reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
// RUN: %clang_cc1           -triple x86_64-apple-darwin -emit-llvm %s -o - 2>&1 | FileCheck %s
// RUN: %clang_cc1 -DDYNAMIC -triple x86_64-apple-darwin -emit-llvm %s -o - 2>&1 | FileCheck %s

#ifdef DYNAMIC
#define OBJECT_SIZE_BUILTIN __builtin_dynamic_object_size
#else
#define OBJECT_SIZE_BUILTIN __builtin_object_size
#endif

#define NULL ((void *)0)

int gi;

typedef unsigned long size_t;

// CHECK-DAG-RE: define void @my_malloc({{.*}}) #[[MALLOC_ATTR_NUMBER:[0-9]+]]
// N.B. LLVM's allocsize arguments are base-0, whereas ours are base-1 (for
// compat with GCC)
// CHECK-DAG-RE: attributes #[[MALLOC_ATTR_NUMBER]] = {.*allocsize(0).*}
void *my_malloc(size_t) __attribute__((alloc_size(1)));

// CHECK-DAG-RE: define void @my_calloc({{.*}}) #[[CALLOC_ATTR_NUMBER:[0-9]+]]
// CHECK-DAG-RE: attributes #[[CALLOC_ATTR_NUMBER]] = {.*allocsize(0, 1).*}
void *my_calloc(size_t, size_t) __attribute__((alloc_size(1, 2)));

// CHECK-LABEL: @test1
void test1() {
  void *const vp = my_malloc(100);
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(vp, 0);
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(vp, 1);
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(vp, 2);
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(vp, 3);

  void *const arr = my_calloc(100, 5);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(arr, 0);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(arr, 1);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(arr, 2);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(arr, 3);

  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(my_malloc(100), 0);
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(my_malloc(100), 1);
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(my_malloc(100), 2);
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(my_malloc(100), 3);

  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(my_calloc(100, 5), 0);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(my_calloc(100, 5), 1);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(my_calloc(100, 5), 2);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(my_calloc(100, 5), 3);

  void *const zeroPtr = my_malloc(0);
  // CHECK: store i32 0
  gi = OBJECT_SIZE_BUILTIN(zeroPtr, 0);
  // CHECK: store i32 0
  gi = OBJECT_SIZE_BUILTIN(my_malloc(0), 0);

  void *const zeroArr1 = my_calloc(0, 1);
  void *const zeroArr2 = my_calloc(1, 0);
  // CHECK: store i32 0
  gi = OBJECT_SIZE_BUILTIN(zeroArr1, 0);
  // CHECK: store i32 0
  gi = OBJECT_SIZE_BUILTIN(zeroArr2, 0);
  // CHECK: store i32 0
  gi = OBJECT_SIZE_BUILTIN(my_calloc(1, 0), 0);
  // CHECK: store i32 0
  gi = OBJECT_SIZE_BUILTIN(my_calloc(0, 1), 0);
}

// CHECK-LABEL: @test2
void test2() {
  void *const vp = my_malloc(gi);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(vp, 0);

  void *const arr1 = my_calloc(gi, 1);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(arr1, 0);

  void *const arr2 = my_calloc(1, gi);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(arr2, 0);
}

// CHECK-LABEL: @test3
void test3() {
  char *const buf = (char *)my_calloc(100, 5);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(buf, 0);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(buf, 1);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(buf, 2);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(buf, 3);
}

struct Data {
  int a;
  int t[10];
  char pad[3];
  char end[1];
};

// CHECK-LABEL: @test5
void test5() {
  struct Data *const data = my_malloc(sizeof(*data));
  // CHECK: store i32 48
  gi = OBJECT_SIZE_BUILTIN(data, 0);
  // CHECK: store i32 48
  gi = OBJECT_SIZE_BUILTIN(data, 1);
  // CHECK: store i32 48
  gi = OBJECT_SIZE_BUILTIN(data, 2);
  // CHECK: store i32 48
  gi = OBJECT_SIZE_BUILTIN(data, 3);

  // CHECK: store i32 40
  gi = OBJECT_SIZE_BUILTIN(&data->t[1], 0);
  // CHECK: store i32 36
  gi = OBJECT_SIZE_BUILTIN(&data->t[1], 1);
  // CHECK: store i32 40
  gi = OBJECT_SIZE_BUILTIN(&data->t[1], 2);
  // CHECK: store i32 36
  gi = OBJECT_SIZE_BUILTIN(&data->t[1], 3);

  struct Data *const arr = my_calloc(sizeof(*data), 2);
  // CHECK: store i32 96
  gi = OBJECT_SIZE_BUILTIN(arr, 0);
  // CHECK: store i32 96
  gi = OBJECT_SIZE_BUILTIN(arr, 1);
  // CHECK: store i32 96
  gi = OBJECT_SIZE_BUILTIN(arr, 2);
  // CHECK: store i32 96
  gi = OBJECT_SIZE_BUILTIN(arr, 3);

  // CHECK: store i32 88
  gi = OBJECT_SIZE_BUILTIN(&arr->t[1], 0);
  // CHECK: store i32 36
  gi = OBJECT_SIZE_BUILTIN(&arr->t[1], 1);
  // CHECK: store i32 88
  gi = OBJECT_SIZE_BUILTIN(&arr->t[1], 2);
  // CHECK: store i32 36
  gi = OBJECT_SIZE_BUILTIN(&arr->t[1], 3);
}

// CHECK-LABEL: @test6
void test6() {
  // Things that would normally trigger conservative estimates don't need to do
  // so when we know the source of the allocation.
  struct Data *const data = my_malloc(sizeof(*data) + 10);
  // CHECK: store i32 11
  gi = OBJECT_SIZE_BUILTIN(data->end, 0);
  // CHECK: store i32 11
  gi = OBJECT_SIZE_BUILTIN(data->end, 1);
  // CHECK: store i32 11
  gi = OBJECT_SIZE_BUILTIN(data->end, 2);
  // CHECK: store i32 11
  gi = OBJECT_SIZE_BUILTIN(data->end, 3);

  struct Data *const arr = my_calloc(sizeof(*arr) + 5, 3);
  // AFAICT, GCC treats malloc and calloc identically. So, we should do the
  // same.
  //
  // Additionally, GCC ignores the initial array index when determining whether
  // we're writing off the end of an alloc_size base. e.g.
  //   arr[0].end
  //   arr[1].end
  //   arr[2].end
  // ...Are all considered "writing off the end", because there's no way to tell
  // with high accuracy if the user meant "allocate a single N-byte `Data`",
  // or "allocate M smaller `Data`s with extra padding".

  // CHECK: store i32 112
  gi = OBJECT_SIZE_BUILTIN(arr->end, 0);
  // CHECK: store i32 112
  gi = OBJECT_SIZE_BUILTIN(arr->end, 1);
  // CHECK: store i32 112
  gi = OBJECT_SIZE_BUILTIN(arr->end, 2);
  // CHECK: store i32 112
  gi = OBJECT_SIZE_BUILTIN(arr->end, 3);

  // CHECK: store i32 112
  gi = OBJECT_SIZE_BUILTIN(arr[0].end, 0);
  // CHECK: store i32 112
  gi = OBJECT_SIZE_BUILTIN(arr[0].end, 1);
  // CHECK: store i32 112
  gi = OBJECT_SIZE_BUILTIN(arr[0].end, 2);
  // CHECK: store i32 112
  gi = OBJECT_SIZE_BUILTIN(arr[0].end, 3);

  // CHECK: store i32 64
  gi = OBJECT_SIZE_BUILTIN(arr[1].end, 0);
  // CHECK: store i32 64
  gi = OBJECT_SIZE_BUILTIN(arr[1].end, 1);
  // CHECK: store i32 64
  gi = OBJECT_SIZE_BUILTIN(arr[1].end, 2);
  // CHECK: store i32 64
  gi = OBJECT_SIZE_BUILTIN(arr[1].end, 3);

  // CHECK: store i32 16
  gi = OBJECT_SIZE_BUILTIN(arr[2].end, 0);
  // CHECK: store i32 16
  gi = OBJECT_SIZE_BUILTIN(arr[2].end, 1);
  // CHECK: store i32 16
  gi = OBJECT_SIZE_BUILTIN(arr[2].end, 2);
  // CHECK: store i32 16
  gi = OBJECT_SIZE_BUILTIN(arr[2].end, 3);
}

// CHECK-LABEL: @test7
void test7() {
  struct Data *const data = my_malloc(sizeof(*data) + 5);
  // CHECK: store i32 9
  gi = OBJECT_SIZE_BUILTIN(data->pad, 0);
  // CHECK: store i32 3
  gi = OBJECT_SIZE_BUILTIN(data->pad, 1);
  // CHECK: store i32 9
  gi = OBJECT_SIZE_BUILTIN(data->pad, 2);
  // CHECK: store i32 3
  gi = OBJECT_SIZE_BUILTIN(data->pad, 3);
}

// CHECK-LABEL: @test8
void test8() {
  // Non-const pointers aren't currently supported.
  void *buf = my_calloc(100, 5);
  // CHECK: @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false, i1 true, i1
  gi = OBJECT_SIZE_BUILTIN(buf, 0);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(buf, 1);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(buf, 2);
  // CHECK: store i32 0
  gi = OBJECT_SIZE_BUILTIN(buf, 3);
}

// CHECK-LABEL: @test9
void test9() {
  // Check to be sure that we unwrap things correctly.
  short *const buf0 = (my_malloc(100));
  short *const buf1 = (short*)(my_malloc(100));
  short *const buf2 = ((short*)(my_malloc(100)));

  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(buf0, 0);
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(buf1, 0);
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(buf2, 0);
}

// CHECK-LABEL: @test10
void test10() {
  // Yay overflow
  short *const arr = my_calloc((size_t)-1 / 2 + 1, 2);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(arr, 0);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(arr, 1);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(arr, 2);
  // CHECK: store i32 0
  gi = OBJECT_SIZE_BUILTIN(arr, 3);

  // As an implementation detail, CharUnits can't handle numbers greater than or
  // equal to 2**63. Realistically, this shouldn't be a problem, but we should
  // be sure we don't emit crazy results for this case.
  short *const buf = my_malloc((size_t)-1);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(buf, 0);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(buf, 1);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(buf, 2);
  // CHECK: store i32 0
  gi = OBJECT_SIZE_BUILTIN(buf, 3);

  short *const arr_big = my_calloc((size_t)-1 / 2 - 1, 2);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(arr_big, 0);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(arr_big, 1);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(arr_big, 2);
  // CHECK: store i32 0
  gi = OBJECT_SIZE_BUILTIN(arr_big, 3);
}

void *my_tiny_malloc(char) __attribute__((alloc_size(1)));
void *my_tiny_calloc(char, char) __attribute__((alloc_size(1, 2)));

// CHECK-LABEL: @test11
void test11() {
  void *const vp = my_tiny_malloc(100);
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(vp, 0);
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(vp, 1);
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(vp, 2);
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(vp, 3);

  // N.B. This causes char overflow, but not size_t overflow, so it should be
  // supported.
  void *const arr = my_tiny_calloc(100, 5);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(arr, 0);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(arr, 1);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(arr, 2);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(arr, 3);
}

void *my_signed_malloc(long) __attribute__((alloc_size(1)));
void *my_signed_calloc(long, long) __attribute__((alloc_size(1, 2)));

// CHECK-LABEL: @test12
void test12() {
  // CHECK: store i32 100
  gi = OBJECT_SIZE_BUILTIN(my_signed_malloc(100), 0);
  // CHECK: store i32 500
  gi = OBJECT_SIZE_BUILTIN(my_signed_calloc(100, 5), 0);

  void *const vp = my_signed_malloc(-2);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(vp, 0);
  // N.B. These get lowered to -1 because the function calls may have
  // side-effects, and we can't determine the objectsize.
  // CHECK: store i32 -1
  gi = OBJECT_SIZE_BUILTIN(my_signed_malloc(-2), 0);

  void *const arr1 = my_signed_calloc(-2, 1);
  void *const arr2 = my_signed_calloc(1, -2);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(arr1, 0);
  // CHECK: @llvm.objectsize
  gi = OBJECT_SIZE_BUILTIN(arr2, 0);
  // CHECK: store i32 -1
  gi = OBJECT_SIZE_BUILTIN(my_signed_calloc(1, -2), 0);
  // CHECK: store i32 -1
  gi = OBJECT_SIZE_BUILTIN(my_signed_calloc(-2, 1), 0);
}

void *alloc_uchar(unsigned char) __attribute__((alloc_size(1)));

// CHECK-LABEL: @test13
void test13() {
  // If 128 were incorrectly seen as negative, the result would become -1.
  // CHECK: store i32 128,
  gi = OBJECT_SIZE_BUILTIN(alloc_uchar(128), 0);
}