reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++17 %s

// Attempt to test each rule for forming associated namespaces
// and classes as described in [basic.lookup.argdep]p2.

// fundamental type: no associated namespace and no associated class
namespace adl_fundamental_type {
  constexpr int g(char) { return 1; } // #1
  template <typename T> constexpr int foo(T t) { return g(t); }
  constexpr int g(int) { return 2; } // #2 not found
  void test() {
    static_assert(foo(0) == 1); // ok, #1
  }
}

// class type:
//   associated classes: itself, the class of which it is a member (if any),
//                       direct and indirect base classes
//   associated namespaces: innermost enclosing namespaces of associated classes
namespace adl_class_type {
  // associated class: itself, simple case
  namespace X1 {
    namespace N {
      struct S {};
      void f(S); // found
    }
    void g(N::S); // not found
  };
  void test1() {
    f(X1::N::S{}); // ok
    g(X1::N::S{}); // expected-error {{use of undeclared identifier}}
  }

  // associated class: itself, local type
  namespace X2 {
    auto foo() {
      struct S {} s;
      return s;
    }
    using S = decltype(foo());
    void f(S); // #1
  }
  void test2() {
    f(X2::S{}); // This is well-formed; X2 is the innermost enclosing namespace
                // of the local struct S. Calls #1.
  }

  // associated class: the parent class
  namespace X3 {
    struct S {
      struct T {};
      friend void f(T);
    };
  }
  void test3() {
    f(X3::S::T{}); // ok
  }

  // associated class: direct and indirect base classes
  namespace X4 {
    namespace IndirectBaseNamespace {
      struct IndirectBase {};
      void f(IndirectBase); // #1
    }
    namespace DirectBaseNamespace {
      struct DirectBase : IndirectBaseNamespace::IndirectBase {};
      void g(DirectBase); // #2
    }
    struct S : DirectBaseNamespace::DirectBase {};
  }
  void test4() {
    f(X4::S{}); // ok, #1
    g(X4::S{}); // ok, #2
  }

  // associated class: itself, lambda
  namespace X5 {
    namespace N {
      auto get_lambda() { return [](){}; }
      void f(decltype(get_lambda()));
    }

    void test5() {
      auto lambda = N::get_lambda();
      f(lambda); // ok
    }
  }

  // The parameter types and return type of a lambda's operator() do not
  // contribute to the associated namespaces and classes of the lambda itself.
  namespace X6 {
    namespace N {
      struct A {};
      template<class T> constexpr int f(T) { return 1; }
    }

    constexpr int f(N::A (*)()) { return 2; }
    constexpr int f(void (*)(N::A)) { return 3; }

    void test() {
      constexpr auto lambda = []() -> N::A { return {}; };
      static_assert(f(lambda) == 2);

      constexpr auto lambda2 = [](N::A) {};
      static_assert(f(lambda2) == 3);
    }
  }
} // namespace adl_class_type

// class template specialization: as for class type plus
//   for non-type template arguments:
//    - nothing
//   for type template arguments:
//    - associated namespaces and classes of the type template arguments
//   for template template arguments:
//    - namespaces of which template template arguments are member of
//    - classes of which member template used as template template arguments
//      are member of
namespace adl_class_template_specialization_type {
  // non-type template argument
  namespace X1 {
    namespace BaseNamespace { struct Base {}; }
    namespace N { struct S : BaseNamespace::Base {}; }
    template <N::S *> struct C {};
    namespace N {
      template <S *p> void X1_f(C<p>); // #1
    }
    namespace BaseNamespace {
      template <N::S *p> void X1_g(C<p>); // #2
    }
    template <N::S *p> void X1_h(C<p>); // #3
  }
  void test1() {
    constexpr X1::N::S *p = nullptr;
    X1::C<p> c;
    X1_f(c); // N is not added to the set of associated namespaces
             // and #1 is not found...
             // expected-error@-2 {{use of undeclared identifier}}
    X1_g(c); // ... nor is #2 ...
             // expected-error@-1 {{use of undeclared identifier}}
    X1_h(c); // ... but the namespace X1 is added and #3 is found.
  }

  // type template argument
  namespace X2 {
    template <typename T> struct C {};
    namespace BaseNamespace { struct Base {}; }
    namespace N { struct S : BaseNamespace::Base {}; }
    namespace N {
      template <typename T> void X2_f(C<T>); // #1
    }
    namespace BaseNamespace {
      template <typename T> void X2_g(C<T>); // #2
    }
    template <typename T> void X2_h(C<T>); // #2
  }
  void test2() {
    X2::C<X2::N::S> c;
    X2_f(c); // N is added to the set of associated namespaces and #1 is found.
    X2_g(c); // Similarly BaseNamespace is added and #2 is found.
    X2_h(c); // As before, X2 is also added and #3 is found.
  }

  // template template argument
  namespace X3 {
    template <template <typename> class TT> struct C {};
    namespace N {
      template <typename T> struct Z {};
      void X3_f(C<Z>); // #1
    }
    struct M {
      template <typename T> struct Z {};
      friend void X3_g(C<Z>); // #2
    };
  }
  void test3() {
    X3::C<X3::N::Z> c1;
    X3::C<X3::M::Z> c2;
    X3_f(c1); // ok, namespace N is added, #1
    X3_g(c2); // ok, struct M is added, #2
  }
}

// enumeration type:
//  associated namespace: innermost enclosing namespace of its declaration.
//  associated class: if the enumeration is a class member, the member's class.
namespace adl_enumeration_type {
  namespace N {
    enum E : int;
    void f(E);
    struct S {
      enum F : int;
      friend void g(F);
    };
    auto foo() {
      enum G {} g;
      return g;
    }
    using G = decltype(foo());
    void h(G);
  }

  void test() {
    N::E e;
    f(e); // ok
    N::S::F f;
    g(f); // ok
    N::G g;
    h(g); // ok

  }
}

// pointer and reference type:
//  associated namespaces and classes of the pointee type
// array type:
//  associated namespaces and classes of the base type
namespace adl_point_array_reference_type {
  namespace N {
    struct S {};
    void f(S *);
    void f(S &);
  }

  void test() {
    N::S *p;
    f(p); // ok
    extern N::S &r;
    f(r); // ok
    N::S a[2];
    f(a); // ok
  }
}

// function type:
//  associated namespaces and classes of the function parameter types
//  and the return type.
namespace adl_function_type {
  namespace M { struct T; }
  namespace N {
    struct S {};
    void f(S (*)(M::T));
  };
  namespace M {
    struct T {};
    void g(N::S (*)(T));
  }

  void test() {
    extern N::S x(M::T);
    f(x); // ok
    g(x); // ok
  }
}

// pointer to member function:
//  associated namespaces and classes of the class, parameter types
//  and return type.
namespace adl_pointer_to_member_function {
  namespace M { struct C; }
  namespace L { struct T; }
  namespace N {
    struct S {};
    void f(N::S (M::C::*)(L::T));
  }
  namespace L {
    struct T {};
    void g(N::S (M::C::*)(L::T));
  }
  namespace M {
    struct C {};
    void h(N::S (M::C::*)(L::T));
  }

  void test() {
    N::S (M::C::*p)(L::T);
    f(p); // ok
    g(p); // ok
    h(p); // ok
  }
}

// pointer to member:
//  associated namespaces and classes of the class and of the member type.
namespace adl_pointer_to_member {
  namespace M { struct C; }
  namespace N {
    struct S {};
    void f(N::S (M::C::*));
  }
  namespace M {
    struct C {};
    void g(N::S (M::C::*));
  }

  void test() {
    N::S (M::C::*p);
    f(p); // ok
    g(p); // ok
  }
}

// [...] if the argument is the name or address of a set of overloaded
// functions and/or function templates, its associated classes and namespaces
// are the union of those associated with each of the members of the set,
// i.e., the classes and namespaces associated with its parameter types and
// return type.
//
// Additionally, if the aforementioned set of overloaded functions is named
// with a template-id, its associated classes and namespaces also include
// those of its type template-arguments and its template template-arguments.
//
// CWG 33 for the union rule. CWG 997 for the template-id rule.
namespace adl_overload_set {
  namespace N {
    struct S {};
    constexpr int f(int (*g)()) { return g(); }
    // expected-note@-1 2{{'N::f' declared here}}
    template <typename T> struct Q;
  }

  constexpr int g1() { return 1; }
  constexpr int g1(N::S) { return 2; }

  template <typename T> constexpr int g2() { return 3; }

  // Inspired from CWG 997.
  constexpr int g3() { return 4; }
  template <typename T> constexpr int g3(T, N::Q<T>) { return 5; }

  void test() {
    static_assert(f(g1) == 1, "");        // Well-formed from the union rule above
    static_assert(f(g2<N::S>) == 3, "");  // FIXME: Well-formed from the template-id rule above.
                                          // expected-error@-1 {{use of undeclared}}

    // A objection was raised during review against implementing the
    // template-id rule. Currently only GCC implements it. Implementing
    // it would weaken the argument to remove it in the future since
    // actual real code might start to depend on it.

    static_assert(f(g3) == 4, "");        // FIXME: Also well-formed from the union rule.
                                          // expected-error@-1 {{use of undeclared}}
  }
}