reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
//===--- LoopUnrolling.cpp - Unroll loops -----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file contains functions which are used to decide if a loop worth to be
/// unrolled. Moreover, these functions manages the stack of loop which is
/// tracked by the ProgramState.
///
//===----------------------------------------------------------------------===//

#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/LoopUnrolling.h"

using namespace clang;
using namespace ento;
using namespace clang::ast_matchers;

static const int MAXIMUM_STEP_UNROLLED = 128;

struct LoopState {
private:
  enum Kind { Normal, Unrolled } K;
  const Stmt *LoopStmt;
  const LocationContext *LCtx;
  unsigned maxStep;
  LoopState(Kind InK, const Stmt *S, const LocationContext *L, unsigned N)
      : K(InK), LoopStmt(S), LCtx(L), maxStep(N) {}

public:
  static LoopState getNormal(const Stmt *S, const LocationContext *L,
                             unsigned N) {
    return LoopState(Normal, S, L, N);
  }
  static LoopState getUnrolled(const Stmt *S, const LocationContext *L,
                               unsigned N) {
    return LoopState(Unrolled, S, L, N);
  }
  bool isUnrolled() const { return K == Unrolled; }
  unsigned getMaxStep() const { return maxStep; }
  const Stmt *getLoopStmt() const { return LoopStmt; }
  const LocationContext *getLocationContext() const { return LCtx; }
  bool operator==(const LoopState &X) const {
    return K == X.K && LoopStmt == X.LoopStmt;
  }
  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddInteger(K);
    ID.AddPointer(LoopStmt);
    ID.AddPointer(LCtx);
    ID.AddInteger(maxStep);
  }
};

// The tracked stack of loops. The stack indicates that which loops the
// simulated element contained by. The loops are marked depending if we decided
// to unroll them.
// TODO: The loop stack should not need to be in the program state since it is
// lexical in nature. Instead, the stack of loops should be tracked in the
// LocationContext.
REGISTER_LIST_WITH_PROGRAMSTATE(LoopStack, LoopState)

namespace clang {
namespace ento {

static bool isLoopStmt(const Stmt *S) {
  return S && (isa<ForStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S));
}

ProgramStateRef processLoopEnd(const Stmt *LoopStmt, ProgramStateRef State) {
  auto LS = State->get<LoopStack>();
  if (!LS.isEmpty() && LS.getHead().getLoopStmt() == LoopStmt)
    State = State->set<LoopStack>(LS.getTail());
  return State;
}

static internal::Matcher<Stmt> simpleCondition(StringRef BindName) {
  return binaryOperator(anyOf(hasOperatorName("<"), hasOperatorName(">"),
                              hasOperatorName("<="), hasOperatorName(">="),
                              hasOperatorName("!=")),
                        hasEitherOperand(ignoringParenImpCasts(declRefExpr(
                            to(varDecl(hasType(isInteger())).bind(BindName))))),
                        hasEitherOperand(ignoringParenImpCasts(
                            integerLiteral().bind("boundNum"))))
      .bind("conditionOperator");
}

static internal::Matcher<Stmt>
changeIntBoundNode(internal::Matcher<Decl> VarNodeMatcher) {
  return anyOf(
      unaryOperator(anyOf(hasOperatorName("--"), hasOperatorName("++")),
                    hasUnaryOperand(ignoringParenImpCasts(
                        declRefExpr(to(varDecl(VarNodeMatcher)))))),
      binaryOperator(isAssignmentOperator(),
                     hasLHS(ignoringParenImpCasts(
                         declRefExpr(to(varDecl(VarNodeMatcher)))))));
}

static internal::Matcher<Stmt>
callByRef(internal::Matcher<Decl> VarNodeMatcher) {
  return callExpr(forEachArgumentWithParam(
      declRefExpr(to(varDecl(VarNodeMatcher))),
      parmVarDecl(hasType(references(qualType(unless(isConstQualified())))))));
}

static internal::Matcher<Stmt>
assignedToRef(internal::Matcher<Decl> VarNodeMatcher) {
  return declStmt(hasDescendant(varDecl(
      allOf(hasType(referenceType()),
            hasInitializer(anyOf(
                initListExpr(has(declRefExpr(to(varDecl(VarNodeMatcher))))),
                declRefExpr(to(varDecl(VarNodeMatcher)))))))));
}

static internal::Matcher<Stmt>
getAddrTo(internal::Matcher<Decl> VarNodeMatcher) {
  return unaryOperator(
      hasOperatorName("&"),
      hasUnaryOperand(declRefExpr(hasDeclaration(VarNodeMatcher))));
}

static internal::Matcher<Stmt> hasSuspiciousStmt(StringRef NodeName) {
  return hasDescendant(stmt(
      anyOf(gotoStmt(), switchStmt(), returnStmt(),
            // Escaping and not known mutation of the loop counter is handled
            // by exclusion of assigning and address-of operators and
            // pass-by-ref function calls on the loop counter from the body.
            changeIntBoundNode(equalsBoundNode(NodeName)),
            callByRef(equalsBoundNode(NodeName)),
            getAddrTo(equalsBoundNode(NodeName)),
            assignedToRef(equalsBoundNode(NodeName)))));
}

static internal::Matcher<Stmt> forLoopMatcher() {
  return forStmt(
             hasCondition(simpleCondition("initVarName")),
             // Initialization should match the form: 'int i = 6' or 'i = 42'.
             hasLoopInit(
                 anyOf(declStmt(hasSingleDecl(
                           varDecl(allOf(hasInitializer(ignoringParenImpCasts(
                                             integerLiteral().bind("initNum"))),
                                         equalsBoundNode("initVarName"))))),
                       binaryOperator(hasLHS(declRefExpr(to(varDecl(
                                          equalsBoundNode("initVarName"))))),
                                      hasRHS(ignoringParenImpCasts(
                                          integerLiteral().bind("initNum")))))),
             // Incrementation should be a simple increment or decrement
             // operator call.
             hasIncrement(unaryOperator(
                 anyOf(hasOperatorName("++"), hasOperatorName("--")),
                 hasUnaryOperand(declRefExpr(
                     to(varDecl(allOf(equalsBoundNode("initVarName"),
                                      hasType(isInteger())))))))),
             unless(hasBody(hasSuspiciousStmt("initVarName")))).bind("forLoop");
}

static bool isPossiblyEscaped(const VarDecl *VD, ExplodedNode *N) {
  // Global variables assumed as escaped variables.
  if (VD->hasGlobalStorage())
    return true;

  while (!N->pred_empty()) {
    // FIXME: getStmtForDiagnostics() does nasty things in order to provide
    // a valid statement for body farms, do we need this behavior here?
    const Stmt *S = N->getStmtForDiagnostics();
    if (!S) {
      N = N->getFirstPred();
      continue;
    }

    if (const DeclStmt *DS = dyn_cast<DeclStmt>(S)) {
      for (const Decl *D : DS->decls()) {
        // Once we reach the declaration of the VD we can return.
        if (D->getCanonicalDecl() == VD)
          return false;
      }
    }
    // Check the usage of the pass-by-ref function calls and adress-of operator
    // on VD and reference initialized by VD.
    ASTContext &ASTCtx =
        N->getLocationContext()->getAnalysisDeclContext()->getASTContext();
    auto Match =
        match(stmt(anyOf(callByRef(equalsNode(VD)), getAddrTo(equalsNode(VD)),
                         assignedToRef(equalsNode(VD)))),
              *S, ASTCtx);
    if (!Match.empty())
      return true;

    N = N->getFirstPred();
  }
  llvm_unreachable("Reached root without finding the declaration of VD");
}

bool shouldCompletelyUnroll(const Stmt *LoopStmt, ASTContext &ASTCtx,
                            ExplodedNode *Pred, unsigned &maxStep) {

  if (!isLoopStmt(LoopStmt))
    return false;

  // TODO: Match the cases where the bound is not a concrete literal but an
  // integer with known value
  auto Matches = match(forLoopMatcher(), *LoopStmt, ASTCtx);
  if (Matches.empty())
    return false;

  auto CounterVar = Matches[0].getNodeAs<VarDecl>("initVarName");
  llvm::APInt BoundNum =
      Matches[0].getNodeAs<IntegerLiteral>("boundNum")->getValue();
  llvm::APInt InitNum =
      Matches[0].getNodeAs<IntegerLiteral>("initNum")->getValue();
  auto CondOp = Matches[0].getNodeAs<BinaryOperator>("conditionOperator");
  if (InitNum.getBitWidth() != BoundNum.getBitWidth()) {
    InitNum = InitNum.zextOrSelf(BoundNum.getBitWidth());
    BoundNum = BoundNum.zextOrSelf(InitNum.getBitWidth());
  }

  if (CondOp->getOpcode() == BO_GE || CondOp->getOpcode() == BO_LE)
    maxStep = (BoundNum - InitNum + 1).abs().getZExtValue();
  else
    maxStep = (BoundNum - InitNum).abs().getZExtValue();

  // Check if the counter of the loop is not escaped before.
  return !isPossiblyEscaped(CounterVar->getCanonicalDecl(), Pred);
}

bool madeNewBranch(ExplodedNode *N, const Stmt *LoopStmt) {
  const Stmt *S = nullptr;
  while (!N->pred_empty()) {
    if (N->succ_size() > 1)
      return true;

    ProgramPoint P = N->getLocation();
    if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>())
      S = BE->getBlock()->getTerminatorStmt();

    if (S == LoopStmt)
      return false;

    N = N->getFirstPred();
  }

  llvm_unreachable("Reached root without encountering the previous step");
}

// updateLoopStack is called on every basic block, therefore it needs to be fast
ProgramStateRef updateLoopStack(const Stmt *LoopStmt, ASTContext &ASTCtx,
                                ExplodedNode *Pred, unsigned maxVisitOnPath) {
  auto State = Pred->getState();
  auto LCtx = Pred->getLocationContext();

  if (!isLoopStmt(LoopStmt))
    return State;

  auto LS = State->get<LoopStack>();
  if (!LS.isEmpty() && LoopStmt == LS.getHead().getLoopStmt() &&
      LCtx == LS.getHead().getLocationContext()) {
    if (LS.getHead().isUnrolled() && madeNewBranch(Pred, LoopStmt)) {
      State = State->set<LoopStack>(LS.getTail());
      State = State->add<LoopStack>(
          LoopState::getNormal(LoopStmt, LCtx, maxVisitOnPath));
    }
    return State;
  }
  unsigned maxStep;
  if (!shouldCompletelyUnroll(LoopStmt, ASTCtx, Pred, maxStep)) {
    State = State->add<LoopStack>(
        LoopState::getNormal(LoopStmt, LCtx, maxVisitOnPath));
    return State;
  }

  unsigned outerStep = (LS.isEmpty() ? 1 : LS.getHead().getMaxStep());

  unsigned innerMaxStep = maxStep * outerStep;
  if (innerMaxStep > MAXIMUM_STEP_UNROLLED)
    State = State->add<LoopStack>(
        LoopState::getNormal(LoopStmt, LCtx, maxVisitOnPath));
  else
    State = State->add<LoopStack>(
        LoopState::getUnrolled(LoopStmt, LCtx, innerMaxStep));
  return State;
}

bool isUnrolledState(ProgramStateRef State) {
  auto LS = State->get<LoopStack>();
  if (LS.isEmpty() || !LS.getHead().isUnrolled())
    return false;
  return true;
}
}
}