1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
| // RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++1y %s -DCXX1Y
struct NonLiteral { NonLiteral(); };
// A type is a literal type if it is:
// [C++1y] - void
constexpr void f() {}
#ifndef CXX1Y
// expected-error@-2 {{'void' is not a literal type}}
#endif
// - a scalar type
constexpr int f1(double) { return 0; }
// - a reference type
struct S { S(); };
constexpr int f2(S &) { return 0; }
struct BeingDefined;
extern BeingDefined beingdefined;
struct BeingDefined {
static constexpr BeingDefined& t = beingdefined;
};
// - a class type that has all of the following properties:
// (implied) - it is complete
struct Incomplete; // expected-note 2{{forward declaration of 'Incomplete'}}
template<class T> struct ClassTemp {};
constexpr Incomplete incomplete = {}; // expected-error {{constexpr variable cannot have non-literal type 'const Incomplete'}} expected-note {{incomplete type 'const Incomplete' is not a literal type}}
constexpr Incomplete incomplete2[] = {}; // expected-error {{constexpr variable cannot have non-literal type 'Incomplete const[]'}} expected-note {{incomplete type 'Incomplete const[]' is not a literal type}}
constexpr ClassTemp<int> classtemplate = {};
constexpr ClassTemp<int> classtemplate2[] = {};
// - it has a trivial destructor
struct UserProvDtor {
~UserProvDtor(); // expected-note {{has a user-provided destructor}}
};
constexpr int f(UserProvDtor) { return 0; } // expected-error {{'UserProvDtor' is not a literal type}}
struct NonTrivDtor {
constexpr NonTrivDtor();
virtual ~NonTrivDtor() = default; // expected-note {{has a non-trivial destructor}} expected-note {{because it is virtual}}
};
constexpr int f(NonTrivDtor) { return 0; } // expected-error {{'NonTrivDtor' is not a literal type}}
struct NonTrivDtorBase {
~NonTrivDtorBase();
};
template<typename T>
struct DerivedFromNonTrivDtor : T { // expected-note {{'DerivedFromNonTrivDtor<NonTrivDtorBase>' is not literal because it has base class 'NonTrivDtorBase' of non-literal type}}
constexpr DerivedFromNonTrivDtor();
};
constexpr int f(DerivedFromNonTrivDtor<NonTrivDtorBase>) { return 0; } // expected-error {{constexpr function's 1st parameter type 'DerivedFromNonTrivDtor<NonTrivDtorBase>' is not a literal type}}
struct TrivDtor {
constexpr TrivDtor();
};
constexpr int f(TrivDtor) { return 0; }
struct TrivDefaultedDtor {
constexpr TrivDefaultedDtor();
~TrivDefaultedDtor() = default;
};
constexpr int f(TrivDefaultedDtor) { return 0; }
// - it is an aggregate type or has at least one constexpr constructor or
// constexpr constructor template that is not a copy or move constructor
struct Agg {
int a;
char *b;
};
constexpr int f3(Agg a) { return a.a; }
struct CtorTemplate {
template<typename T> constexpr CtorTemplate(T);
};
struct CopyCtorOnly { // expected-note {{'CopyCtorOnly' is not literal because it is not an aggregate and has no constexpr constructors other than copy or move constructors}}
constexpr CopyCtorOnly(CopyCtorOnly&);
};
constexpr int f(CopyCtorOnly) { return 0; } // expected-error {{'CopyCtorOnly' is not a literal type}}
struct MoveCtorOnly { // expected-note {{no constexpr constructors other than copy or move constructors}}
constexpr MoveCtorOnly(MoveCtorOnly&&);
};
constexpr int f(MoveCtorOnly) { return 0; } // expected-error {{'MoveCtorOnly' is not a literal type}}
template<typename T>
struct CtorArg {
constexpr CtorArg(T);
};
constexpr int f(CtorArg<int>) { return 0; } // ok
constexpr int f(CtorArg<NonLiteral>) { return 0; } // ok, ctor is still constexpr
// We have a special-case diagnostic for classes with virtual base classes.
struct VBase {};
struct HasVBase : virtual VBase {}; // expected-note 2{{virtual base class declared here}}
struct Derived : HasVBase {
constexpr Derived() {} // expected-error {{constexpr constructor not allowed in struct with virtual base class}}
};
template<typename T> struct DerivedFromVBase : T { // expected-note {{struct with virtual base class is not a literal type}}
constexpr DerivedFromVBase();
};
constexpr int f(DerivedFromVBase<HasVBase>) {} // expected-error {{constexpr function's 1st parameter type 'DerivedFromVBase<HasVBase>' is not a literal type}}
template<typename T> constexpr DerivedFromVBase<T>::DerivedFromVBase() : T() {}
constexpr int nVBase = (DerivedFromVBase<HasVBase>(), 0); // expected-error {{constant expression}} expected-note {{cannot construct object of type 'DerivedFromVBase<HasVBase>' with virtual base class in a constant expression}}
// - it has all non-static data members and base classes of literal types
struct NonLitMember {
S s; // expected-note {{has data member 's' of non-literal type 'S'}}
};
constexpr int f(NonLitMember) {} // expected-error {{1st parameter type 'NonLitMember' is not a literal type}}
struct NonLitBase :
S { // expected-note {{base class 'S' of non-literal type}}
constexpr NonLitBase();
};
constexpr int f(NonLitBase) { return 0; } // expected-error {{'NonLitBase' is not a literal type}}
struct LitMemBase : Agg {
Agg agg;
};
template<typename T>
struct MemberType {
T t; // expected-note {{'MemberType<NonLiteral>' is not literal because it has data member 't' of non-literal type 'NonLiteral'}}
constexpr MemberType();
};
constexpr int f(MemberType<int>) { return 0; }
constexpr int f(MemberType<NonLiteral>) { return 0; } // expected-error {{not a literal type}}
// - an array of literal type [C++1y] other than an array of runtime bound
struct ArrGood {
Agg agg[24];
double d[12];
TrivDtor td[3];
TrivDefaultedDtor tdd[3];
};
constexpr int f(ArrGood) { return 0; }
struct ArrBad {
S s[3]; // expected-note {{data member 's' of non-literal type 'S [3]'}}
};
constexpr int f(ArrBad) { return 0; } // expected-error {{1st parameter type 'ArrBad' is not a literal type}}
constexpr int arb(int n) {
int a[n]; // expected-error {{variable of non-literal type 'int [n]' cannot be defined in a constexpr function}}
}
constexpr long Overflow[ // expected-error {{constexpr variable cannot have non-literal type 'long const[(1 << 30) << 2]'}}
(1 << 30) << 2]{}; // expected-warning {{requires 34 bits to represent}}
namespace inherited_ctor {
struct A { constexpr A(int); };
struct B : A {
B();
using A::A;
};
constexpr int f(B) { return 0; } // ok
struct C { constexpr C(int); };
struct D : C { // expected-note {{because}}
D(int);
using C::C;
};
constexpr int f(D) { return 0; } // expected-error {{not a literal type}}
// This one is a bit odd: F inherits E's default constructor, which is
// constexpr. Because F has a constructor of its own, it doesn't declare a
// default constructor hiding E's one.
struct E {};
struct F : E {
F(int);
using E::E;
};
constexpr int f(F) { return 0; }
// FIXME: Is this really the right behavior? We presumably should be checking
// whether the inherited constructor would be a copy or move constructor for
// the derived class, not for the base class.
struct G { constexpr G(const G&); };
struct H : G { // expected-note {{because}}
using G::G;
};
constexpr int f(H) { return 0; } // expected-error {{not a literal type}}
struct J;
struct I { constexpr I(const J&); };
struct J : I {
using I::I;
};
constexpr int f(J) { return 0; }
}
|