reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s
// expected-no-diagnostics

// Example bind implementation from the variadic templates proposal,
// ISO C++ committee document number N2080.

// Helper type traits
template<typename T>
struct add_reference {
  typedef T &type;
};

template<typename T>
struct add_reference<T&> {
  typedef T &type;
};

template<typename T>
struct add_const_reference {
  typedef T const &type;
};

template<typename T>
struct add_const_reference<T&> {
  typedef T &type;
};

template<typename T, typename U>
struct is_same {
  static const bool value = false;
};

template<typename T>
struct is_same<T, T> {
  static const bool value = true;
};

template<typename T> 
class reference_wrapper { 
  T *ptr;

public:
  reference_wrapper(T& t) : ptr(&t) { }
  operator T&() const { return *ptr; }
};

template<typename T> reference_wrapper<T> ref(T& t) { 
  return reference_wrapper<T>(t); 
}
template<typename T> reference_wrapper<const T> cref(const T& t) {
  return reference_wrapper<const T>(t); 
}

template<typename... Values> class tuple;

// Basis case: zero-length tuple
template<> class tuple<> { };

template<typename Head, typename... Tail> 
class tuple<Head, Tail...> : private tuple<Tail...> { 
  typedef tuple<Tail...> inherited;

public: 
  tuple() { }
  // implicit copy-constructor is okay

  // Construct tuple from separate arguments. 
  tuple(typename add_const_reference<Head>::type v,
        typename add_const_reference<Tail>::type... vtail) 
    : m_head(v), inherited(vtail...) { }

  // Construct tuple from another tuple. 
  template<typename... VValues> tuple(const tuple<VValues...>& other)
    : m_head(other.head()), inherited(other.tail()) { }

  template<typename... VValues> tuple& 
  operator=(const tuple<VValues...>& other) {
    m_head = other.head(); 
    tail() = other.tail(); 
    return *this;
  }

  typename add_reference<Head>::type head() { return m_head; } 
  typename add_reference<const Head>::type head() const { return m_head; }
  inherited& tail() { return *this; } 
  const inherited& tail() const { return *this; }

protected: 
  Head m_head;
};

// Creation functions
template<typename T> 
struct make_tuple_result {
  typedef T type;
};

template<typename T> 
struct make_tuple_result<reference_wrapper<T> > {
  typedef T& type;
};

template<typename... Values> 
tuple<typename make_tuple_result<Values>::type...> 
make_tuple(const Values&... values) {
  return tuple<typename make_tuple_result<Values>::type...>(values...);
}

template<typename... Values> 
tuple<Values&...> tie(Values&... values) {
  return tuple<Values&...>(values...);
}

// Helper classes
template<typename Tuple> struct tuple_size;

template<typename... Values> struct tuple_size<tuple<Values...> > {
  static const int value = sizeof...(Values);
};

template<int I, typename Tuple> struct tuple_element;

template<int I, typename Head, typename... Tail> 
struct tuple_element<I, tuple<Head, Tail...> > {
  typedef typename tuple_element<I-1, tuple<Tail...> >::type type;
};

template<typename Head, typename... Tail> 
struct tuple_element<0, tuple<Head, Tail...> > {
  typedef Head type;
};

// Element access
template<int I, typename Tuple> class get_impl;
template<int I, typename Head, typename... Values> 
class get_impl<I, tuple<Head, Values...> > {
  typedef typename tuple_element<I-1, tuple<Values...> >::type Element;
  typedef typename add_reference<Element>::type RJ; 
  typedef typename add_const_reference<Element>::type PJ;
  typedef get_impl<I-1, tuple<Values...> > Next;
public: 
  static RJ get(tuple<Head, Values...>& t) { return Next::get(t.tail()); }
  static PJ get(const tuple<Head, Values...>& t) { return Next::get(t.tail()); }
};

template<typename Head, typename... Values> 
class get_impl<0, tuple<Head, Values...> > {
  typedef typename add_reference<Head>::type RJ; 
  typedef typename add_const_reference<Head>::type PJ;
public: 
  static RJ get(tuple<Head, Values...>& t) { return t.head(); } 
  static PJ get(const tuple<Head, Values...>& t) { return t.head(); }
};

template<int I, typename... Values> typename add_reference<
typename tuple_element<I, tuple<Values...> >::type >::type
get(tuple<Values...>& t) { 
  return get_impl<I, tuple<Values...> >::get(t);
}

template<int I, typename... Values> typename add_const_reference<
typename tuple_element<I, tuple<Values...> >::type >::type
get(const tuple<Values...>& t) { 
  return get_impl<I, tuple<Values...> >::get(t);
}

// Relational operators
inline bool operator==(const tuple<>&, const tuple<>&) { return true; }

template<typename T, typename... TTail, typename U, typename... UTail> 
bool operator==(const tuple<T, TTail...>& t, const tuple<U, UTail...>& u) {
  return t.head() == u.head() && t.tail() == u.tail();
}

template<typename... TValues, typename... UValues> 
bool operator!=(const tuple<TValues...>& t, const tuple<UValues...>& u) {
  return !(t == u); 
}

inline bool operator<(const tuple<>&, const tuple<>&) { return false; }

template<typename T, typename... TTail, typename U, typename... UTail> 
bool operator<(const tuple<T, TTail...>& t, const tuple<U, UTail...>& u) {
  return (t.head() < u.head() || (!(t.head() < u.head()) && t.tail() < u.tail()));
}

template<typename... TValues, typename... UValues> 
bool operator>(const tuple<TValues...>& t, const tuple<UValues...>& u) {
  return u < t;
}

template<typename... TValues, typename... UValues>
bool operator<=(const tuple<TValues...>& t, const tuple<UValues...>& u) {
  return !(u < t);
}

template<typename... TValues, typename... UValues>
bool operator>=(const tuple<TValues...>& t, const tuple<UValues...>& u) {
  return !(t < u);
}

// make_indices helper
template<int...> struct int_tuple {};
// make_indexes impl is a helper for make_indexes 
template<int I, typename IntTuple, typename... Types> struct make_indexes_impl;

template<int I, int... Indexes, typename T, typename... Types>
struct make_indexes_impl<I, int_tuple<Indexes...>, T, Types...> {
  typedef typename make_indexes_impl<I+1, int_tuple<Indexes..., I>, Types...>::type type;
};

template<int I, int... Indexes> 
struct make_indexes_impl<I, int_tuple<Indexes...> > {
  typedef int_tuple<Indexes...> type; 
};

template<typename... Types>
struct make_indexes : make_indexes_impl<0, int_tuple<>, Types...> { 
}; 

// Bind
template<typename T> struct is_bind_expression {
  static const bool value = false;
};

template<typename T> struct is_placeholder {
  static const int value = 0;
};


template<typename F, typename... BoundArgs> class bound_functor {
  typedef typename make_indexes<BoundArgs...>::type indexes; 
public:
  typedef typename F::result_type result_type; 
  explicit bound_functor(const F& f, const BoundArgs&... bound_args)
    : f(f), bound_args(bound_args...) { } template<typename... Args>
  typename F::result_type operator()(Args&... args);
private: F f;
  tuple<BoundArgs...> bound_args;
};

template<typename F, typename... BoundArgs> 
inline bound_functor<F, BoundArgs...> bind(const F& f, const BoundArgs&... bound_args) {
  return bound_functor<F, BoundArgs...>(f, bound_args...);
}

template<typename F, typename ...BoundArgs>
struct is_bind_expression<bound_functor<F, BoundArgs...> > {
  static const bool value = true;
};

// enable_if helper
template<bool Cond, typename T = void>
struct enable_if;

template<typename T>
struct enable_if<true, T> {
  typedef T type;
};

template<typename T>
struct enable_if<false, T> { };

// safe_tuple_element helper
template<int I, typename Tuple, typename = void>
struct safe_tuple_element { };

template<int I, typename... Values> 
struct safe_tuple_element<I, tuple<Values...>,
                          typename enable_if<(I >= 0 && I < tuple_size<tuple<Values...> >::value)>::type> { 
   typedef typename tuple_element<I, tuple<Values...> >::type type;
};

// mu
template<typename Bound, typename... Args> 
inline typename safe_tuple_element<is_placeholder<Bound>::value -1,
                                   tuple<Args...> >::type 
mu(Bound& bound_arg, const tuple<Args&...>& args) {
  return get<is_placeholder<Bound>::value-1>(args);
}

template<typename T, typename... Args> 
inline T& mu(reference_wrapper<T>& bound_arg, const tuple<Args&...>&) {
  return bound_arg.get();
}

template<typename F, int... Indexes, typename... Args> 
inline typename F::result_type 
unwrap_and_forward(F& f, int_tuple<Indexes...>, const tuple<Args&...>& args) {
  return f(get<Indexes>(args)...);
}

template<typename Bound, typename... Args> 
inline typename enable_if<is_bind_expression<Bound>::value,
                          typename Bound::result_type>::type 
mu(Bound& bound_arg, const tuple<Args&...>& args) {
  typedef typename make_indexes<Args...>::type Indexes; 
  return unwrap_and_forward(bound_arg, Indexes(), args);
}

template<typename T>
struct is_reference_wrapper {
  static const bool value = false;
};

template<typename T>
struct is_reference_wrapper<reference_wrapper<T>> {
  static const bool value = true;
};

template<typename Bound, typename... Args> 
inline typename enable_if<(!is_bind_expression<Bound>::value 
                           && !is_placeholder<Bound>::value 
                           && !is_reference_wrapper<Bound>::value), 
                           Bound&>::type
mu(Bound& bound_arg, const tuple<Args&...>&) {
  return bound_arg;
}

template<typename F, typename... BoundArgs, int... Indexes, typename... Args> 
typename F::result_type apply_functor(F& f, tuple<BoundArgs...>& bound_args, 
                                      int_tuple<Indexes...>, 
                                      const tuple<Args&...>& args) {
  return f(mu(get<Indexes>(bound_args), args)...);
}

template<typename F, typename... BoundArgs> 
template<typename... Args> 
typename F::result_type bound_functor<F, BoundArgs...>::operator()(Args&... args) {
  return apply_functor(f, bound_args, indexes(), tie(args...));
}

template<int N> struct placeholder { };
template<int N>
struct is_placeholder<placeholder<N>> {
  static const int value = N;
};

template<typename T>
struct plus {
  typedef T result_type;

  T operator()(T x, T y) { return x + y; }
};

placeholder<1> _1;

// Test bind
void test_bind() {
  int x = 17;
  int y = 25;
  bind(plus<int>(), x, _1)(y);
}