reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++1y %s -DCXX1Y

struct NonLiteral { NonLiteral(); };

// A type is a literal type if it is:

// [C++1y] - void
constexpr void f() {}
#ifndef CXX1Y
// expected-error@-2 {{'void' is not a literal type}}
#endif

// - a scalar type
constexpr int f1(double) { return 0; }

// - a reference type
struct S { S(); };
constexpr int f2(S &) { return 0; }

struct BeingDefined;
extern BeingDefined beingdefined;
struct BeingDefined { 
  static constexpr BeingDefined& t = beingdefined;
};

// - a class type that has all of the following properties:

// (implied) - it is complete

struct Incomplete; // expected-note 2{{forward declaration of 'Incomplete'}}
template<class T> struct ClassTemp {};

constexpr Incomplete incomplete = {}; // expected-error {{constexpr variable cannot have non-literal type 'const Incomplete'}} expected-note {{incomplete type 'const Incomplete' is not a literal type}}
constexpr Incomplete incomplete2[] = {}; // expected-error {{constexpr variable cannot have non-literal type 'Incomplete const[]'}} expected-note {{incomplete type 'Incomplete const[]' is not a literal type}}
constexpr ClassTemp<int> classtemplate = {};
constexpr ClassTemp<int> classtemplate2[] = {};

//  - it has a trivial destructor
struct UserProvDtor {
  ~UserProvDtor(); // expected-note {{has a user-provided destructor}}
};
constexpr int f(UserProvDtor) { return 0; } // expected-error {{'UserProvDtor' is not a literal type}}
struct NonTrivDtor {
  constexpr NonTrivDtor();
  virtual ~NonTrivDtor() = default; // expected-note {{has a non-trivial destructor}} expected-note {{because it is virtual}}
};
constexpr int f(NonTrivDtor) { return 0; } // expected-error {{'NonTrivDtor' is not a literal type}}
struct NonTrivDtorBase {
  ~NonTrivDtorBase();
};
template<typename T>
struct DerivedFromNonTrivDtor : T { // expected-note {{'DerivedFromNonTrivDtor<NonTrivDtorBase>' is not literal because it has base class 'NonTrivDtorBase' of non-literal type}}
  constexpr DerivedFromNonTrivDtor();
};
constexpr int f(DerivedFromNonTrivDtor<NonTrivDtorBase>) { return 0; } // expected-error {{constexpr function's 1st parameter type 'DerivedFromNonTrivDtor<NonTrivDtorBase>' is not a literal type}}
struct TrivDtor {
  constexpr TrivDtor();
};
constexpr int f(TrivDtor) { return 0; }
struct TrivDefaultedDtor {
  constexpr TrivDefaultedDtor();
  ~TrivDefaultedDtor() = default;
};
constexpr int f(TrivDefaultedDtor) { return 0; }

//  - it is an aggregate type or has at least one constexpr constructor or
//    constexpr constructor template that is not a copy or move constructor
struct Agg {
  int a;
  char *b;
};
constexpr int f3(Agg a) { return a.a; }
struct CtorTemplate {
  template<typename T> constexpr CtorTemplate(T);
};
struct CopyCtorOnly { // expected-note {{'CopyCtorOnly' is not literal because it is not an aggregate and has no constexpr constructors other than copy or move constructors}}
  constexpr CopyCtorOnly(CopyCtorOnly&);
};
constexpr int f(CopyCtorOnly) { return 0; } // expected-error {{'CopyCtorOnly' is not a literal type}}
struct MoveCtorOnly { // expected-note {{no constexpr constructors other than copy or move constructors}}
  constexpr MoveCtorOnly(MoveCtorOnly&&);
};
constexpr int f(MoveCtorOnly) { return 0; } // expected-error {{'MoveCtorOnly' is not a literal type}}
template<typename T>
struct CtorArg {
  constexpr CtorArg(T);
};
constexpr int f(CtorArg<int>) { return 0; } // ok
constexpr int f(CtorArg<NonLiteral>) { return 0; } // ok, ctor is still constexpr
// We have a special-case diagnostic for classes with virtual base classes.
struct VBase {};
struct HasVBase : virtual VBase {}; // expected-note 2{{virtual base class declared here}}
struct Derived : HasVBase {
  constexpr Derived() {} // expected-error {{constexpr constructor not allowed in struct with virtual base class}}
};
template<typename T> struct DerivedFromVBase : T { // expected-note {{struct with virtual base class is not a literal type}}
  constexpr DerivedFromVBase();
};
constexpr int f(DerivedFromVBase<HasVBase>) {} // expected-error {{constexpr function's 1st parameter type 'DerivedFromVBase<HasVBase>' is not a literal type}}
template<typename T> constexpr DerivedFromVBase<T>::DerivedFromVBase() : T() {}
constexpr int nVBase = (DerivedFromVBase<HasVBase>(), 0); // expected-error {{constant expression}} expected-note {{cannot construct object of type 'DerivedFromVBase<HasVBase>' with virtual base class in a constant expression}}

//  - it has all non-static data members and base classes of literal types
struct NonLitMember {
  S s; // expected-note {{has data member 's' of non-literal type 'S'}}
};
constexpr int f(NonLitMember) {} // expected-error {{1st parameter type 'NonLitMember' is not a literal type}}
struct NonLitBase :
  S { // expected-note {{base class 'S' of non-literal type}}
  constexpr NonLitBase();
};
constexpr int f(NonLitBase) { return 0; } // expected-error {{'NonLitBase' is not a literal type}}
struct LitMemBase : Agg {
  Agg agg;
};
template<typename T>
struct MemberType {
  T t; // expected-note {{'MemberType<NonLiteral>' is not literal because it has data member 't' of non-literal type 'NonLiteral'}}
  constexpr MemberType();
};
constexpr int f(MemberType<int>) { return 0; }
constexpr int f(MemberType<NonLiteral>) { return 0; } // expected-error {{not a literal type}}

// - an array of literal type [C++1y] other than an array of runtime bound
struct ArrGood {
  Agg agg[24];
  double d[12];
  TrivDtor td[3];
  TrivDefaultedDtor tdd[3];
};
constexpr int f(ArrGood) { return 0; }

struct ArrBad {
  S s[3]; // expected-note {{data member 's' of non-literal type 'S [3]'}}
};
constexpr int f(ArrBad) { return 0; } // expected-error {{1st parameter type 'ArrBad' is not a literal type}}

constexpr int arb(int n) {
  int a[n]; // expected-error {{variable of non-literal type 'int [n]' cannot be defined in a constexpr function}}
}
constexpr long Overflow[ // expected-error {{constexpr variable cannot have non-literal type 'long const[(1 << 30) << 2]'}}
    (1 << 30) << 2]{};   // expected-warning {{requires 34 bits to represent}}

namespace inherited_ctor {
  struct A { constexpr A(int); };
  struct B : A {
    B();
    using A::A;
  };
  constexpr int f(B) { return 0; } // ok

  struct C { constexpr C(int); };
  struct D : C { // expected-note {{because}}
    D(int);
    using C::C;
  };
  constexpr int f(D) { return 0; } // expected-error {{not a literal type}}

  // This one is a bit odd: F inherits E's default constructor, which is
  // constexpr. Because F has a constructor of its own, it doesn't declare a
  // default constructor hiding E's one.
  struct E {};
  struct F : E {
    F(int);
    using E::E;
  };
  constexpr int f(F) { return 0; }

  // FIXME: Is this really the right behavior? We presumably should be checking
  // whether the inherited constructor would be a copy or move constructor for
  // the derived class, not for the base class.
  struct G { constexpr G(const G&); };
  struct H : G { // expected-note {{because}}
    using G::G;
  };
  constexpr int f(H) { return 0; } // expected-error {{not a literal type}}

  struct J;
  struct I { constexpr I(const J&); };
  struct J : I {
    using I::I;
  };
  constexpr int f(J) { return 0; }
}