reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
// RUN: %clang_cc1 -triple riscv32 -emit-llvm %s -o - | FileCheck %s
// RUN: %clang_cc1 -triple riscv32 -emit-llvm -fforce-enable-int128 %s -o - \
// RUN:   | FileCheck %s -check-prefixes=CHECK,CHECK-FORCEINT128
// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f -emit-llvm %s -o - \
// RUN:     | FileCheck %s
// RUN: %clang_cc1 -triple riscv32 -target-feature +d -target-abi ilp32d -emit-llvm %s -o - \
// RUN:     | FileCheck %s

// This file contains test cases that will have the same output for the ilp32,
// ilp32f, and ilp32d ABIs.

#include <stddef.h>
#include <stdint.h>

// CHECK-LABEL: define void @f_void()
void f_void(void) {}

// Scalar arguments and return values smaller than the word size are extended
// according to the sign of their type, up to 32 bits

// CHECK-LABEL: define zeroext i1 @f_scalar_0(i1 zeroext %x)
_Bool f_scalar_0(_Bool x) { return x; }

// CHECK-LABEL: define signext i8 @f_scalar_1(i8 signext %x)
int8_t f_scalar_1(int8_t x) { return x; }

// CHECK-LABEL: define zeroext i8 @f_scalar_2(i8 zeroext %x)
uint8_t f_scalar_2(uint8_t x) { return x; }

// CHECK-LABEL: define i32 @f_scalar_3(i32 %x)
int32_t f_scalar_3(int32_t x) { return x; }

// CHECK-LABEL: define i64 @f_scalar_4(i64 %x)
int64_t f_scalar_4(int64_t x) { return x; }

#ifdef __SIZEOF_INT128__
// CHECK-FORCEINT128-LABEL: define i128 @f_scalar_5(i128 %x)
__int128_t f_scalar_5(__int128_t x) { return x; }
#endif

// CHECK-LABEL: define float @f_fp_scalar_1(float %x)
float f_fp_scalar_1(float x) { return x; }

// CHECK-LABEL: define double @f_fp_scalar_2(double %x)
double f_fp_scalar_2(double x) { return x; }

// Scalars larger than 2*xlen are passed/returned indirect. However, the
// RISC-V LLVM backend can handle this fine, so the function doesn't need to
// be modified.

// CHECK-LABEL: define fp128 @f_fp_scalar_3(fp128 %x)
long double f_fp_scalar_3(long double x) { return x; }

// Empty structs or unions are ignored.

struct empty_s {};

// CHECK-LABEL: define void @f_agg_empty_struct()
struct empty_s f_agg_empty_struct(struct empty_s x) {
  return x;
}

union empty_u {};

// CHECK-LABEL: define void @f_agg_empty_union()
union empty_u f_agg_empty_union(union empty_u x) {
  return x;
}

// Aggregates <= 2*xlen may be passed in registers, so will be coerced to
// integer arguments. The rules for return are the same.

struct tiny {
  uint8_t a, b, c, d;
};

// CHECK-LABEL: define void @f_agg_tiny(i32 %x.coerce)
void f_agg_tiny(struct tiny x) {
  x.a += x.b;
  x.c += x.d;
}

// CHECK-LABEL: define i32 @f_agg_tiny_ret()
struct tiny f_agg_tiny_ret() {
  return (struct tiny){1, 2, 3, 4};
}

typedef uint8_t v4i8 __attribute__((vector_size(4)));
typedef int32_t v1i32 __attribute__((vector_size(4)));

// CHECK-LABEL: define void @f_vec_tiny_v4i8(i32 %x.coerce)
void f_vec_tiny_v4i8(v4i8 x) {
  x[0] = x[1];
  x[2] = x[3];
}

// CHECK-LABEL: define i32 @f_vec_tiny_v4i8_ret()
v4i8 f_vec_tiny_v4i8_ret() {
  return (v4i8){1, 2, 3, 4};
}

// CHECK-LABEL: define void @f_vec_tiny_v1i32(i32 %x.coerce)
void f_vec_tiny_v1i32(v1i32 x) {
  x[0] = 114;
}

// CHECK-LABEL: define i32 @f_vec_tiny_v1i32_ret()
v1i32 f_vec_tiny_v1i32_ret() {
  return (v1i32){1};
}

struct small {
  int32_t a, *b;
};

// CHECK-LABEL: define void @f_agg_small([2 x i32] %x.coerce)
void f_agg_small(struct small x) {
  x.a += *x.b;
  x.b = &x.a;
}

// CHECK-LABEL: define [2 x i32] @f_agg_small_ret()
struct small f_agg_small_ret() {
  return (struct small){1, 0};
}

typedef uint8_t v8i8 __attribute__((vector_size(8)));
typedef int64_t v1i64 __attribute__((vector_size(8)));

// CHECK-LABEL: define void @f_vec_small_v8i8(i64 %x.coerce)
void f_vec_small_v8i8(v8i8 x) {
  x[0] = x[7];
}

// CHECK-LABEL: define i64 @f_vec_small_v8i8_ret()
v8i8 f_vec_small_v8i8_ret() {
  return (v8i8){1, 2, 3, 4, 5, 6, 7, 8};
}

// CHECK-LABEL: define void @f_vec_small_v1i64(i64 %x.coerce)
void f_vec_small_v1i64(v1i64 x) {
  x[0] = 114;
}

// CHECK-LABEL: define i64 @f_vec_small_v1i64_ret()
v1i64 f_vec_small_v1i64_ret() {
  return (v1i64){1};
}

// Aggregates of 2*xlen size and 2*xlen alignment should be coerced to a
// single 2*xlen-sized argument, to ensure that alignment can be maintained if
// passed on the stack.

struct small_aligned {
  int64_t a;
};

// CHECK-LABEL: define void @f_agg_small_aligned(i64 %x.coerce)
void f_agg_small_aligned(struct small_aligned x) {
  x.a += x.a;
}

// CHECK-LABEL: define i64 @f_agg_small_aligned_ret(i64 %x.coerce)
struct small_aligned f_agg_small_aligned_ret(struct small_aligned x) {
  return (struct small_aligned){10};
}

// Aggregates greater > 2*xlen will be passed and returned indirectly
struct large {
  int32_t a, b, c, d;
};

// CHECK-LABEL: define void @f_agg_large(%struct.large* %x)
void f_agg_large(struct large x) {
  x.a = x.b + x.c + x.d;
}

// The address where the struct should be written to will be the first
// argument
// CHECK-LABEL: define void @f_agg_large_ret(%struct.large* noalias sret %agg.result, i32 %i, i8 signext %j)
struct large f_agg_large_ret(int32_t i, int8_t j) {
  return (struct large){1, 2, 3, 4};
}

typedef unsigned char v16i8 __attribute__((vector_size(16)));

// CHECK-LABEL: define void @f_vec_large_v16i8(<16 x i8>* %0)
void f_vec_large_v16i8(v16i8 x) {
  x[0] = x[7];
}

// CHECK-LABEL: define void @f_vec_large_v16i8_ret(<16 x i8>* noalias sret %agg.result)
v16i8 f_vec_large_v16i8_ret() {
  return (v16i8){1, 2, 3, 4, 5, 6, 7, 8};
}

// Scalars passed on the stack should not have signext/zeroext attributes
// (they are anyext).

// CHECK-LABEL: define i32 @f_scalar_stack_1(i32 %a.coerce, [2 x i32] %b.coerce, i64 %c.coerce, %struct.large* %d, i8 zeroext %e, i8 signext %f, i8 %g, i8 %h)
int f_scalar_stack_1(struct tiny a, struct small b, struct small_aligned c,
                     struct large d, uint8_t e, int8_t f, uint8_t g, int8_t h) {
  return g + h;
}

// Ensure that scalars passed on the stack are still determined correctly in
// the presence of large return values that consume a register due to the need
// to pass a pointer.

// CHECK-LABEL: define void @f_scalar_stack_2(%struct.large* noalias sret %agg.result, i32 %a, i64 %b, i64 %c, fp128 %d, i8 zeroext %e, i8 %f, i8 %g)
struct large f_scalar_stack_2(int32_t a, int64_t b, int64_t c, long double d,
                              uint8_t e, int8_t f, uint8_t g) {
  return (struct large){a, e, f, g};
}

// CHECK-LABEL: define fp128 @f_scalar_stack_4(i32 %a, i64 %b, i64 %c, fp128 %d, i8 zeroext %e, i8 %f, i8 %g)
long double f_scalar_stack_4(int32_t a, int64_t b, int64_t c, long double d,
                             uint8_t e, int8_t f, uint8_t g) {
  return d;
}

// Aggregates and >=XLen scalars passed on the stack should be lowered just as
// they would be if passed via registers.

// CHECK-LABEL: define void @f_scalar_stack_5(double %a, i64 %b, double %c, i64 %d, i32 %e, i64 %f, float %g, double %h, fp128 %i)
void f_scalar_stack_5(double a, int64_t b, double c, int64_t d, int e,
                      int64_t f, float g, double h, long double i) {}

// CHECK-LABEL: define void @f_agg_stack(double %a, i64 %b, double %c, i64 %d, i32 %e.coerce, [2 x i32] %f.coerce, i64 %g.coerce, %struct.large* %h)
void f_agg_stack(double a, int64_t b, double c, int64_t d, struct tiny e,
                 struct small f, struct small_aligned g, struct large h) {}

// Ensure that ABI lowering happens as expected for vararg calls. For RV32
// with the base integer calling convention there will be no observable
// differences in the lowered IR for a call with varargs vs without.

int f_va_callee(int, ...);

// CHECK-LABEL: define void @f_va_caller()
// CHECK: call i32 (i32, ...) @f_va_callee(i32 1, i32 2, i64 3, double 4.000000e+00, double 5.000000e+00, i32 {{%.*}}, [2 x i32] {{%.*}}, i64 {{%.*}}, %struct.large* {{%.*}})
void f_va_caller() {
  f_va_callee(1, 2, 3LL, 4.0f, 5.0, (struct tiny){6, 7, 8, 9},
              (struct small){10, NULL}, (struct small_aligned){11},
              (struct large){12, 13, 14, 15});
}

// CHECK-LABEL: define i32 @f_va_1(i8* %fmt, ...) {{.*}} {
// CHECK:   [[FMT_ADDR:%.*]] = alloca i8*, align 4
// CHECK:   [[VA:%.*]] = alloca i8*, align 4
// CHECK:   [[V:%.*]] = alloca i32, align 4
// CHECK:   store i8* %fmt, i8** [[FMT_ADDR]], align 4
// CHECK:   [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
// CHECK:   call void @llvm.va_start(i8* [[VA1]])
// CHECK:   [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 4
// CHECK:   [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR]], i32 4
// CHECK:   store i8* [[ARGP_NEXT]], i8** [[VA]], align 4
// CHECK:   [[TMP0:%.*]] = bitcast i8* [[ARGP_CUR]] to i32*
// CHECK:   [[TMP1:%.*]] = load i32, i32* [[TMP0]], align 4
// CHECK:   store i32 [[TMP1]], i32* [[V]], align 4
// CHECK:   [[VA2:%.*]] = bitcast i8** [[VA]] to i8*
// CHECK:   call void @llvm.va_end(i8* [[VA2]])
// CHECK:   [[TMP2:%.*]] = load i32, i32* [[V]], align 4
// CHECK:   ret i32 [[TMP2]]
// CHECK: }
int f_va_1(char *fmt, ...) {
  __builtin_va_list va;

  __builtin_va_start(va, fmt);
  int v = __builtin_va_arg(va, int);
  __builtin_va_end(va);

  return v;
}

// An "aligned" register pair (where the first register is even-numbered) is
// used to pass varargs with 2x xlen alignment and 2x xlen size. Ensure the
// correct offsets are used.

// CHECK-LABEL: @f_va_2(
// CHECK:         [[FMT_ADDR:%.*]] = alloca i8*, align 4
// CHECK-NEXT:    [[VA:%.*]] = alloca i8*, align 4
// CHECK-NEXT:    [[V:%.*]] = alloca double, align 8
// CHECK-NEXT:    store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 4
// CHECK-NEXT:    [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
// CHECK-NEXT:    call void @llvm.va_start(i8* [[VA1]])
// CHECK-NEXT:    [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = ptrtoint i8* [[ARGP_CUR]] to i32
// CHECK-NEXT:    [[TMP1:%.*]] = add i32 [[TMP0]], 7
// CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], -8
// CHECK-NEXT:    [[ARGP_CUR_ALIGNED:%.*]] = inttoptr i32 [[TMP2]] to i8*
// CHECK-NEXT:    [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR_ALIGNED]], i32 8
// CHECK-NEXT:    store i8* [[ARGP_NEXT]], i8** [[VA]], align 4
// CHECK-NEXT:    [[TMP3:%.*]] = bitcast i8* [[ARGP_CUR_ALIGNED]] to double*
// CHECK-NEXT:    [[TMP4:%.*]] = load double, double* [[TMP3]], align 8
// CHECK-NEXT:    store double [[TMP4]], double* [[V]], align 8
// CHECK-NEXT:    [[VA2:%.*]] = bitcast i8** [[VA]] to i8*
// CHECK-NEXT:    call void @llvm.va_end(i8* [[VA2]])
// CHECK-NEXT:    [[TMP5:%.*]] = load double, double* [[V]], align 8
// CHECK-NEXT:    ret double [[TMP5]]
double f_va_2(char *fmt, ...) {
  __builtin_va_list va;

  __builtin_va_start(va, fmt);
  double v = __builtin_va_arg(va, double);
  __builtin_va_end(va);

  return v;
}

// Two "aligned" register pairs.

// CHECK-LABEL: @f_va_3(
// CHECK:         [[FMT_ADDR:%.*]] = alloca i8*, align 4
// CHECK-NEXT:    [[VA:%.*]] = alloca i8*, align 4
// CHECK-NEXT:    [[V:%.*]] = alloca double, align 8
// CHECK-NEXT:    [[W:%.*]] = alloca i32, align 4
// CHECK-NEXT:    [[X:%.*]] = alloca double, align 8
// CHECK-NEXT:    store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 4
// CHECK-NEXT:    [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
// CHECK-NEXT:    call void @llvm.va_start(i8* [[VA1]])
// CHECK-NEXT:    [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = ptrtoint i8* [[ARGP_CUR]] to i32
// CHECK-NEXT:    [[TMP1:%.*]] = add i32 [[TMP0]], 7
// CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], -8
// CHECK-NEXT:    [[ARGP_CUR_ALIGNED:%.*]] = inttoptr i32 [[TMP2]] to i8*
// CHECK-NEXT:    [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR_ALIGNED]], i32 8
// CHECK-NEXT:    store i8* [[ARGP_NEXT]], i8** [[VA]], align 4
// CHECK-NEXT:    [[TMP3:%.*]] = bitcast i8* [[ARGP_CUR_ALIGNED]] to double*
// CHECK-NEXT:    [[TMP4:%.*]] = load double, double* [[TMP3]], align 8
// CHECK-NEXT:    store double [[TMP4]], double* [[V]], align 8
// CHECK-NEXT:    [[ARGP_CUR2:%.*]] = load i8*, i8** [[VA]], align 4
// CHECK-NEXT:    [[ARGP_NEXT3:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR2]], i32 4
// CHECK-NEXT:    store i8* [[ARGP_NEXT3]], i8** [[VA]], align 4
// CHECK-NEXT:    [[TMP5:%.*]] = bitcast i8* [[ARGP_CUR2]] to i32*
// CHECK-NEXT:    [[TMP6:%.*]] = load i32, i32* [[TMP5]], align 4
// CHECK-NEXT:    store i32 [[TMP6]], i32* [[W]], align 4
// CHECK-NEXT:    [[ARGP_CUR4:%.*]] = load i8*, i8** [[VA]], align 4
// CHECK-NEXT:    [[TMP7:%.*]] = ptrtoint i8* [[ARGP_CUR4]] to i32
// CHECK-NEXT:    [[TMP8:%.*]] = add i32 [[TMP7]], 7
// CHECK-NEXT:    [[TMP9:%.*]] = and i32 [[TMP8]], -8
// CHECK-NEXT:    [[ARGP_CUR4_ALIGNED:%.*]] = inttoptr i32 [[TMP9]] to i8*
// CHECK-NEXT:    [[ARGP_NEXT5:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR4_ALIGNED]], i32 8
// CHECK-NEXT:    store i8* [[ARGP_NEXT5]], i8** [[VA]], align 4
// CHECK-NEXT:    [[TMP10:%.*]] = bitcast i8* [[ARGP_CUR4_ALIGNED]] to double*
// CHECK-NEXT:    [[TMP11:%.*]] = load double, double* [[TMP10]], align 8
// CHECK-NEXT:    store double [[TMP11]], double* [[X]], align 8
// CHECK-NEXT:    [[VA6:%.*]] = bitcast i8** [[VA]] to i8*
// CHECK-NEXT:    call void @llvm.va_end(i8* [[VA6]])
// CHECK-NEXT:    [[TMP12:%.*]] = load double, double* [[V]], align 8
// CHECK-NEXT:    [[TMP13:%.*]] = load double, double* [[X]], align 8
// CHECK-NEXT:    [[ADD:%.*]] = fadd double [[TMP12]], [[TMP13]]
// CHECK-NEXT:    ret double [[ADD]]
double f_va_3(char *fmt, ...) {
  __builtin_va_list va;

  __builtin_va_start(va, fmt);
  double v = __builtin_va_arg(va, double);
  int w = __builtin_va_arg(va, int);
  double x = __builtin_va_arg(va, double);
  __builtin_va_end(va);

  return v + x;
}

// CHECK-LABEL: define i32 @f_va_4(i8* %fmt, ...) {{.*}} {
// CHECK:         [[FMT_ADDR:%.*]] = alloca i8*, align 4
// CHECK-NEXT:    [[VA:%.*]] = alloca i8*, align 4
// CHECK-NEXT:    [[V:%.*]] = alloca i32, align 4
// CHECK-NEXT:    [[LD:%.*]] = alloca fp128, align 16
// CHECK-NEXT:    [[TS:%.*]] = alloca [[STRUCT_TINY:%.*]], align 1
// CHECK-NEXT:    [[SS:%.*]] = alloca [[STRUCT_SMALL:%.*]], align 4
// CHECK-NEXT:    [[LS:%.*]] = alloca [[STRUCT_LARGE:%.*]], align 4
// CHECK-NEXT:    [[RET:%.*]] = alloca i32, align 4
// CHECK-NEXT:    store i8* [[FMT:%.*]], i8** [[FMT_ADDR]], align 4
// CHECK-NEXT:    [[VA1:%.*]] = bitcast i8** [[VA]] to i8*
// CHECK-NEXT:    call void @llvm.va_start(i8* [[VA1]])
// CHECK-NEXT:    [[ARGP_CUR:%.*]] = load i8*, i8** [[VA]], align 4
// CHECK-NEXT:    [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR]], i32 4
// CHECK-NEXT:    store i8* [[ARGP_NEXT]], i8** [[VA]], align 4
// CHECK-NEXT:    [[TMP0:%.*]] = bitcast i8* [[ARGP_CUR]] to i32*
// CHECK-NEXT:    [[TMP1:%.*]] = load i32, i32* [[TMP0]], align 4
// CHECK-NEXT:    store i32 [[TMP1]], i32* [[V]], align 4
// CHECK-NEXT:    [[ARGP_CUR2:%.*]] = load i8*, i8** [[VA]], align 4
// CHECK-NEXT:    [[ARGP_NEXT3:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR2]], i32 4
// CHECK-NEXT:    store i8* [[ARGP_NEXT3]], i8** [[VA]], align 4
// CHECK-NEXT:    [[TMP2:%.*]] = bitcast i8* [[ARGP_CUR2]] to fp128**
// CHECK-NEXT:    [[TMP3:%.*]] = load fp128*, fp128** [[TMP2]], align 4
// CHECK-NEXT:    [[TMP4:%.*]] = load fp128, fp128* [[TMP3]], align 16
// CHECK-NEXT:    store fp128 [[TMP4]], fp128* [[LD]], align 16
// CHECK-NEXT:    [[ARGP_CUR4:%.*]] = load i8*, i8** [[VA]], align 4
// CHECK-NEXT:    [[ARGP_NEXT5:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR4]], i32 4
// CHECK-NEXT:    store i8* [[ARGP_NEXT5]], i8** [[VA]], align 4
// CHECK-NEXT:    [[TMP5:%.*]] = bitcast i8* [[ARGP_CUR4]] to %struct.tiny*
// CHECK-NEXT:    [[TMP6:%.*]] = bitcast %struct.tiny* [[TS]] to i8*
// CHECK-NEXT:    [[TMP7:%.*]] = bitcast %struct.tiny* [[TMP5]] to i8*
// CHECK-NEXT:    call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 [[TMP6]], i8* align 4 [[TMP7]], i32 4, i1 false)
// CHECK-NEXT:    [[ARGP_CUR6:%.*]] = load i8*, i8** [[VA]], align 4
// CHECK-NEXT:    [[ARGP_NEXT7:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR6]], i32 8
// CHECK-NEXT:    store i8* [[ARGP_NEXT7]], i8** [[VA]], align 4
// CHECK-NEXT:    [[TMP8:%.*]] = bitcast i8* [[ARGP_CUR6]] to %struct.small*
// CHECK-NEXT:    [[TMP9:%.*]] = bitcast %struct.small* [[SS]] to i8*
// CHECK-NEXT:    [[TMP10:%.*]] = bitcast %struct.small* [[TMP8]] to i8*
// CHECK-NEXT:    call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 [[TMP9]], i8* align 4 [[TMP10]], i32 8, i1 false)
// CHECK-NEXT:    [[ARGP_CUR8:%.*]] = load i8*, i8** [[VA]], align 4
// CHECK-NEXT:    [[ARGP_NEXT9:%.*]] = getelementptr inbounds i8, i8* [[ARGP_CUR8]], i32 4
// CHECK-NEXT:    store i8* [[ARGP_NEXT9]], i8** [[VA]], align 4
// CHECK-NEXT:    [[TMP11:%.*]] = bitcast i8* [[ARGP_CUR8]] to %struct.large**
// CHECK-NEXT:    [[TMP12:%.*]] = load %struct.large*, %struct.large** [[TMP11]], align 4
// CHECK-NEXT:    [[TMP13:%.*]] = bitcast %struct.large* [[LS]] to i8*
// CHECK-NEXT:    [[TMP14:%.*]] = bitcast %struct.large* [[TMP12]] to i8*
// CHECK-NEXT:    call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 [[TMP13]], i8* align 4 [[TMP14]], i32 16, i1 false)
// CHECK-NEXT:    [[VA10:%.*]] = bitcast i8** [[VA]] to i8*
// CHECK-NEXT:    call void @llvm.va_end(i8* [[VA10]])
int f_va_4(char *fmt, ...) {
  __builtin_va_list va;

  __builtin_va_start(va, fmt);
  int v = __builtin_va_arg(va, int);
  long double ld = __builtin_va_arg(va, long double);
  struct tiny ts = __builtin_va_arg(va, struct tiny);
  struct small ss = __builtin_va_arg(va, struct small);
  struct large ls = __builtin_va_arg(va, struct large);
  __builtin_va_end(va);

  int ret = (int)((long double)v + ld);
  ret = ret + ts.a + ts.b + ts.c + ts.d;
  ret = ret + ss.a + (int)ss.b;
  ret = ret + ls.a + ls.b + ls.c + ls.d;

  return ret;
}