reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
// RUN: %clang_cc1 -std=c++1z -verify %s -DERRORS -Wundefined-func-template
// RUN: %clang_cc1 -std=c++1z -verify %s -UERRORS -Wundefined-func-template

// This test is split into two because we only produce "undefined internal"
// warnings if we didn't produce any errors.
#if ERRORS

namespace std {
  using size_t = decltype(sizeof(0));
  template<typename T> struct initializer_list {
    const T *p;
    size_t n;
    initializer_list();
  };
  // FIXME: This should probably not be necessary.
  template<typename T> initializer_list(initializer_list<T>) -> initializer_list<T>;
}

template<typename T> constexpr bool has_type(...) { return false; }
template<typename T> constexpr bool has_type(T) { return true; }

std::initializer_list il = {1, 2, 3, 4, 5};

template<typename T> struct vector {
  template<typename Iter> vector(Iter, Iter);
  vector(std::initializer_list<T>);
};

template<typename T> vector(std::initializer_list<T>) -> vector<T>;
template<typename Iter> explicit vector(Iter, Iter) -> vector<typename Iter::value_type>;
template<typename T> explicit vector(std::size_t, T) -> vector<T>;

vector v1 = {1, 2, 3, 4};
static_assert(has_type<vector<int>>(v1));

struct iter { typedef char value_type; } it, end;
vector v2(it, end);
static_assert(has_type<vector<char>>(v2));

vector v3(5, 5);
static_assert(has_type<vector<int>>(v3));

vector v4 = {it, end};
static_assert(has_type<vector<iter>>(v4));

vector v5{it, end};
static_assert(has_type<vector<iter>>(v5));

template<typename ...T> struct tuple { tuple(T...); };
template<typename ...T> explicit tuple(T ...t) -> tuple<T...>; // expected-note {{declared}}
// FIXME: Remove
template<typename ...T> tuple(tuple<T...>) -> tuple<T...>;

const int n = 4;
tuple ta = tuple{1, 'a', "foo", n};
static_assert(has_type<tuple<int, char, const char*, int>>(ta));

tuple tb{ta};
static_assert(has_type<tuple<int, char, const char*, int>>(tb));

// FIXME: This should be tuple<tuple<...>>; when the above guide is removed.
tuple tc = {ta};
static_assert(has_type<tuple<int, char, const char*, int>>(tc));

tuple td = {1, 2, 3}; // expected-error {{selected an explicit deduction guide}}
static_assert(has_type<tuple<int, char, const char*, int>>(td));

// FIXME: This is a GCC extension for now; if CWG don't allow this, at least
// add a warning for it.
namespace new_expr {
  tuple<int> *p = new tuple{0};
  tuple<float, float> *q = new tuple(1.0f, 2.0f);
}

namespace ambiguity {
  template<typename T> struct A {};
  A(unsigned short) -> A<int>; // expected-note {{candidate}}
  A(short) -> A<int>; // expected-note {{candidate}}
  A a = 0; // expected-error {{ambiguous deduction for template arguments of 'A'}}

  template<typename T> struct B {};
  template<typename T> B(T(&)(int)) -> B<int>; // expected-note {{candidate function [with T = int]}}
  template<typename T> B(int(&)(T)) -> B<int>; // expected-note {{candidate function [with T = int]}}
  int f(int);
  B b = f; // expected-error {{ambiguous deduction for template arguments of 'B'}}
}

// FIXME: Revisit this once CWG decides if attributes, and [[deprecated]] in
// particular, should be permitted here.
namespace deprecated {
  template<typename T> struct A { A(int); };
  [[deprecated]] A(int) -> A<void>; // expected-note {{marked deprecated here}}
  A a = 0; // expected-warning {{'<deduction guide for A>' is deprecated}}
}

namespace dependent {
  template<template<typename...> typename A> decltype(auto) a = A{1, 2, 3};
  static_assert(has_type<vector<int>>(a<vector>));
  static_assert(has_type<tuple<int, int, int>>(a<tuple>));

  struct B {
    template<typename T> struct X { X(T); };
    X(int) -> X<int>;
    template<typename T> using Y = X<T>; // expected-note {{template}}
  };
  template<typename T> void f() {
    typename T::X tx = 0;
    typename T::Y ty = 0; // expected-error {{alias template 'Y' requires template arguments; argument deduction only allowed for class templates}}
  }
  template void f<B>(); // expected-note {{in instantiation of}}

  template<typename T> struct C { C(T); };
  template<typename T> C(T) -> C<T>;
  template<typename T> void g(T a) {
    C b = 0;
    C c = a;
    using U = decltype(b); // expected-note {{previous}}
    using U = decltype(c); // expected-error {{different types ('C<const char *>' vs 'C<int>')}}
  }
  void h() {
    g(0);
    g("foo"); // expected-note {{instantiation of}}
  }
}

namespace look_into_current_instantiation {
  template<typename U> struct Q {};
  template<typename T> struct A {
    using U = T;
    template<typename> using V = Q<A<T>::U>;
    template<typename W = int> A(V<W>);
  };
  A a = Q<float>(); // ok, can look through class-scope typedefs and alias
                    // templates, and members of the current instantiation
  A<float> &r = a;

  template<typename T> struct B { // expected-note {{could not match 'B<T>' against 'int'}}
    struct X {
      typedef T type;
    };
    B(typename X::type); // expected-note {{couldn't infer template argument 'T'}}
  };
  B b = 0; // expected-error {{no viable}}

  // We should have a substitution failure in the immediate context of
  // deduction when using the C(T, U) constructor (probably; core wording
  // unclear).
  template<typename T> struct C {
    using U = typename T::type;
    C(T, U);
  };

  struct R { R(int); typedef R type; };
  C(...) -> C<R>;

  C c = {1, 2};
}

namespace nondeducible {
  template<typename A, typename B> struct X {};

  template<typename A> // expected-note {{non-deducible template parameter 'A'}}
  X() -> X<A, int>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}

  template<typename A> // expected-note {{non-deducible template parameter 'A'}}
  X(typename X<A, int>::type) -> X<A, int>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}

  template<typename A = int,
           typename B> // expected-note {{non-deducible template parameter 'B'}}
  X(int) -> X<A, B>; // expected-error {{deduction guide template contains a template parameter that cannot be deduced}}

  template<typename A = int,
           typename ...B>
  X(float) -> X<A, B...>; // ok
}

namespace default_args_from_ctor {
  template <class A> struct S { S(A = 0) {} };
  S s(0);

  template <class A> struct T { template<typename B> T(A = 0, B = 0) {} };
  T t(0, 0);
}

namespace transform_params {
  template<typename T, T N, template<T (*v)[N]> typename U, T (*X)[N]>
  struct A {
    template<typename V, V M, V (*Y)[M], template<V (*v)[M]> typename W>
    A(U<X>, W<Y>);

    static constexpr T v = N;
  };

  int n[12];
  template<int (*)[12]> struct Q {};
  Q<&n> qn;
  A a(qn, qn);
  static_assert(a.v == 12);

  template<typename ...T> struct B {
    template<T ...V> B(const T (&...p)[V]) {
      constexpr int Vs[] = {V...};
      static_assert(Vs[0] == 3 && Vs[1] == 4 && Vs[2] == 4);
    }
    static constexpr int (*p)(T...) = (int(*)(int, char, char))nullptr;
  };
  B b({1, 2, 3}, "foo", {'x', 'y', 'z', 'w'}); // ok

  template<typename ...T> struct C {
    template<T ...V, template<T...> typename X>
      C(X<V...>);
  };
  template<int...> struct Y {};
  C c(Y<0, 1, 2>{});

  template<typename ...T> struct D {
    template<T ...V> D(Y<V...>);
  };
  D d(Y<0, 1, 2>{});
}

namespace variadic {
  int arr3[3], arr4[4];

  // PR32673
  template<typename T> struct A {
    template<typename ...U> A(T, U...);
  };
  A a(1, 2, 3);

  template<typename T> struct B {
    template<int ...N> B(T, int (&...r)[N]);
  };
  B b(1, arr3, arr4);

  template<typename T> struct C {
    template<template<typename> typename ...U> C(T, U<int>...);
  };
  C c(1, a, b);

  template<typename ...U> struct X {
    template<typename T> X(T, U...);
  };
  X x(1, 2, 3);

  template<int ...N> struct Y {
    template<typename T> Y(T, int (&...r)[N]);
  };
  Y y(1, arr3, arr4);

  template<template<typename> typename ...U> struct Z {
    template<typename T> Z(T, U<int>...);
  };
  Z z(1, a, b);
}

namespace tuple_tests {
  // The converting n-ary constructor appears viable, deducing T as an empty
  // pack (until we check its SFINAE constraints).
  namespace libcxx_1 {
    template<class ...T> struct tuple {
      template<class ...Args> struct X { static const bool value = false; };
      template<class ...U, bool Y = X<U...>::value> tuple(U &&...u);
    };
    tuple a = {1, 2, 3};
  }

  // Don't get caught by surprise when X<...> doesn't even exist in the
  // selected specialization!
  namespace libcxx_2 {
    template<class ...T> struct tuple {
      template<class ...Args> struct X { static const bool value = false; };
      // Substitution into X<U...>::value succeeds but produces the
      // value-dependent expression
      //   tuple<T...>::X<>::value
      // FIXME: Is that the right behavior?
      template<class ...U, bool Y = X<U...>::value> tuple(U &&...u);
    };
    template <> class tuple<> {};
    tuple a = {1, 2, 3}; // expected-error {{excess elements in struct initializer}}
  }

  namespace libcxx_3 {
    template<typename ...T> struct scoped_lock {
      scoped_lock(T...);
    };
    template<> struct scoped_lock<> {};
    scoped_lock l = {};
  }
}

namespace dependent {
  template<typename T> struct X {
    X(T);
  };
  template<typename T> int Var(T t) {
    X x(t);
    return X(x) + 1; // expected-error {{invalid operands}}
  }
  template<typename T> int Cast(T t) {
    return X(X(t)) + 1; // expected-error {{invalid operands}}
  }
  template<typename T> int New(T t) {
    return X(new X(t)) + 1; // expected-error {{invalid operands}}
  };
  template int Var(float); // expected-note {{instantiation of}}
  template int Cast(float); // expected-note {{instantiation of}}
  template int New(float); // expected-note {{instantiation of}}
  template<typename T> int operator+(X<T>, int);
  template int Var(int);
  template int Cast(int);
  template int New(int);

  template<template<typename> typename Y> void test() {
    Y(0);
    new Y(0);
    Y y(0);
  }
  template void test<X>();
}

namespace injected_class_name {
  template<typename T = void> struct A {
    A();
    template<typename U> A(A<U>);
  };
  A<int> a;
  A b = a;
  using T = decltype(a);
  using T = decltype(b);
}

namespace member_guides {
  // PR34520
  template<class>
  struct Foo {
    template <class T> struct Bar {
      Bar(...) {}
    };
    Bar(int) -> Bar<int>;
  };
  Foo<int>::Bar b = 0;

  struct A {
    template<typename T> struct Public; // expected-note {{declared public}}
    Public(float) -> Public<float>;
  protected: // expected-note {{declared protected by intervening access specifier}}
    template<typename T> struct Protected; // expected-note 2{{declared protected}}
    Protected(float) -> Protected<float>;
    Public(int) -> Public<int>; // expected-error {{different access}}
  private: // expected-note {{declared private by intervening access specifier}}
    template<typename T> struct Private; // expected-note {{declared private}}
    Protected(int) -> Protected<int>; // expected-error {{different access}}
  public: // expected-note 2{{declared public by intervening access specifier}}
    template<typename T> Public(T) -> Public<T>;
    template<typename T> Protected(T) -> Protected<T>; // expected-error {{different access}}
    template<typename T> Private(T) -> Private<T>; // expected-error {{different access}}
  };
}

namespace rdar41903969 {
template <class T> struct A {};
template <class T> struct B;
template <class T> struct C {
  C(A<T>&);
  C(B<T>&);
};

void foo(A<int> &a, B<int> &b) {
  (void)C{b};
  (void)C{a};
}

template<typename T> struct X {
  X(std::initializer_list<T>) = delete;
  X(const X&);
};

template <class T> struct D : X<T> {};

void bar(D<int>& d) {
  (void)X{d};
}
}

namespace rdar41330135 {
template <int> struct A {};
template <class T>
struct S {
  template <class U>
  S(T a, U t, A<sizeof(t)>);
};
template <class T> struct D {
  D(T t, A<sizeof(t)>);
};
int f() {
  S s(0, 0, A<sizeof(int)>());
  D d(0, A<sizeof(int)>());
}

namespace test_dupls {
template<unsigned long> struct X {};
template<typename T> struct A {
  A(T t, X<sizeof(t)>);
};
A a(0, {});
template<typename U> struct B {
  B(U u, X<sizeof(u)>);
};
B b(0, {});
}

}

#pragma clang diagnostic push
#pragma clang diagnostic warning "-Wctad-maybe-unsupported"
namespace test_implicit_ctad_warning {

template <class T>
struct Tag {};

template <class T>
struct NoExplicit { // expected-note {{add a deduction guide to suppress this warning}}
  NoExplicit(T) {}
  NoExplicit(T, int) {}
};

// expected-warning@+1 {{'NoExplicit' may not intend to support class template argument deduction}}
NoExplicit ne(42);

template <class U>
struct HasExplicit {
  HasExplicit(U) {}
  HasExplicit(U, int) {}
};
template <class U> HasExplicit(U, int) -> HasExplicit<Tag<U>>;

HasExplicit he(42);

// Motivating examples from (taken from Stephan Lavavej's 2018 Cppcon talk)
template <class T, class U>
struct AmateurPair { // expected-note {{add a deduction guide to suppress this warning}}
  T first;
  U second;
  explicit AmateurPair(const T &t, const U &u) {}
};
// expected-warning@+1 {{'AmateurPair' may not intend to support class template argument deduction}}
AmateurPair p1(42, "hello world"); // deduces to Pair<int, char[12]>

template <class T, class U>
struct AmateurPair2 { // expected-note {{add a deduction guide to suppress this warning}}
  T first;
  U second;
  explicit AmateurPair2(T t, U u) {}
};
// expected-warning@+1 {{'AmateurPair2' may not intend to support class template argument deduction}}
AmateurPair2 p2(42, "hello world"); // deduces to Pair2<int, const char*>

template <class T, class U>
struct ProPair {
  T first; U second;
    explicit ProPair(T const& t, U  const& u)  {}
};
template<class T1, class T2>
ProPair(T1, T2) -> ProPair<T1, T2>;
ProPair p3(42, "hello world"); // deduces to ProPair<int, const char*>
static_assert(__is_same(decltype(p3), ProPair<int, const char*>));

// Test that user-defined explicit guides suppress the warning even if they
// aren't used as candidates.
template <class T>
struct TestExplicitCtor {
  TestExplicitCtor(T) {}
};
template <class T>
explicit TestExplicitCtor(TestExplicitCtor<T> const&) -> TestExplicitCtor<void>;
TestExplicitCtor<int> ce1{42};
TestExplicitCtor ce2 = ce1;
static_assert(__is_same(decltype(ce2), TestExplicitCtor<int>), "");

struct allow_ctad_t {
  allow_ctad_t() = delete;
};

template <class T>
struct TestSuppression {
  TestSuppression(T) {}
};
TestSuppression(allow_ctad_t)->TestSuppression<void>;
TestSuppression ta("abc");
static_assert(__is_same(decltype(ta), TestSuppression<const char *>), "");
}
#pragma clang diagnostic pop

namespace PR41549 {

template <class H, class P> struct umm;

template <class H = int, class P = int>
struct umm {
  umm(H h = 0, P p = 0);
};

template <class H, class P> struct umm;

umm m(1);

}

#else

// expected-no-diagnostics
namespace undefined_warnings {
  // Make sure we don't get an "undefined but used internal symbol" warning for the deduction guide here.
  namespace {
    template <typename T>
    struct TemplDObj {
      explicit TemplDObj(T func) noexcept {}
    };
    auto test1 = TemplDObj(0);

    TemplDObj(float) -> TemplDObj<double>;
    auto test2 = TemplDObj(.0f);
  }
}
#endif