstantExprValue(const ASTContext &Context,
                                         const Expr &E, llvm::APFloat &Value) {
  APValue Constant = getConstantExprValue(Context, E);
  if (!Constant.isFloat())
    return false;
  Value = Constant.getFloat();
  return true;
}

namespace {

struct IntegerRange {
  bool Contains(const IntegerRange &From) const {
    return llvm::APSInt::compareValues(Lower, From.Lower) <= 0 &&
           llvm::APSInt::compareValues(Upper, From.Upper) >= 0;
  }

  bool Contains(const llvm::APSInt &Value) const {
    return llvm::APSInt::compareValues(Lower, Value) <= 0 &&
           llvm::APSInt::compareValues(Upper, Value) >= 0;
  }

  llvm::APSInt Lower;
  llvm::APSInt Upper;
};

} // namespace

static IntegerRange createFromType(const ASTContext &Context,
                                   const BuiltinType &T) {
  if (T.isFloatingPoint()) {
    unsigned PrecisionBits = llvm::APFloatBase::semanticsPrecision(
        Context.getFloatTypeSemantics(T.desugar()));
    // Contrary to two's complement integer, floating point values are
    // symmetric and have the same number of positive and negative values.
    // The range of valid integers for a floating point value is:
    // [-2^PrecisionBits, 2^PrecisionBits]

    // Values are created with PrecisionBits plus two bits:
    // - One to express the missing negative value of 2's complement
    //   representation.
    // - One for the sign.
    llvm::APSInt UpperValue(PrecisionBits + 2, /*isUnsigned*/ false);
    UpperValue.setBit(PrecisionBits);
    llvm::APSInt LowerValue(PrecisionBits + 2, /*isUnsigned*/ false);
    LowerValue.setBit(PrecisionBits);
    LowerValue.setSignBit();
    return {LowerValue, UpperValue};
  }
  assert(T.isInteger() && "Unexpected builtin type");
  uint64_t TypeSize = Context.getTypeSize(&T);
  bool IsUnsignedInteger = T.isUnsignedInteger();
  return {llvm::APSInt::getMinValue(TypeSize, IsUnsignedInteger),
          llvm::APSInt::getMaxValue(TypeSize, IsUnsignedInteger)};
}

static bool isWideEnoughToHold(const ASTContext &Context,
                               const BuiltinType &FromType,
                               const BuiltinType &ToType) {
  IntegerRange FromIntegerRange = createFromType(Context, FromType);
  IntegerRange ToIntegerRange = createFromType(Context, ToType);
  return ToIntegerRange.Contains(FromIntegerRange);
}

static bool isWideEnoughToHold(const ASTContext &Context,
                               const llvm::APSInt &IntegerConstant,
                               const BuiltinType &ToType) {
  IntegerRange ToIntegerRange = createFromType(Context, ToType);
  return ToIntegerRange.Contains(IntegerConstant);
}

static llvm::SmallString<64> getValueAsString(const llvm::APSInt &Value,
                                              uint64_t HexBits) {
  llvm::SmallString<64> Str;
  Value.toString(Str, 10);
  if (HexBits > 0) {
    Str.append(" (0x");
    llvm::SmallString<32> HexValue;
    Value.toStringUnsigned(HexValue, 16);
    for (size_t I = HexValue.size(); I < (HexBits / 4); ++I)
      Str.append("0");
    Str.append(HexValue);
    Str.append(")");
  }
  return Str;
}

void NarrowingConversionsCheck::diagNarrowType(SourceLocation SourceLoc,
                                               const Expr &Lhs,
                                               const Expr &Rhs) {
  diag(SourceLoc, "narrowing conversion from %0 to %1")
      << getUnqualifiedType(Rhs) << getUnqualifiedType(Lhs);
}

void NarrowingConversionsCheck::diagNarrowTypeToSignedInt(
    SourceLocation SourceLoc, const Expr &Lhs, const Expr &Rhs) {
  diag(SourceLoc, "narrowing conversion from %0 to signed type %1 is "
                  "implementation-defined")
      << getUnqualifiedType(Rhs) << getUnqualifiedType(Lhs);
}

void NarrowingConversionsCheck::diagNarrowIntegerConstant(
    SourceLocation SourceLoc, const Expr &Lhs, const Expr &Rhs,
    const llvm::APSInt &Value) {
  diag(SourceLoc,
       "narrowing conversion from constant value %0 of type %1 to %2")
      << getValueAsString(Value, /*NoHex*/ 0) << getUnqualifiedType(Rhs)
      << getUnqualifiedType(Lhs);
}

void NarrowingConversionsCheck::diagNarrowIntegerConstantToSignedInt(
    SourceLocation SourceLoc, const Expr &Lhs, const Expr &Rhs,
    const llvm::APSInt &Value, const uint64_t HexBits) {
  diag(SourceLoc, "narrowing conversion from constant value %0 of type %1 "
                  "to signed type %2 is implementation-defined")
      << getValueAsString(Value, HexBits) << getUnqualifiedType(Rhs)
      << getUnqualifiedType(Lhs);
}

void NarrowingConversionsCheck::diagNarrowConstant(SourceLocation SourceLoc,
                                                   const Expr &Lhs,
                                                   const Expr &Rhs) {
  diag(SourceLoc, "narrowing conversion from constant %0 to %1")
      << getUnqualifiedType(Rhs) << getUnqualifiedType(Lhs);
}

void NarrowingConversionsCheck::diagConstantCast(SourceLocation SourceLoc,
                                                 const Expr &Lhs,
                                                 const Expr &Rhs) {
  diag(SourceLoc, "constant value should be of type of type %0 instead of %1")
      << getUnqualifiedType(Lhs) << getUnqualifiedType(Rhs);
}

void NarrowingConversionsCheck::diagNarrowTypeOrConstant(
    const ASTContext &Context, SourceLocation SourceLoc, const Expr &Lhs,
    const Expr &Rhs) {
  APValue Constant = getConstantExprValue(Context, Rhs);
  if (Constant.isInt())
    return diagNarrowIntegerConstant(SourceLoc, Lhs, Rhs, Constant.getInt());
  if (Constant.isFloat())
    return diagNarrowConstant(SourceLoc, Lhs, Rhs);
  return diagNarrowType(SourceLoc, Lhs, Rhs);
}

void NarrowingConversionsCheck::handleIntegralCast(const ASTContext &Context,
                                                   SourceLocation SourceLoc,
                                                   const Expr &Lhs,
                                                   const Expr &Rhs) {
  const BuiltinType *ToType = getBuiltinType(Lhs);
  // From [conv.integral]p7.3.8:
  // Conversions to unsigned integer is well defined so no warning is issued.
  // "The resulting value is the smallest unsigned value equal to the source
  // value modulo 2^n where n is the number of bits used to represent the
  // destination type."
  if (ToType->isUnsignedInteger())
    return;
  const BuiltinType *FromType = getBuiltinType(Rhs);
  llvm::APSInt IntegerConstant;
  if (getIntegerConstantExprValue(Context, Rhs, IntegerConstant)) {
    if (!isWideEnoughToHold(Context, IntegerConstant, *ToType))
      diagNarrowIntegerConstantToSignedInt(SourceLoc, Lhs, Rhs, IntegerConstant,
                                           Context.getTypeSize(FromType));
    return;
  }
  if (!isWideEnoughToHold(Context, *FromType, *ToType))
    diagNarrowTypeToSignedInt(SourceLoc, Lhs, Rhs);
}

void NarrowingConversionsCheck::handleIntegralToBoolean(
    const ASTContext &Context, SourceLocation SourceLoc, const Expr &Lhs,
    const Expr &Rhs) {
  // Conversion from Integral to Bool value is well defined.

  // We keep this function (even if it is empty) to make sure that
  // handleImplicitCast and handleBinaryOperator are symmetric in their behavior
  // and handle the same cases.
}

void NarrowingConversionsCheck::handleIntegralToFloating(
    const ASTContext &Context, SourceLocation SourceLoc, const Expr &Lhs,
    const Expr &Rhs) {
  const BuiltinType *ToType = getBuiltinType(Lhs);
  llvm::APSInt IntegerConstant;
  if (getIntegerConstantExprValue(Context, Rhs, IntegerConstant)) {
    if (!isWideEnoughToHold(Context, IntegerConstant, *ToType))
      diagNarrowIntegerConstant(SourceLoc, Lhs, Rhs, IntegerConstant);
    return;
  }
  const BuiltinType *FromType = getBuiltinType(Rhs);
  if (!isWideEnoughToHold(Context, *FromType, *ToType))
    diagNarrowType(SourceLoc, Lhs, Rhs);
}

void NarrowingConversionsCheck::handleFloatingToIntegral(
    const ASTContext &Context, SourceLocation SourceLoc, const Expr &Lhs,
    const Expr &Rhs) {
  llvm::APFloat FloatConstant(0.0);

  // We always warn when Rhs is non-constexpr.
  if (!getFloatingConstantExprValue(Context, Rhs, FloatConstant))
    return diagNarrowType(SourceLoc, Lhs, Rhs);

  QualType DestType = Lhs.getType();
  unsigned DestWidth = Context.getIntWidth(DestType);
  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
  llvm::APSInt Result = llvm::APSInt(DestWidth, !DestSigned);
  bool IsExact = false;
  bool Overflows = FloatConstant.convertToInteger(
                       Result, llvm::APFloat::rmTowardZero, &IsExact) &
                   llvm::APFloat::opInvalidOp;
  // We warn iff the constant floating point value is not exactly representable.
  if (Overflows || !IsExact)
    return diagNarrowConstant(SourceLoc, Lhs, Rhs);

  if (PedanticMode)
    return diagConstantCast(SourceLoc, Lhs, Rhs);
}

void NarrowingConversionsCheck::handleFloatingToBoolean(
    const ASTContext &Context, SourceLocation SourceLoc, const Expr &Lhs,
    const Expr &Rhs) {
  return diagNarrowTypeOrConstant(Context, SourceLoc, Lhs, Rhs);
}

void NarrowingConversionsCheck::handleBooleanToSignedIntegral(
    const ASTContext &Context, SourceLocation SourceLoc, const Expr &Lhs,
    const Expr &Rhs) {
  // Conversion from Bool to SignedIntegral value is well defined.

  // We keep this function (even if it is empty) to make sure that
  // handleImplicitCast and handleBinaryOperator are symmetric in their behavior
  // and handle the same cases.
}

void NarrowingConversionsCheck::handleFloatingCast(const ASTContext &Context,
                                                   SourceLocation SourceLoc,
                                                   const Expr &Lhs,
                                                   const Expr &Rhs) {
  if (WarnOnFloatingPointNarrowingConversion) {
    const BuiltinType *ToType = getBuiltinType(Lhs);
    APValue Constant = getConstantExprValue(Context, Rhs);
    if (Constant.isFloat()) {
      // From [dcl.init.list]p7.2:
      // Floating point constant narrowing only takes place when the value is
      // not within destination range. We convert the value to the destination
      // type and check if the resulting value is infinity.
      llvm::APFloat Tmp = Constant.getFloat();
      bool UnusedLosesInfo;
      Tmp.convert(Context.getFloatTypeSemantics(ToType->desugar()),
                  llvm::APFloatBase::rmNearestTiesToEven, &UnusedLosesInfo);
      if (Tmp.isInfinity())
        diagNarrowConstant(SourceLoc, Lhs, Rhs);
      return;
    }
    const BuiltinType *FromType = getBuiltinType(Rhs);
    if (ToType->getKind() < FromType->getKind())
      diagNarrowType(SourceLoc, Lhs, Rhs);
  }
}

void NarrowingConversionsCheck::handleBinaryOperator(const ASTContext &Context,
                                                     SourceLocation SourceLoc,
                                                     const Expr &Lhs,
                                                     const Expr &Rhs) {
  assert(!Lhs.isInstantiationDependent() && !Rhs.isInstantiationDependent() &&
         "Dependent types must be check before calling this function");
  const BuiltinType *LhsType = getBuiltinType(Lhs);
  const BuiltinType *RhsType = getBuiltinType(Rhs);
  if (RhsType == nullptr || LhsType == nullptr)
    return;
  if (RhsType->getKind() == BuiltinType::Bool && LhsType->isSignedInteger())
    return handleBooleanToSignedIntegral(Context, SourceLoc, Lhs, Rhs);
  if (RhsType->isInteger() && LhsType->getKind() == BuiltinType::Bool)
    return handleIntegralToBoolean(Context, SourceLoc, Lhs, Rhs);
  if (RhsType->isInteger() && LhsType->isFloatingPoint())
    return handleIntegralToFloating(Context, SourceLoc, Lhs, Rhs);
  if (RhsType->isInteger() && LhsType->isInteger())
    return handleIntegralCast(Context, SourceLoc, Lhs, Rhs);
  if (RhsType->isFloatingPoint() && LhsType->getKind() == BuiltinType::Bool)
    return handleFloatingToBoolean(Context, SourceLoc, Lhs, Rhs);
  if (RhsType->isFloatingPoint() && LhsType->isInteger())
    return handleFloatingToIntegral(Context, SourceLoc, Lhs, Rhs);
  if (RhsType->isFloatingPoint() && LhsType->isFloatingPoint())
    return handleFloatingCast(Context, SourceLoc, Lhs, Rhs);
}

bool NarrowingConversionsCheck::handleConditionalOperator(
    const ASTContext &Context, const Expr &Lhs, const Expr &Rhs) {
  if (const auto *CO = llvm::dyn_cast<ConditionalOperator>(&Rhs)) {
    // We have an expression like so: `output = cond ? lhs : rhs`
    // From the point of view of narrowing conversion we treat it as two
    // expressions `output = lhs` and `output = rhs`.
    handleBinaryOperator(Context, CO->getLHS()->getExprLoc(), Lhs,
                         *CO->getLHS());
    handleBinaryOperator(Context, CO->getRHS()->getExprLoc(), Lhs,
                         *CO->getRHS());
    return true;
  }
  return false;
}

void NarrowingConversionsCheck::handleImplicitCast(
    const ASTContext &Context, const ImplicitCastExpr &Cast) {
  if (Cast.getExprLoc().isMacroID())
    return;
  const Expr &Lhs = Cast;
  const Expr &Rhs = *Cast.getSubExpr();
  if (Lhs.isInstantiationDependent() || Rhs.isInstantiationDependent())
    return;
  if (handleConditionalOperator(Context, Lhs, Rhs))
    return;
  SourceLocation SourceLoc = Lhs.getExprLoc();
  switch (Cast.getCastKind()) {
  case CK_BooleanToSignedIntegral:
    return handleBooleanToSignedIntegral(Context, SourceLoc, Lhs, Rhs);
  case CK_IntegralToBoolean:
    return handleIntegralToBoolean(Context, SourceLoc, Lhs, Rhs);
  case CK_IntegralToFloating:
    return handleIntegralToFloating(Context, SourceLoc, Lhs, Rhs);
  case CK_IntegralCast:
    return handleIntegralCast(Context, SourceLoc, Lhs, Rhs);
  case CK_FloatingToBoolean:
    return handleFloatingToBoolean(Context, SourceLoc, Lhs, Rhs);
  case CK_FloatingToIntegral:
    return handleFloatingToIntegral(Context, SourceLoc, Lhs, Rhs);
  case CK_FloatingCast:
    return handleFloatingCast(Context, SourceLoc, Lhs, Rhs);
  default:
    break;
  }
}

void NarrowingConversionsCheck::handleBinaryOperator(const ASTContext &Context,
                                                     const BinaryOperator &Op) {
  if (Op.getBeginLoc().isMacroID())
    return;
  const Expr &Lhs = *Op.getLHS();
  const Expr &Rhs = *Op.getRHS();
  if (Lhs.isInstantiationDependent() || Rhs.isInstantiationDependent())
    return;
  if (handleConditionalOperator(Context, Lhs, Rhs))
    return;
  handleBinaryOperator(Context, Rhs.getBeginLoc(), Lhs, Rhs);
}

void NarrowingConversionsCheck::check(const MatchFinder::MatchResult &Result) {
  if (const auto *Op = Result.Nodes.getNodeAs<BinaryOperator>("binary_op"))
    return handleBinaryOperator(*Result.Context, *Op);
  if (const auto *Cast = Result.Nodes.getNodeAs<ImplicitCastExpr>("cast"))
    return handleImplicitCast(*Result.Context, *Cast);
  llvm_unreachable("must be binary operator or cast expression");
}

} // namespace cppcoreguidelines
} // namespace tidy
} // namespace clang