reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
// RUN: %clang_cc1 -fsyntax-only -verify -std=gnu++11 %s
// RUN: %clang_cc1 -fsyntax-only -verify -Wno-c++11-extensions -Wno-local-type-template-args %s -std=gnu++98
// RUN: %clang_cc1 -fsyntax-only -verify -Wno-c++11-extensions -Wno-local-type-template-args -fmodules %s

namespace test1 {
  int x; // expected-note {{previous definition is here}}
  static int y;
  void f() {} // expected-note {{previous definition is here}}

  extern "C" {
    extern int x; // expected-error {{declaration of 'x' has a different language linkage}}
    extern int y; // OK, has internal linkage, so no language linkage.
    void f(); // expected-error {{declaration of 'f' has a different language linkage}}
  }
}

// This is OK. Both test2_f don't have language linkage since they have
// internal linkage.
extern "C" {
  static void test2_f() {
  }
  static void test2_f(int x) {
  }
}

namespace test3 {
  extern "C" {
    namespace {
      extern int x2;
      void f2();
    }
  }
  namespace {
    int x2;
    void f2() {}
  }
}

namespace test4 {
  void dummy() {
    void Bar();
    class A {
      friend void Bar();
    };
  }
}

namespace test5 {
  static void g();
  void f()
  {
    void g();
  }
}

// pr14898
namespace test6 {
  template <class _Rp>
  class __attribute__ ((__visibility__("default"))) shared_future;
  template <class _Rp>
  class future {
    template <class> friend class shared_future;
    shared_future<_Rp> share();
  };
  template <class _Rp> future<_Rp>
  get_future();
  template <class _Rp>
  struct shared_future<_Rp&> {
    shared_future(future<_Rp&>&& __f);
  };
  void f() {
    typedef int T;
    get_future<int>();
    typedef int& U;
    shared_future<int&> f1 = get_future<int&>();
  }
}

// This is OK. The variables have internal linkage and therefore no language
// linkage.
extern "C" {
  static int test7_x;
}
extern "C++" {
  extern int test7_x;
}
extern "C++" {
  static int test7_y;
}
extern "C" {
  extern int test7_y;
}
extern "C" { typedef int test7_F(); static test7_F test7_f; }
extern "C++" { extern test7_F test7_f; }

// FIXME: This should be invalid. The function has no language linkage, but
// the function type has, so this is redeclaring the function with a different
// type.
extern "C++" {
  static void test8_f();
}
extern "C" {
  extern void test8_f();
}
extern "C" {
  static void test8_g();
}
extern "C++" {
  extern void test8_g();
}

extern "C" {
  void __attribute__((overloadable)) test9_f(int c); // expected-note {{previous declaration is here}}
}
extern "C++" {
  void __attribute__((overloadable)) test9_f(int c); // expected-error {{declaration of 'test9_f' has a different language linkage}}
}

extern "C" {
  void __attribute__((overloadable)) test10_f(int);
  void __attribute__((overloadable)) test10_f(double);
}

extern "C" {
  void test11_f() {
    void  __attribute__((overloadable)) test11_g(int);
    void  __attribute__((overloadable)) test11_g(double);
  }
}

namespace test12 {
  const int n = 0;
  extern const int n;
  void f() {
    extern const int n;
  }
}

namespace test13 {
  static void a(void);
  extern void a();
  static void a(void) {}
}

namespace test14 {
  // Anonymous namespace implies internal linkage, so 'static' has no effect.
  namespace {
    void a(void);
    static void a(void) {}
  }
}

namespace test15 {
  const int a = 5; // expected-note {{previous definition is here}}
  static const int a; // expected-error {{redefinition of 'a'}}
}

namespace test16 {
  extern "C" {
    class Foo {
      int x;
      friend int bar(Foo *y);
    };
    int bar(Foo *y) {
      return y->x;
    }
  }
}

namespace test17 {
  namespace {
    struct I {
    };
  }
  template <typename T1, typename T2> void foo() {}
  template <typename T, T x> void bar() {} // expected-note {{candidate function}}
  inline void *g() {
    struct L {
    };
    // foo<L, I>'s linkage should be the merge of UniqueExternalLinkage (or
    // InternalLinkage in c++11) and VisibleNoLinkage. The correct answer is
    // NoLinkage in both cases. This means that using foo<L, I> as a template
    // argument should fail.
    return reinterpret_cast<void*>(bar<typeof(foo<L, I>), foo<L, I> >); // expected-error {{reinterpret_cast cannot resolve overloaded function 'bar' to type 'void *}}
  }
  void h() {
    g();
  }
}

namespace test18 {
  template <typename T> struct foo {
    template <T *P> static void f() {}
    static void *g() { return (void *)f<&x>; }
    static T x;
  };
  template <typename T> T foo<T>::x;
  inline void *f() {
    struct S {
    };
    return foo<S>::g();
  }
  void *h() { return f(); }
}

extern "C" void pr16247_foo(int);
static void pr16247_foo(double);
void pr16247_foo(int) {}
void pr16247_foo(double) {}

namespace PR16247 {
  extern "C" void pr16247_bar(int);
  static void pr16247_bar(double);
  void pr16247_bar(int) {}
  void pr16247_bar(double) {}
}
namespace PR18964 {
  unsigned &*foo; //expected-error{{'foo' declared as a pointer to a reference of type}}
  extern struct {} *foo; // don't assert
}

namespace typedef_name_for_linkage {
  template<typename T> struct Use {};

  struct A { A(); A(const A&); ~A(); };

  typedef struct {
    A a;
  } B;

  struct C {
    typedef struct {
      A a;
    } D;
  };

  typedef struct {
    void f() { static int n; struct Inner {};}
  } E;

  // FIXME: Ideally this would be accepted in all modes. In C++98, we trigger a
  // linkage calculation to drive the "internal linkage type as template
  // argument" warning.
  typedef struct {
    void f() { struct Inner {}; Use<Inner> ui; }
  } F;
#if __cplusplus < 201103L
  // expected-error@-2 {{unsupported: typedef changes linkage of anonymous type, but linkage was already computed}}
  // expected-note@-5 {{use a tag name here}}
#endif
}