reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
// RUN: %clang_cc1 -Wno-unused-value -triple i686-linux-gnu -emit-llvm -o - %s | FileCheck %s
// rdar: //8540501
extern "C" int printf(...);
extern "C" void abort();

struct A
{
  int i;
  A (int j) : i(j) {printf("this = %p A(%d)\n", this, j);}
  A (const A &j) : i(j.i) {printf("this = %p const A&(%d)\n", this, i);}
  A& operator= (const A &j) { i = j.i; abort(); return *this; }
  ~A() { printf("this = %p ~A(%d)\n", this, i); }
};

struct B
{
  int i;
  B (const A& a) { i = a.i; }
  B() {printf("this = %p B()\n", this);}
  B (const B &j) : i(j.i) {printf("this = %p const B&(%d)\n", this, i);}
  ~B() { printf("this = %p ~B(%d)\n", this, i); }
};

A foo(int j)
{
  return ({ j ? A(1) : A(0); });
}


void foo2()
{
  A b = ({ A a(1); A a1(2); A a2(3); a1; a2; a; });
  if (b.i != 1)
    abort(); 
  A c = ({ A a(1); A a1(2); A a2(3); a1; a2; a; A a3(4); a2; a3; });
  if (c.i != 4)
    abort(); 
}

void foo3()
{
  const A &b = ({ A a(1); a; });
  if (b.i != 1)
    abort();
}

void foo4()
{
// CHECK: call {{.*}} @_ZN1AC1Ei
// CHECK: call {{.*}} @_ZN1AC1ERKS_
// CHECK: call {{.*}} @_ZN1AD1Ev
// CHECK: call {{.*}} @_ZN1BC1ERK1A
// CHECK: call {{.*}} @_ZN1AD1Ev
  const B &b = ({ A a(1); a; });
  if (b.i != 1)
    abort();
}

int main()
{
  foo2();
  foo3();
  foo4();
  return foo(1).i-1;
}

// rdar: // 8600553
int a[128];
int* foo5() {
// CHECK-NOT: memcpy
  // Check that array-to-pointer conversion occurs in a
  // statement-expression.
  return (({ a; }));
}

// <rdar://problem/14074868>
// Make sure this doesn't crash.
int foo5(bool b) {
  int y = 0;
  y = ({ A a(1); if (b) goto G; a.i; });
  G: return y;
}

// When we emit a full expression with cleanups that contains branches out of
// the full expression, the result of the inner expression (the call to
// call_with_cleanups in this case) may not dominate the fallthrough destination
// of the shared cleanup block.
//
// In this case the CFG will be a sequence of two diamonds, but the only
// dynamically possible execution paths are both left hand branches and both
// right hand branches. The first diamond LHS will call bar, and the second
// diamond LHS will assign the result to v, but the call to bar does not
// dominate the assignment.
int bar(A, int);
extern "C" int cleanup_exit_scalar(bool b) {
  int v = bar(A(1), ({ if (b) return 42; 13; }));
  return v;
}

// CHECK-LABEL: define{{.*}} i32 @cleanup_exit_scalar({{.*}})
// CHECK: call {{.*}} @_ZN1AC1Ei
//    Spill after bar.
// CHECK: %[[v:[^ ]*]] = call{{.*}} i32 @_Z3bar1Ai({{.*}})
// CHECK-NEXT: store i32 %[[v]], i32* %[[tmp:[^, ]*]]
//    Do cleanup.
// CHECK: call {{.*}} @_ZN1AD1Ev
// CHECK: switch
//    Reload before v assignment.
// CHECK: %[[v:[^ ]*]] = load i32, i32* %[[tmp]]
// CHECK-NEXT: store i32 %[[v]], i32* %v

// No need to spill when the expression result is a constant, constants don't
// have dominance problems.
extern "C" int cleanup_exit_scalar_constant(bool b) {
  int v = (A(1), (void)({ if (b) return 42; 0; }), 13);
  return v;
}

// CHECK-LABEL: define{{.*}} i32 @cleanup_exit_scalar_constant({{.*}})
// CHECK: store i32 13, i32* %v

// Check for the same bug for lvalue expression evaluation kind.
// FIXME: What about non-reference lvalues, like bitfield lvalues and vector
// lvalues?
int &getref();
extern "C" int cleanup_exit_lvalue(bool cond) {
  int &r = (A(1), ({ if (cond) return 0; (void)0; }), getref());
  return r;
}
// CHECK-LABEL: define{{.*}} i32 @cleanup_exit_lvalue({{.*}})
// CHECK: call {{.*}} @_ZN1AC1Ei
//    Spill after bar.
// CHECK: %[[v:[^ ]*]] = call dereferenceable(4) i32* @_Z6getrefv({{.*}})
// CHECK-NEXT: store i32* %[[v]], i32** %[[tmp:[^, ]*]]
//    Do cleanup.
// CHECK: call {{.*}} @_ZN1AD1Ev
// CHECK: switch
//    Reload before v assignment.
// CHECK: %[[v:[^ ]*]] = load i32*, i32** %[[tmp]]
// CHECK-NEXT: store i32* %[[v]], i32** %r

// Bind the reference to a byval argument. It is not an instruction or Constant,
// so it's a bit of a corner case.
struct ByVal { int x[3]; };
extern "C" int cleanup_exit_lvalue_byval(bool cond, ByVal arg) {
  ByVal &r = (A(1), ({ if (cond) return 0; (void)ByVal(); }), arg);
  return r.x[0];
}
// CHECK-LABEL: define{{.*}} i32 @cleanup_exit_lvalue_byval({{.*}}, %struct.ByVal* byval(%struct.ByVal) align 4 %arg)
// CHECK: call {{.*}} @_ZN1AC1Ei
// CHECK: call {{.*}} @_ZN1AD1Ev
// CHECK: switch
// CHECK: store %struct.ByVal* %arg, %struct.ByVal** %r

// Bind the reference to a local variable. We don't need to spill it. Binding a
// reference to it doesn't generate any instructions.
extern "C" int cleanup_exit_lvalue_local(bool cond) {
  int local = 42;
  int &r = (A(1), ({ if (cond) return 0; (void)0; }), local);
  return r;
}
// CHECK-LABEL: define{{.*}} i32 @cleanup_exit_lvalue_local({{.*}})
// CHECK: %local = alloca i32
// CHECK: store i32 42, i32* %local
// CHECK: call {{.*}} @_ZN1AC1Ei
// CHECK-NOT: store i32* %local
// CHECK: call {{.*}} @_ZN1AD1Ev
// CHECK: switch
// CHECK: store i32* %local, i32** %r, align 4

// We handle ExprWithCleanups for complex evaluation type separately, and it had
// the same bug.
_Complex float bar_complex(A, int);
extern "C" int cleanup_exit_complex(bool b) {
  _Complex float v = bar_complex(A(1), ({ if (b) return 42; 13; }));
  return (float)v;
}

// CHECK-LABEL: define{{.*}} i32 @cleanup_exit_complex({{.*}})
// CHECK: call {{.*}} @_ZN1AC1Ei
//    Spill after bar.
// CHECK: call {{.*}} @_Z11bar_complex1Ai({{.*}})
// CHECK: store float %{{.*}}, float* %[[tmp1:[^, ]*]]
// CHECK: store float %{{.*}}, float* %[[tmp2:[^, ]*]]
//    Do cleanup.
// CHECK: call {{.*}} @_ZN1AD1Ev
// CHECK: switch
//    Reload before v assignment.
// CHECK: %[[v1:[^ ]*]] = load float, float* %[[tmp1]]
// CHECK: %[[v2:[^ ]*]] = load float, float* %[[tmp2]]
// CHECK: store float %[[v1]], float* %v.realp
// CHECK: store float %[[v2]], float* %v.imagp

extern "C" void then(int);

// CHECK-LABEL: @{{.*}}volatile_load
void volatile_load() {
  volatile int n;

  // CHECK-NOT: load volatile
  // CHECK: load volatile
  // CHECK-NOT: load volatile
  ({n;});

  // CHECK-LABEL: @then(i32 1)
  then(1);

  // CHECK-NOT: load volatile
  // CHECK: load volatile
  // CHECK-NOT: load volatile
  ({goto lab; lab: n;});

  // CHECK-LABEL: @then(i32 2)
  then(2);

  // CHECK-NOT: load volatile
  // CHECK: load volatile
  // CHECK-NOT: load volatile
  ({[[gsl::suppress("foo")]] n;});

  // CHECK-LABEL: @then(i32 3)
  then(3);

  // CHECK-NOT: load volatile
  // CHECK: load volatile
  // CHECK-NOT: load volatile
  ({if (true) n;});

  // CHECK: }
}

// CHECK-LABEL: @{{.*}}volatile_load_template
template<typename T>
void volatile_load_template() {
  volatile T n;

  // CHECK-NOT: load volatile
  // CHECK: load volatile
  // CHECK-NOT: load volatile
  ({n;});

  // CHECK-LABEL: @then(i32 1)
  then(1);

  // CHECK-NOT: load volatile
  // CHECK: load volatile
  // CHECK-NOT: load volatile
  ({goto lab; lab: n;});

  // CHECK-LABEL: @then(i32 2)
  then(2);

  // CHECK-NOT: load volatile
  // CHECK: load volatile
  // CHECK-NOT: load volatile
  ({[[gsl::suppress("foo")]] n;});

  // CHECK-LABEL: @then(i32 3)
  then(3);

  // CHECK-NOT: load volatile
  // CHECK: load volatile
  // CHECK-NOT: load volatile
  ({if (true) n;});

  // CHECK: }
}
template void volatile_load_template<int>();