reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
// RUN: %clang_cc1 -std=c++11 -verify %s

namespace UseBeforeDefinition {
  struct A {
    template<typename T> static constexpr T get() { return T(); }
    // ok, not a constant expression.
    int n = get<int>();
  };

  // ok, constant expression.
  constexpr int j = A::get<int>();

  template<typename T> constexpr int consume(T);
  // ok, not a constant expression.
  const int k = consume(0); // expected-note {{here}}

  template<typename T> constexpr int consume(T) { return 0; }
  // ok, constant expression.
  constexpr int l = consume(0);

  constexpr int m = k; // expected-error {{constant expression}} expected-note {{initializer of 'k'}}
}

namespace IntegralConst {
  template<typename T> constexpr T f(T n) { return n; }
  enum E {
    v = f(0), w = f(1) // ok
  };
  static_assert(w == 1, "");

  char arr[f('x')]; // ok
  static_assert(sizeof(arr) == 'x', "");
}

namespace ConvertedConst {
  template<typename T> constexpr T f(T n) { return n; }
  int f() {
    switch (f()) {
      case f(4): return 0;
    }
    return 1;
  }
}

namespace OverloadResolution {
  template<typename T> constexpr T f(T t) { return t; }

  template<int n> struct S { };

  template<typename T> auto g(T t) -> S<f(sizeof(T))> &;
  char &f(...);

  template<typename T> auto h(T t[f(sizeof(T))]) -> decltype(&*t) {
    return t;
  }

  S<4> &k = g(0);
  int *p, *q = h(p);
}

namespace DataMember {
  template<typename T> struct S { static const int k; };
  const int n = S<int>::k; // expected-note {{here}}
  template<typename T> const int S<T>::k = 0;
  constexpr int m = S<int>::k; // ok
  constexpr int o = n; // expected-error {{constant expression}} expected-note {{initializer of 'n'}}
}

namespace Reference {
  const int k = 5;
  template<typename T> struct S {
    static volatile int &r;
  };
  template<typename T> volatile int &S<T>::r = const_cast<volatile int&>(k);
  constexpr int n = const_cast<int&>(S<int>::r);
  static_assert(n == 5, "");
}

namespace Unevaluated {
  // We follow the current proposed resolution of core issue 1581: a constexpr
  // function template specialization requires a definition if:
  //  * it is odr-used, or would be odr-used except that it appears within the
  //    definition of a template, or
  //  * it is used within a braced-init-list, where it may be necessary for
  //    detecting narrowing conversions.
  //
  // We apply this both for instantiating constexpr function template
  // specializations and for implicitly defining defaulted constexpr special
  // member functions.
  //
  // FIXME: None of this is required by the C++ standard yet. The rules in this
  //        area are subject to change.
  namespace NotConstexpr {
    template<typename T> struct S {
      S() : n(0) {}
      S(const S&) : n(T::error) {}
      int n;
    };
    struct U : S<int> {};
    decltype(U(U())) u;
  }
  namespace Constexpr {
    template<typename T> struct S {
      constexpr S() : n(0) {}
      constexpr S(const S&) : n(T::error) {}
      int n;
    };
    struct U : S<int> {};
    decltype(U(U())) u;
  }
  namespace ConstexprList {
    template<int N> struct S {
      constexpr S() : n(0) {
        static_assert(N >= 0, "");
      }
      constexpr operator int() const { return 0; }
      int n;
    };
    struct U : S<0> {};
    // ok, trigger instantiation within a list
    decltype(char{U()}) t0;
    decltype(new char{S<1>()}) t1; // expected-warning {{side effects}}
    decltype((char){S<2>()}) t2;
    decltype(+(char[1]){{S<3>()}}) t3;
    // do not trigger instantiation outside a list
    decltype(char(S<-1>())) u1;
    decltype(new char(S<-2>())) u2; // expected-warning {{side effects}}
    decltype((char)(S<-3>())) u3;
  }

  namespace PR11851_Comment0 {
    template<int x> constexpr int f() { return x; }
    template<int i> void ovf(int (&x)[f<i>()]);
    void f() { int x[10]; ovf<10>(x); }
  }

  namespace PR11851_Comment1 {
    template<typename T>
    constexpr bool Integral() {
      return true;
    }
    template<typename T, bool Int = Integral<T>()>
    struct safe_make_unsigned {
      typedef T type;
    };
    template<typename T>
    using Make_unsigned = typename safe_make_unsigned<T>::type;
    template <typename T>
    struct get_distance_type {
      using type = int;
    };
    template<typename R>
    auto size(R) -> Make_unsigned<typename get_distance_type<R>::type>;
    auto check() -> decltype(size(0));
  }

  namespace PR11851_Comment6 {
    template<int> struct foo {};
    template<class> constexpr int bar() { return 0; }
    template<class T> foo<bar<T>()> foobar();
    auto foobar_ = foobar<int>();
  }

  namespace PR11851_Comment9 {
    struct S1 {
      constexpr S1() {}
      constexpr operator int() const { return 0; }
    };
    int k1 = sizeof(short{S1(S1())});

    struct S2 {
      constexpr S2() {}
      constexpr operator int() const { return 123456; }
    };
    int k2 = sizeof(short{S2(S2())}); // expected-error {{cannot be narrowed}} expected-note {{insert an explicit cast to silence this issue}}
  }

  namespace PR12288 {
    template <typename> constexpr bool foo() { return true; }
    template <bool> struct bar {};
    template <typename T> bar<foo<T>()> baz() { return bar<foo<T>()>(); }
    int main() { baz<int>(); }
  }

  namespace PR13423 {
    template<bool, typename> struct enable_if {};
    template<typename T> struct enable_if<true, T> { using type = T; };

    template<typename T> struct F {
      template<typename U>
      static constexpr bool f() { return sizeof(T) < U::size; }

      template<typename U>
      static typename enable_if<f<U>(), void>::type g() {} // expected-note {{requirement 'f<Unevaluated::PR13423::U>()' was not satisfied}}
    };

    struct U { static constexpr int size = 2; };

    void h() { F<char>::g<U>(); }
    void i() { F<int>::g<U>(); } // expected-error {{no matching function}}
  }

  namespace PR14203 {
    struct duration { constexpr duration() {} };

    template <typename>
    void sleep_for() {
      constexpr duration max = duration();
    }
  }

  // For variables, we instantiate when they are used in a context in which
  // evaluation could be required (odr-used, used in a template whose
  // instantiations would odr-use, or used in list initialization), if they
  // can be used as a constant (const integral or constexpr).
  namespace Variables {
    template<int N> struct A {
      static const int k;
      static int n;
    };
    template<const int *N> struct B {};
    template<int N> constexpr int A<N>::k = *(int[N]){N}; // expected-error 1+{{negative}}
    template<int N> int A<N>::n = *(int[N]){0};

    template <typename> void f() {
      (void)A<-1>::n; // ok
      (void)A<-1>::k; // expected-note {{instantiation of }}
      B<&A<-2>::n> b1; // ok
      B<&A<-2>::k> b2; // expected-note {{instantiation of }}
    };

    decltype(A<-3>::k) d1 = 0; // ok
    decltype(char{A<-4>::k}) d2 = 0; // expected-note {{instantiation of }} expected-error {{narrow}} expected-note {{cast}}
    decltype(char{A<1>::k}) d3 = 0; // ok
    decltype(char{A<1 + (unsigned char)-1>::k}) d4 = 0; // expected-error {{narrow}} expected-note {{cast}}
  }
}

namespace NoInstantiationWhenSelectingOverload {
  // Check that we don't instantiate conversion functions when we're checking
  // for the existence of an implicit conversion sequence, only when a function
  // is actually chosen by overload resolution.
  struct S {
    template<typename T> constexpr S(T) : n(T::error) {} // expected-error {{no members}}
    int n;
  };

  constexpr int f(S) { return 0; }
  constexpr int f(int) { return 0; }

  void g() { f(0); }
  void h() { (void)sizeof(char{f(0)}); }
  void i() { (void)sizeof(char{f("oops")}); } // expected-note {{instantiation of}}
}

namespace PR20090 {
  template <typename T> constexpr T fact(T n) {
    return n == 0 ? 1 : [=] { return n * fact(n - 1); }();
  }
  static_assert(fact(0) == 1, "");
}