reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Constant Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CodeGenFunction.h"
#include "CGCXXABI.h"
#include "CGObjCRuntime.h"
#include "CGRecordLayout.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "TargetInfo.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
using namespace clang;
using namespace CodeGen;

//===----------------------------------------------------------------------===//
//                            ConstantAggregateBuilder
//===----------------------------------------------------------------------===//

namespace {
class ConstExprEmitter;

struct ConstantAggregateBuilderUtils {
  CodeGenModule &CGM;

  ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}

  CharUnits getAlignment(const llvm::Constant *C) const {
    return CharUnits::fromQuantity(
        CGM.getDataLayout().getABITypeAlignment(C->getType()));
  }

  CharUnits getSize(llvm::Type *Ty) const {
    return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
  }

  CharUnits getSize(const llvm::Constant *C) const {
    return getSize(C->getType());
  }

  llvm::Constant *getPadding(CharUnits PadSize) const {
    llvm::Type *Ty = CGM.Int8Ty;
    if (PadSize > CharUnits::One())
      Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
    return llvm::UndefValue::get(Ty);
  }

  llvm::Constant *getZeroes(CharUnits ZeroSize) const {
    llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity());
    return llvm::ConstantAggregateZero::get(Ty);
  }
};

/// Incremental builder for an llvm::Constant* holding a struct or array
/// constant.
class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
  /// The elements of the constant. These two arrays must have the same size;
  /// Offsets[i] describes the offset of Elems[i] within the constant. The
  /// elements are kept in increasing offset order, and we ensure that there
  /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
  ///
  /// This may contain explicit padding elements (in order to create a
  /// natural layout), but need not. Gaps between elements are implicitly
  /// considered to be filled with undef.
  llvm::SmallVector<llvm::Constant*, 32> Elems;
  llvm::SmallVector<CharUnits, 32> Offsets;

  /// The size of the constant (the maximum end offset of any added element).
  /// May be larger than the end of Elems.back() if we split the last element
  /// and removed some trailing undefs.
  CharUnits Size = CharUnits::Zero();

  /// This is true only if laying out Elems in order as the elements of a
  /// non-packed LLVM struct will give the correct layout.
  bool NaturalLayout = true;

  bool split(size_t Index, CharUnits Hint);
  Optional<size_t> splitAt(CharUnits Pos);

  static llvm::Constant *buildFrom(CodeGenModule &CGM,
                                   ArrayRef<llvm::Constant *> Elems,
                                   ArrayRef<CharUnits> Offsets,
                                   CharUnits StartOffset, CharUnits Size,
                                   bool NaturalLayout, llvm::Type *DesiredTy,
                                   bool AllowOversized);

public:
  ConstantAggregateBuilder(CodeGenModule &CGM)
      : ConstantAggregateBuilderUtils(CGM) {}

  /// Update or overwrite the value starting at \p Offset with \c C.
  ///
  /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
  ///        a constant that has already been added. This flag is only used to
  ///        detect bugs.
  bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);

  /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
  bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);

  /// Attempt to condense the value starting at \p Offset to a constant of type
  /// \p DesiredTy.
  void condense(CharUnits Offset, llvm::Type *DesiredTy);

  /// Produce a constant representing the entire accumulated value, ideally of
  /// the specified type. If \p AllowOversized, the constant might be larger
  /// than implied by \p DesiredTy (eg, if there is a flexible array member).
  /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
  /// even if we can't represent it as that type.
  llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
    return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
                     NaturalLayout, DesiredTy, AllowOversized);
  }
};

template<typename Container, typename Range = std::initializer_list<
                                 typename Container::value_type>>
static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
  assert(BeginOff <= EndOff && "invalid replacement range");
  llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
}

bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
                          bool AllowOverwrite) {
  // Common case: appending to a layout.
  if (Offset >= Size) {
    CharUnits Align = getAlignment(C);
    CharUnits AlignedSize = Size.alignTo(Align);
    if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
      NaturalLayout = false;
    else if (AlignedSize < Offset) {
      Elems.push_back(getPadding(Offset - Size));
      Offsets.push_back(Size);
    }
    Elems.push_back(C);
    Offsets.push_back(Offset);
    Size = Offset + getSize(C);
    return true;
  }

  // Uncommon case: constant overlaps what we've already created.
  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
  if (!FirstElemToReplace)
    return false;

  CharUnits CSize = getSize(C);
  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
  if (!LastElemToReplace)
    return false;

  assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
         "unexpectedly overwriting field");

  replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
  replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
  Size = std::max(Size, Offset + CSize);
  NaturalLayout = false;
  return true;
}

bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
                              bool AllowOverwrite) {
  const ASTContext &Context = CGM.getContext();
  const uint64_t CharWidth = CGM.getContext().getCharWidth();

  // Offset of where we want the first bit to go within the bits of the
  // current char.
  unsigned OffsetWithinChar = OffsetInBits % CharWidth;

  // We split bit-fields up into individual bytes. Walk over the bytes and
  // update them.
  for (CharUnits OffsetInChars =
           Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
       /**/; ++OffsetInChars) {
    // Number of bits we want to fill in this char.
    unsigned WantedBits =
        std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);

    // Get a char containing the bits we want in the right places. The other
    // bits have unspecified values.
    llvm::APInt BitsThisChar = Bits;
    if (BitsThisChar.getBitWidth() < CharWidth)
      BitsThisChar = BitsThisChar.zext(CharWidth);
    if (CGM.getDataLayout().isBigEndian()) {
      // Figure out how much to shift by. We may need to left-shift if we have
      // less than one byte of Bits left.
      int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
      if (Shift > 0)
        BitsThisChar.lshrInPlace(Shift);
      else if (Shift < 0)
        BitsThisChar = BitsThisChar.shl(-Shift);
    } else {
      BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
    }
    if (BitsThisChar.getBitWidth() > CharWidth)
      BitsThisChar = BitsThisChar.trunc(CharWidth);

    if (WantedBits == CharWidth) {
      // Got a full byte: just add it directly.
      add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
          OffsetInChars, AllowOverwrite);
    } else {
      // Partial byte: update the existing integer if there is one. If we
      // can't split out a 1-CharUnit range to update, then we can't add
      // these bits and fail the entire constant emission.
      llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
      if (!FirstElemToUpdate)
        return false;
      llvm::Optional<size_t> LastElemToUpdate =
          splitAt(OffsetInChars + CharUnits::One());
      if (!LastElemToUpdate)
        return false;
      assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
             "should have at most one element covering one byte");

      // Figure out which bits we want and discard the rest.
      llvm::APInt UpdateMask(CharWidth, 0);
      if (CGM.getDataLayout().isBigEndian())
        UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
                           CharWidth - OffsetWithinChar);
      else
        UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
      BitsThisChar &= UpdateMask;

      if (*FirstElemToUpdate == *LastElemToUpdate ||
          Elems[*FirstElemToUpdate]->isNullValue() ||
          isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
        // All existing bits are either zero or undef.
        add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
            OffsetInChars, /*AllowOverwrite*/ true);
      } else {
        llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
        // In order to perform a partial update, we need the existing bitwise
        // value, which we can only extract for a constant int.
        auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
        if (!CI)
          return false;
        // Because this is a 1-CharUnit range, the constant occupying it must
        // be exactly one CharUnit wide.
        assert(CI->getBitWidth() == CharWidth && "splitAt failed");
        assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
               "unexpectedly overwriting bitfield");
        BitsThisChar |= (CI->getValue() & ~UpdateMask);
        ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
      }
    }

    // Stop if we've added all the bits.
    if (WantedBits == Bits.getBitWidth())
      break;

    // Remove the consumed bits from Bits.
    if (!CGM.getDataLayout().isBigEndian())
      Bits.lshrInPlace(WantedBits);
    Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);

    // The remanining bits go at the start of the following bytes.
    OffsetWithinChar = 0;
  }

  return true;
}

/// Returns a position within Elems and Offsets such that all elements
/// before the returned index end before Pos and all elements at or after
/// the returned index begin at or after Pos. Splits elements as necessary
/// to ensure this. Returns None if we find something we can't split.
Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
  if (Pos >= Size)
    return Offsets.size();

  while (true) {
    auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
    if (FirstAfterPos == Offsets.begin())
      return 0;

    // If we already have an element starting at Pos, we're done.
    size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
    if (Offsets[LastAtOrBeforePosIndex] == Pos)
      return LastAtOrBeforePosIndex;

    // We found an element starting before Pos. Check for overlap.
    if (Offsets[LastAtOrBeforePosIndex] +
        getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
      return LastAtOrBeforePosIndex + 1;

    // Try to decompose it into smaller constants.
    if (!split(LastAtOrBeforePosIndex, Pos))
      return None;
  }
}

/// Split the constant at index Index, if possible. Return true if we did.
/// Hint indicates the location at which we'd like to split, but may be
/// ignored.
bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
  NaturalLayout = false;
  llvm::Constant *C = Elems[Index];
  CharUnits Offset = Offsets[Index];

  if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
    replace(Elems, Index, Index + 1,
            llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
                            [&](unsigned Op) { return CA->getOperand(Op); }));
    if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) {
      // Array or vector.
      CharUnits ElemSize = getSize(Seq->getElementType());
      replace(
          Offsets, Index, Index + 1,
          llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
                          [&](unsigned Op) { return Offset + Op * ElemSize; }));
    } else {
      // Must be a struct.
      auto *ST = cast<llvm::StructType>(CA->getType());
      const llvm::StructLayout *Layout =
          CGM.getDataLayout().getStructLayout(ST);
      replace(Offsets, Index, Index + 1,
              llvm::map_range(
                  llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
                    return Offset + CharUnits::fromQuantity(
                                        Layout->getElementOffset(Op));
                  }));
    }
    return true;
  }

  if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
    // FIXME: If possible, split into two ConstantDataSequentials at Hint.
    CharUnits ElemSize = getSize(CDS->getElementType());
    replace(Elems, Index, Index + 1,
            llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
                            [&](unsigned Elem) {
                              return CDS->getElementAsConstant(Elem);
                            }));
    replace(Offsets, Index, Index + 1,
            llvm::map_range(
                llvm::seq(0u, CDS->getNumElements()),
                [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
    return true;
  }

  if (isa<llvm::ConstantAggregateZero>(C)) {
    CharUnits ElemSize = getSize(C);
    assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
    replace(Elems, Index, Index + 1,
            {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
    replace(Offsets, Index, Index + 1, {Offset, Hint});
    return true;
  }

  if (isa<llvm::UndefValue>(C)) {
    replace(Elems, Index, Index + 1, {});
    replace(Offsets, Index, Index + 1, {});
    return true;
  }

  // FIXME: We could split a ConstantInt if the need ever arose.
  // We don't need to do this to handle bit-fields because we always eagerly
  // split them into 1-byte chunks.

  return false;
}

static llvm::Constant *
EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
                  llvm::Type *CommonElementType, unsigned ArrayBound,
                  SmallVectorImpl<llvm::Constant *> &Elements,
                  llvm::Constant *Filler);

llvm::Constant *ConstantAggregateBuilder::buildFrom(
    CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
    ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
    bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
  ConstantAggregateBuilderUtils Utils(CGM);

  if (Elems.empty())
    return llvm::UndefValue::get(DesiredTy);

  auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };

  // If we want an array type, see if all the elements are the same type and
  // appropriately spaced.
  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
    assert(!AllowOversized && "oversized array emission not supported");

    bool CanEmitArray = true;
    llvm::Type *CommonType = Elems[0]->getType();
    llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
    CharUnits ElemSize = Utils.getSize(ATy->getElementType());
    SmallVector<llvm::Constant*, 32> ArrayElements;
    for (size_t I = 0; I != Elems.size(); ++I) {
      // Skip zeroes; we'll use a zero value as our array filler.
      if (Elems[I]->isNullValue())
        continue;

      // All remaining elements must be the same type.
      if (Elems[I]->getType() != CommonType ||
          Offset(I) % ElemSize != 0) {
        CanEmitArray = false;
        break;
      }
      ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
      ArrayElements.back() = Elems[I];
    }

    if (CanEmitArray) {
      return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
                               ArrayElements, Filler);
    }

    // Can't emit as an array, carry on to emit as a struct.
  }

  CharUnits DesiredSize = Utils.getSize(DesiredTy);
  CharUnits Align = CharUnits::One();
  for (llvm::Constant *C : Elems)
    Align = std::max(Align, Utils.getAlignment(C));
  CharUnits AlignedSize = Size.alignTo(Align);

  bool Packed = false;
  ArrayRef<llvm::Constant*> UnpackedElems = Elems;
  llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
  if ((DesiredSize < AlignedSize && !AllowOversized) ||
      DesiredSize.alignTo(Align) != DesiredSize) {
    // The natural layout would be the wrong size; force use of a packed layout.
    NaturalLayout = false;
    Packed = true;
  } else if (DesiredSize > AlignedSize) {
    // The constant would be too small. Add padding to fix it.
    UnpackedElemStorage.assign(Elems.begin(), Elems.end());
    UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
    UnpackedElems = UnpackedElemStorage;
  }

  // If we don't have a natural layout, insert padding as necessary.
  // As we go, double-check to see if we can actually just emit Elems
  // as a non-packed struct and do so opportunistically if possible.
  llvm::SmallVector<llvm::Constant*, 32> PackedElems;
  if (!NaturalLayout) {
    CharUnits SizeSoFar = CharUnits::Zero();
    for (size_t I = 0; I != Elems.size(); ++I) {
      CharUnits Align = Utils.getAlignment(Elems[I]);
      CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
      CharUnits DesiredOffset = Offset(I);
      assert(DesiredOffset >= SizeSoFar && "elements out of order");

      if (DesiredOffset != NaturalOffset)
        Packed = true;
      if (DesiredOffset != SizeSoFar)
        PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
      PackedElems.push_back(Elems[I]);
      SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
    }
    // If we're using the packed layout, pad it out to the desired size if
    // necessary.
    if (Packed) {
      assert((SizeSoFar <= DesiredSize || AllowOversized) &&
             "requested size is too small for contents");
      if (SizeSoFar < DesiredSize)
        PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
    }
  }

  llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
      CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);

  // Pick the type to use.  If the type is layout identical to the desired
  // type then use it, otherwise use whatever the builder produced for us.
  if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
    if (DesiredSTy->isLayoutIdentical(STy))
      STy = DesiredSTy;
  }

  return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
}

void ConstantAggregateBuilder::condense(CharUnits Offset,
                                        llvm::Type *DesiredTy) {
  CharUnits Size = getSize(DesiredTy);

  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
  if (!FirstElemToReplace)
    return;
  size_t First = *FirstElemToReplace;

  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
  if (!LastElemToReplace)
    return;
  size_t Last = *LastElemToReplace;

  size_t Length = Last - First;
  if (Length == 0)
    return;

  if (Length == 1 && Offsets[First] == Offset &&
      getSize(Elems[First]) == Size) {
    // Re-wrap single element structs if necessary. Otherwise, leave any single
    // element constant of the right size alone even if it has the wrong type.
    auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
    if (STy && STy->getNumElements() == 1 &&
        STy->getElementType(0) == Elems[First]->getType())
      Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
    return;
  }

  llvm::Constant *Replacement = buildFrom(
      CGM, makeArrayRef(Elems).slice(First, Length),
      makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
      /*known to have natural layout=*/false, DesiredTy, false);
  replace(Elems, First, Last, {Replacement});
  replace(Offsets, First, Last, {Offset});
}

//===----------------------------------------------------------------------===//
//                            ConstStructBuilder
//===----------------------------------------------------------------------===//

class ConstStructBuilder {
  CodeGenModule &CGM;
  ConstantEmitter &Emitter;
  ConstantAggregateBuilder &Builder;
  CharUnits StartOffset;

public:
  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
                                     InitListExpr *ILE, QualType StructTy);
  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
                                     const APValue &Value, QualType ValTy);
  static bool UpdateStruct(ConstantEmitter &Emitter,
                           ConstantAggregateBuilder &Const, CharUnits Offset,
                           InitListExpr *Updater);

private:
  ConstStructBuilder(ConstantEmitter &Emitter,
                     ConstantAggregateBuilder &Builder, CharUnits StartOffset)
      : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
        StartOffset(StartOffset) {}

  bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
                   llvm::Constant *InitExpr, bool AllowOverwrite = false);

  bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
                   bool AllowOverwrite = false);

  bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
                      llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);

  bool Build(InitListExpr *ILE, bool AllowOverwrite);
  bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
             const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
  llvm::Constant *Finalize(QualType Ty);
};

bool ConstStructBuilder::AppendField(
    const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
    bool AllowOverwrite) {
  const ASTContext &Context = CGM.getContext();

  CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);

  return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
}

bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
                                     llvm::Constant *InitCst,
                                     bool AllowOverwrite) {
  return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
}

bool ConstStructBuilder::AppendBitField(
    const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
    bool AllowOverwrite) {
  uint64_t FieldSize = Field->getBitWidthValue(CGM.getContext());
  llvm::APInt FieldValue = CI->getValue();

  // Promote the size of FieldValue if necessary
  // FIXME: This should never occur, but currently it can because initializer
  // constants are cast to bool, and because clang is not enforcing bitfield
  // width limits.
  if (FieldSize > FieldValue.getBitWidth())
    FieldValue = FieldValue.zext(FieldSize);

  // Truncate the size of FieldValue to the bit field size.
  if (FieldSize < FieldValue.getBitWidth())
    FieldValue = FieldValue.trunc(FieldSize);

  return Builder.addBits(FieldValue,
                         CGM.getContext().toBits(StartOffset) + FieldOffset,
                         AllowOverwrite);
}

static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
                                      ConstantAggregateBuilder &Const,
                                      CharUnits Offset, QualType Type,
                                      InitListExpr *Updater) {
  if (Type->isRecordType())
    return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);

  auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
  if (!CAT)
    return false;
  QualType ElemType = CAT->getElementType();
  CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
  llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);

  llvm::Constant *FillC = nullptr;
  if (Expr *Filler = Updater->getArrayFiller()) {
    if (!isa<NoInitExpr>(Filler)) {
      FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
      if (!FillC)
        return false;
    }
  }

  unsigned NumElementsToUpdate =
      FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
  for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
    Expr *Init = nullptr;
    if (I < Updater->getNumInits())
      Init = Updater->getInit(I);

    if (!Init && FillC) {
      if (!Const.add(FillC, Offset, true))
        return false;
    } else if (!Init || isa<NoInitExpr>(Init)) {
      continue;
    } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
      if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
                                     ChildILE))
        return false;
      // Attempt to reduce the array element to a single constant if necessary.
      Const.condense(Offset, ElemTy);
    } else {
      llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
      if (!Const.add(Val, Offset, true))
        return false;
    }
  }

  return true;
}

bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
  RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);

  unsigned FieldNo = -1;
  unsigned ElementNo = 0;

  // Bail out if we have base classes. We could support these, but they only
  // arise in C++1z where we will have already constant folded most interesting
  // cases. FIXME: There are still a few more cases we can handle this way.
  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
    if (CXXRD->getNumBases())
      return false;

  for (FieldDecl *Field : RD->fields()) {
    ++FieldNo;

    // If this is a union, skip all the fields that aren't being initialized.
    if (RD->isUnion() &&
        !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
      continue;

    // Don't emit anonymous bitfields or zero-sized fields.
    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
      continue;

    // Get the initializer.  A struct can include fields without initializers,
    // we just use explicit null values for them.
    Expr *Init = nullptr;
    if (ElementNo < ILE->getNumInits())
      Init = ILE->getInit(ElementNo++);
    if (Init && isa<NoInitExpr>(Init))
      continue;

    // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
    // represents additional overwriting of our current constant value, and not
    // a new constant to emit independently.
    if (AllowOverwrite &&
        (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
      if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
        CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
            Layout.getFieldOffset(FieldNo));
        if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
                                       Field->getType(), SubILE))
          return false;
        // If we split apart the field's value, try to collapse it down to a
        // single value now.
        Builder.condense(StartOffset + Offset,
                         CGM.getTypes().ConvertTypeForMem(Field->getType()));
        continue;
      }
    }

    llvm::Constant *EltInit =
        Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
             : Emitter.emitNullForMemory(Field->getType());
    if (!EltInit)
      return false;

    if (!Field->isBitField()) {
      // Handle non-bitfield members.
      if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
                       AllowOverwrite))
        return false;
      // After emitting a non-empty field with [[no_unique_address]], we may
      // need to overwrite its tail padding.
      if (Field->hasAttr<NoUniqueAddressAttr>())
        AllowOverwrite = true;
    } else {
      // Otherwise we have a bitfield.
      if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
        if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
                            AllowOverwrite))
          return false;
      } else {
        // We are trying to initialize a bitfield with a non-trivial constant,
        // this must require run-time code.
        return false;
      }
    }
  }

  return true;
}

namespace {
struct BaseInfo {
  BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
    : Decl(Decl), Offset(Offset), Index(Index) {
  }

  const CXXRecordDecl *Decl;
  CharUnits Offset;
  unsigned Index;

  bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
};
}

bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
                               bool IsPrimaryBase,
                               const CXXRecordDecl *VTableClass,
                               CharUnits Offset) {
  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);

  if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
    // Add a vtable pointer, if we need one and it hasn't already been added.
    if (CD->isDynamicClass() && !IsPrimaryBase) {
      llvm::Constant *VTableAddressPoint =
          CGM.getCXXABI().getVTableAddressPointForConstExpr(
              BaseSubobject(CD, Offset), VTableClass);
      if (!AppendBytes(Offset, VTableAddressPoint))
        return false;
    }

    // Accumulate and sort bases, in order to visit them in address order, which
    // may not be the same as declaration order.
    SmallVector<BaseInfo, 8> Bases;
    Bases.reserve(CD->getNumBases());
    unsigned BaseNo = 0;
    for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
         BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
      assert(!Base->isVirtual() && "should not have virtual bases here");
      const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
      CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
      Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
    }
    llvm::stable_sort(Bases);

    for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
      BaseInfo &Base = Bases[I];

      bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
      Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
            VTableClass, Offset + Base.Offset);
    }
  }

  unsigned FieldNo = 0;
  uint64_t OffsetBits = CGM.getContext().toBits(Offset);

  bool AllowOverwrite = false;
  for (RecordDecl::field_iterator Field = RD->field_begin(),
       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
    // If this is a union, skip all the fields that aren't being initialized.
    if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
      continue;

    // Don't emit anonymous bitfields or zero-sized fields.
    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
      continue;

    // Emit the value of the initializer.
    const APValue &FieldValue =
      RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
    llvm::Constant *EltInit =
      Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
    if (!EltInit)
      return false;

    if (!Field->isBitField()) {
      // Handle non-bitfield members.
      if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
                       EltInit, AllowOverwrite))
        return false;
      // After emitting a non-empty field with [[no_unique_address]], we may
      // need to overwrite its tail padding.
      if (Field->hasAttr<NoUniqueAddressAttr>())
        AllowOverwrite = true;
    } else {
      // Otherwise we have a bitfield.
      if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
                          cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
        return false;
    }
  }

  return true;
}

llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
  RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
  llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
  return Builder.build(ValTy, RD->hasFlexibleArrayMember());
}

llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
                                                InitListExpr *ILE,
                                                QualType ValTy) {
  ConstantAggregateBuilder Const(Emitter.CGM);
  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());

  if (!Builder.Build(ILE, /*AllowOverwrite*/false))
    return nullptr;

  return Builder.Finalize(ValTy);
}

llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
                                                const APValue &Val,
                                                QualType ValTy) {
  ConstantAggregateBuilder Const(Emitter.CGM);
  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());

  const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
  if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
    return nullptr;

  return Builder.Finalize(ValTy);
}

bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
                                      ConstantAggregateBuilder &Const,
                                      CharUnits Offset, InitListExpr *Updater) {
  return ConstStructBuilder(Emitter, Const, Offset)
      .Build(Updater, /*AllowOverwrite*/ true);
}

//===----------------------------------------------------------------------===//
//                             ConstExprEmitter
//===----------------------------------------------------------------------===//

static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
                                                    CodeGenFunction *CGF,
                                              const CompoundLiteralExpr *E) {
  CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
  if (llvm::GlobalVariable *Addr =
          CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
    return ConstantAddress(Addr, Align);

  LangAS addressSpace = E->getType().getAddressSpace();

  ConstantEmitter emitter(CGM, CGF);
  llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
                                                    addressSpace, E->getType());
  if (!C) {
    assert(!E->isFileScope() &&
           "file-scope compound literal did not have constant initializer!");
    return ConstantAddress::invalid();
  }

  auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
                                     CGM.isTypeConstant(E->getType(), true),
                                     llvm::GlobalValue::InternalLinkage,
                                     C, ".compoundliteral", nullptr,
                                     llvm::GlobalVariable::NotThreadLocal,
                    CGM.getContext().getTargetAddressSpace(addressSpace));
  emitter.finalize(GV);
  GV->setAlignment(Align.getAsAlign());
  CGM.setAddrOfConstantCompoundLiteral(E, GV);
  return ConstantAddress(GV, Align);
}

static llvm::Constant *
EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
                  llvm::Type *CommonElementType, unsigned ArrayBound,
                  SmallVectorImpl<llvm::Constant *> &Elements,
                  llvm::Constant *Filler) {
  // Figure out how long the initial prefix of non-zero elements is.
  unsigned NonzeroLength = ArrayBound;
  if (Elements.size() < NonzeroLength && Filler->isNullValue())
    NonzeroLength = Elements.size();
  if (NonzeroLength == Elements.size()) {
    while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
      --NonzeroLength;
  }

  if (NonzeroLength == 0)
    return llvm::ConstantAggregateZero::get(DesiredType);

  // Add a zeroinitializer array filler if we have lots of trailing zeroes.
  unsigned TrailingZeroes = ArrayBound - NonzeroLength;
  if (TrailingZeroes >= 8) {
    assert(Elements.size() >= NonzeroLength &&
           "missing initializer for non-zero element");

    // If all the elements had the same type up to the trailing zeroes, emit a
    // struct of two arrays (the nonzero data and the zeroinitializer).
    if (CommonElementType && NonzeroLength >= 8) {
      llvm::Constant *Initial = llvm::ConstantArray::get(
          llvm::ArrayType::get(CommonElementType, NonzeroLength),
          makeArrayRef(Elements).take_front(NonzeroLength));
      Elements.resize(2);
      Elements[0] = Initial;
    } else {
      Elements.resize(NonzeroLength + 1);
    }

    auto *FillerType =
        CommonElementType ? CommonElementType : DesiredType->getElementType();
    FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
    Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
    CommonElementType = nullptr;
  } else if (Elements.size() != ArrayBound) {
    // Otherwise pad to the right size with the filler if necessary.
    Elements.resize(ArrayBound, Filler);
    if (Filler->getType() != CommonElementType)
      CommonElementType = nullptr;
  }

  // If all elements have the same type, just emit an array constant.
  if (CommonElementType)
    return llvm::ConstantArray::get(
        llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);

  // We have mixed types. Use a packed struct.
  llvm::SmallVector<llvm::Type *, 16> Types;
  Types.reserve(Elements.size());
  for (llvm::Constant *Elt : Elements)
    Types.push_back(Elt->getType());
  llvm::StructType *SType =
      llvm::StructType::get(CGM.getLLVMContext(), Types, true);
  return llvm::ConstantStruct::get(SType, Elements);
}

// This class only needs to handle arrays, structs and unions. Outside C++11
// mode, we don't currently constant fold those types.  All other types are
// handled by constant folding.
//
// Constant folding is currently missing support for a few features supported
// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
class ConstExprEmitter :
  public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
  CodeGenModule &CGM;
  ConstantEmitter &Emitter;
  llvm::LLVMContext &VMContext;
public:
  ConstExprEmitter(ConstantEmitter &emitter)
    : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
  }

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  llvm::Constant *VisitStmt(Stmt *S, QualType T) {
    return nullptr;
  }

  llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
    return Visit(CE->getSubExpr(), T);
  }

  llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
    return Visit(PE->getSubExpr(), T);
  }

  llvm::Constant *
  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
                                    QualType T) {
    return Visit(PE->getReplacement(), T);
  }

  llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
                                            QualType T) {
    return Visit(GE->getResultExpr(), T);
  }

  llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
    return Visit(CE->getChosenSubExpr(), T);
  }

  llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
    return Visit(E->getInitializer(), T);
  }

  llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
      CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
    Expr *subExpr = E->getSubExpr();

    switch (E->getCastKind()) {
    case CK_ToUnion: {
      // GCC cast to union extension
      assert(E->getType()->isUnionType() &&
             "Destination type is not union type!");

      auto field = E->getTargetUnionField();

      auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
      if (!C) return nullptr;

      auto destTy = ConvertType(destType);
      if (C->getType() == destTy) return C;

      // Build a struct with the union sub-element as the first member,
      // and padded to the appropriate size.
      SmallVector<llvm::Constant*, 2> Elts;
      SmallVector<llvm::Type*, 2> Types;
      Elts.push_back(C);
      Types.push_back(C->getType());
      unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
      unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);

      assert(CurSize <= TotalSize && "Union size mismatch!");
      if (unsigned NumPadBytes = TotalSize - CurSize) {
        llvm::Type *Ty = CGM.Int8Ty;
        if (NumPadBytes > 1)
          Ty = llvm::ArrayType::get(Ty, NumPadBytes);

        Elts.push_back(llvm::UndefValue::get(Ty));
        Types.push_back(Ty);
      }

      llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
      return llvm::ConstantStruct::get(STy, Elts);
    }

    case CK_AddressSpaceConversion: {
      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
      if (!C) return nullptr;
      LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
      LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
      llvm::Type *destTy = ConvertType(E->getType());
      return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
                                                             destAS, destTy);
    }

    case CK_LValueToRValue:
    case CK_AtomicToNonAtomic:
    case CK_NonAtomicToAtomic:
    case CK_NoOp:
    case CK_ConstructorConversion:
      return Visit(subExpr, destType);

    case CK_IntToOCLSampler:
      llvm_unreachable("global sampler variables are not generated");

    case CK_Dependent: llvm_unreachable("saw dependent cast!");

    case CK_BuiltinFnToFnPtr:
      llvm_unreachable("builtin functions are handled elsewhere");

    case CK_ReinterpretMemberPointer:
    case CK_DerivedToBaseMemberPointer:
    case CK_BaseToDerivedMemberPointer: {
      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
      if (!C) return nullptr;
      return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
    }

    // These will never be supported.
    case CK_ObjCObjectLValueCast:
    case CK_ARCProduceObject:
    case CK_ARCConsumeObject:
    case CK_ARCReclaimReturnedObject:
    case CK_ARCExtendBlockObject:
    case CK_CopyAndAutoreleaseBlockObject:
      return nullptr;

    // These don't need to be handled here because Evaluate knows how to
    // evaluate them in the cases where they can be folded.
    case CK_BitCast:
    case CK_ToVoid:
    case CK_Dynamic:
    case CK_LValueBitCast:
    case CK_LValueToRValueBitCast:
    case CK_NullToMemberPointer:
    case CK_UserDefinedConversion:
    case CK_CPointerToObjCPointerCast:
    case CK_BlockPointerToObjCPointerCast:
    case CK_AnyPointerToBlockPointerCast:
    case CK_ArrayToPointerDecay:
    case CK_FunctionToPointerDecay:
    case CK_BaseToDerived:
    case CK_DerivedToBase:
    case CK_UncheckedDerivedToBase:
    case CK_MemberPointerToBoolean:
    case CK_VectorSplat:
    case CK_FloatingRealToComplex:
    case CK_FloatingComplexToReal:
    case CK_FloatingComplexToBoolean:
    case CK_FloatingComplexCast:
    case CK_FloatingComplexToIntegralComplex:
    case CK_IntegralRealToComplex:
    case CK_IntegralComplexToReal:
    case CK_IntegralComplexToBoolean:
    case CK_IntegralComplexCast:
    case CK_IntegralComplexToFloatingComplex:
    case CK_PointerToIntegral:
    case CK_PointerToBoolean:
    case CK_NullToPointer:
    case CK_IntegralCast:
    case CK_BooleanToSignedIntegral:
    case CK_IntegralToPointer:
    case CK_IntegralToBoolean:
    case CK_IntegralToFloating:
    case CK_FloatingToIntegral:
    case CK_FloatingToBoolean:
    case CK_FloatingCast:
    case CK_FixedPointCast:
    case CK_FixedPointToBoolean:
    case CK_FixedPointToIntegral:
    case CK_IntegralToFixedPoint:
    case CK_ZeroToOCLOpaqueType:
      return nullptr;
    }
    llvm_unreachable("Invalid CastKind");
  }

  llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
    // No need for a DefaultInitExprScope: we don't handle 'this' in a
    // constant expression.
    return Visit(DIE->getExpr(), T);
  }

  llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
    if (!E->cleanupsHaveSideEffects())
      return Visit(E->getSubExpr(), T);
    return nullptr;
  }

  llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
                                                QualType T) {
    return Visit(E->GetTemporaryExpr(), T);
  }

  llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
    auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
    assert(CAT && "can't emit array init for non-constant-bound array");
    unsigned NumInitElements = ILE->getNumInits();
    unsigned NumElements = CAT->getSize().getZExtValue();

    // Initialising an array requires us to automatically
    // initialise any elements that have not been initialised explicitly
    unsigned NumInitableElts = std::min(NumInitElements, NumElements);

    QualType EltType = CAT->getElementType();

    // Initialize remaining array elements.
    llvm::Constant *fillC = nullptr;
    if (Expr *filler = ILE->getArrayFiller()) {
      fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
      if (!fillC)
        return nullptr;
    }

    // Copy initializer elements.
    SmallVector<llvm::Constant*, 16> Elts;
    if (fillC && fillC->isNullValue())
      Elts.reserve(NumInitableElts + 1);
    else
      Elts.reserve(NumElements);

    llvm::Type *CommonElementType = nullptr;
    for (unsigned i = 0; i < NumInitableElts; ++i) {
      Expr *Init = ILE->getInit(i);
      llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
      if (!C)
        return nullptr;
      if (i == 0)
        CommonElementType = C->getType();
      else if (C->getType() != CommonElementType)
        CommonElementType = nullptr;
      Elts.push_back(C);
    }

    llvm::ArrayType *Desired =
        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
                             fillC);
  }

  llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
    return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
  }

  llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
                                             QualType T) {
    return CGM.EmitNullConstant(T);
  }

  llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
    if (ILE->isTransparent())
      return Visit(ILE->getInit(0), T);

    if (ILE->getType()->isArrayType())
      return EmitArrayInitialization(ILE, T);

    if (ILE->getType()->isRecordType())
      return EmitRecordInitialization(ILE, T);

    return nullptr;
  }

  llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
                                                QualType destType) {
    auto C = Visit(E->getBase(), destType);
    if (!C)
      return nullptr;

    ConstantAggregateBuilder Const(CGM);
    Const.add(C, CharUnits::Zero(), false);

    if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
                                   E->getUpdater()))
      return nullptr;

    llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
    bool HasFlexibleArray = false;
    if (auto *RT = destType->getAs<RecordType>())
      HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
    return Const.build(ValTy, HasFlexibleArray);
  }

  llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
    if (!E->getConstructor()->isTrivial())
      return nullptr;

    // FIXME: We should not have to call getBaseElementType here.
    const auto *RT =
        CGM.getContext().getBaseElementType(Ty)->castAs<RecordType>();
    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());

    // If the class doesn't have a trivial destructor, we can't emit it as a
    // constant expr.
    if (!RD->hasTrivialDestructor())
      return nullptr;

    // Only copy and default constructors can be trivial.


    if (E->getNumArgs()) {
      assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
      assert(E->getConstructor()->isCopyOrMoveConstructor() &&
             "trivial ctor has argument but isn't a copy/move ctor");

      Expr *Arg = E->getArg(0);
      assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
             "argument to copy ctor is of wrong type");

      return Visit(Arg, Ty);
    }

    return CGM.EmitNullConstant(Ty);
  }

  llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
    // This is a string literal initializing an array in an initializer.
    return CGM.GetConstantArrayFromStringLiteral(E);
  }

  llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
    // This must be an @encode initializing an array in a static initializer.
    // Don't emit it as the address of the string, emit the string data itself
    // as an inline array.
    std::string Str;
    CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
    const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);

    // Resize the string to the right size, adding zeros at the end, or
    // truncating as needed.
    Str.resize(CAT->getSize().getZExtValue(), '\0');
    return llvm::ConstantDataArray::getString(VMContext, Str, false);
  }

  llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
    return Visit(E->getSubExpr(), T);
  }

  // Utility methods
  llvm::Type *ConvertType(QualType T) {
    return CGM.getTypes().ConvertType(T);
  }
};

}  // end anonymous namespace.

llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
                                                        AbstractState saved) {
  Abstract = saved.OldValue;

  assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
         "created a placeholder while doing an abstract emission?");

  // No validation necessary for now.
  // No cleanup to do for now.
  return C;
}

llvm::Constant *
ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
  auto state = pushAbstract();
  auto C = tryEmitPrivateForVarInit(D);
  return validateAndPopAbstract(C, state);
}

llvm::Constant *
ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
  auto state = pushAbstract();
  auto C = tryEmitPrivate(E, destType);
  return validateAndPopAbstract(C, state);
}

llvm::Constant *
ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
  auto state = pushAbstract();
  auto C = tryEmitPrivate(value, destType);
  return validateAndPopAbstract(C, state);
}

llvm::Constant *
ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
  auto state = pushAbstract();
  auto C = tryEmitPrivate(E, destType);
  C = validateAndPopAbstract(C, state);
  if (!C) {
    CGM.Error(E->getExprLoc(),
              "internal error: could not emit constant value \"abstractly\"");
    C = CGM.EmitNullConstant(destType);
  }
  return C;
}

llvm::Constant *
ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
                              QualType destType) {
  auto state = pushAbstract();
  auto C = tryEmitPrivate(value, destType);
  C = validateAndPopAbstract(C, state);
  if (!C) {
    CGM.Error(loc,
              "internal error: could not emit constant value \"abstractly\"");
    C = CGM.EmitNullConstant(destType);
  }
  return C;
}

llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
  initializeNonAbstract(D.getType().getAddressSpace());
  return markIfFailed(tryEmitPrivateForVarInit(D));
}

llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
                                                       LangAS destAddrSpace,
                                                       QualType destType) {
  initializeNonAbstract(destAddrSpace);
  return markIfFailed(tryEmitPrivateForMemory(E, destType));
}

llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
                                                    LangAS destAddrSpace,
                                                    QualType destType) {
  initializeNonAbstract(destAddrSpace);
  auto C = tryEmitPrivateForMemory(value, destType);
  assert(C && "couldn't emit constant value non-abstractly?");
  return C;
}

llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
  assert(!Abstract && "cannot get current address for abstract constant");



  // Make an obviously ill-formed global that should blow up compilation
  // if it survives.
  auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
                                         llvm::GlobalValue::PrivateLinkage,
                                         /*init*/ nullptr,
                                         /*name*/ "",
                                         /*before*/ nullptr,
                                         llvm::GlobalVariable::NotThreadLocal,
                                         CGM.getContext().getTargetAddressSpace(DestAddressSpace));

  PlaceholderAddresses.push_back(std::make_pair(nullptr, global));

  return global;
}

void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
                                           llvm::GlobalValue *placeholder) {
  assert(!PlaceholderAddresses.empty());
  assert(PlaceholderAddresses.back().first == nullptr);
  assert(PlaceholderAddresses.back().second == placeholder);
  PlaceholderAddresses.back().first = signal;
}

namespace {
  struct ReplacePlaceholders {
    CodeGenModule &CGM;

    /// The base address of the global.
    llvm::Constant *Base;
    llvm::Type *BaseValueTy = nullptr;

    /// The placeholder addresses that were registered during emission.
    llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;

    /// The locations of the placeholder signals.
    llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;

    /// The current index stack.  We use a simple unsigned stack because
    /// we assume that placeholders will be relatively sparse in the
    /// initializer, but we cache the index values we find just in case.
    llvm::SmallVector<unsigned, 8> Indices;
    llvm::SmallVector<llvm::Constant*, 8> IndexValues;

    ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
                        ArrayRef<std::pair<llvm::Constant*,
                                           llvm::GlobalVariable*>> addresses)
        : CGM(CGM), Base(base),
          PlaceholderAddresses(addresses.begin(), addresses.end()) {
    }

    void replaceInInitializer(llvm::Constant *init) {
      // Remember the type of the top-most initializer.
      BaseValueTy = init->getType();

      // Initialize the stack.
      Indices.push_back(0);
      IndexValues.push_back(nullptr);

      // Recurse into the initializer.
      findLocations(init);

      // Check invariants.
      assert(IndexValues.size() == Indices.size() && "mismatch");
      assert(Indices.size() == 1 && "didn't pop all indices");

      // Do the replacement; this basically invalidates 'init'.
      assert(Locations.size() == PlaceholderAddresses.size() &&
             "missed a placeholder?");

      // We're iterating over a hashtable, so this would be a source of
      // non-determinism in compiler output *except* that we're just
      // messing around with llvm::Constant structures, which never itself
      // does anything that should be visible in compiler output.
      for (auto &entry : Locations) {
        assert(entry.first->getParent() == nullptr && "not a placeholder!");
        entry.first->replaceAllUsesWith(entry.second);
        entry.first->eraseFromParent();
      }
    }

  private:
    void findLocations(llvm::Constant *init) {
      // Recurse into aggregates.
      if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
        for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
          Indices.push_back(i);
          IndexValues.push_back(nullptr);

          findLocations(agg->getOperand(i));

          IndexValues.pop_back();
          Indices.pop_back();
        }
        return;
      }

      // Otherwise, check for registered constants.
      while (true) {
        auto it = PlaceholderAddresses.find(init);
        if (it != PlaceholderAddresses.end()) {
          setLocation(it->second);
          break;
        }

        // Look through bitcasts or other expressions.
        if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
          init = expr->getOperand(0);
        } else {
          break;
        }
      }
    }

    void setLocation(llvm::GlobalVariable *placeholder) {
      assert(Locations.find(placeholder) == Locations.end() &&
             "already found location for placeholder!");

      // Lazily fill in IndexValues with the values from Indices.
      // We do this in reverse because we should always have a strict
      // prefix of indices from the start.
      assert(Indices.size() == IndexValues.size());
      for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
        if (IndexValues[i]) {
#ifndef NDEBUG
          for (size_t j = 0; j != i + 1; ++j) {
            assert(IndexValues[j] &&
                   isa<llvm::ConstantInt>(IndexValues[j]) &&
                   cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
                     == Indices[j]);
          }
#endif
          break;
        }

        IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
      }

      // Form a GEP and then bitcast to the placeholder type so that the
      // replacement will succeed.
      llvm::Constant *location =
        llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
                                                     Base, IndexValues);
      location = llvm::ConstantExpr::getBitCast(location,
                                                placeholder->getType());

      Locations.insert({placeholder, location});
    }
  };
}

void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
  assert(InitializedNonAbstract &&
         "finalizing emitter that was used for abstract emission?");
  assert(!Finalized && "finalizing emitter multiple times");
  assert(global->getInitializer());

  // Note that we might also be Failed.
  Finalized = true;

  if (!PlaceholderAddresses.empty()) {
    ReplacePlaceholders(CGM, global, PlaceholderAddresses)
      .replaceInInitializer(global->getInitializer());
    PlaceholderAddresses.clear(); // satisfy
  }
}

ConstantEmitter::~ConstantEmitter() {
  assert((!InitializedNonAbstract || Finalized || Failed) &&
         "not finalized after being initialized for non-abstract emission");
  assert(PlaceholderAddresses.empty() && "unhandled placeholders");
}

static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
  if (auto AT = type->getAs<AtomicType>()) {
    return CGM.getContext().getQualifiedType(AT->getValueType(),
                                             type.getQualifiers());
  }
  return type;
}

llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
  // Make a quick check if variable can be default NULL initialized
  // and avoid going through rest of code which may do, for c++11,
  // initialization of memory to all NULLs.
  if (!D.hasLocalStorage()) {
    QualType Ty = CGM.getContext().getBaseElementType(D.getType());
    if (Ty->isRecordType())
      if (const CXXConstructExpr *E =
          dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
        const CXXConstructorDecl *CD = E->getConstructor();
        if (CD->isTrivial() && CD->isDefaultConstructor())
          return CGM.EmitNullConstant(D.getType());
      }
    InConstantContext = true;
  }

  QualType destType = D.getType();

  // Try to emit the initializer.  Note that this can allow some things that
  // are not allowed by tryEmitPrivateForMemory alone.
  if (auto value = D.evaluateValue()) {
    return tryEmitPrivateForMemory(*value, destType);
  }

  // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
  // reference is a constant expression, and the reference binds to a temporary,
  // then constant initialization is performed. ConstExprEmitter will
  // incorrectly emit a prvalue constant in this case, and the calling code
  // interprets that as the (pointer) value of the reference, rather than the
  // desired value of the referee.
  if (destType->isReferenceType())
    return nullptr;

  const Expr *E = D.getInit();
  assert(E && "No initializer to emit");

  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  auto C =
    ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *
ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  auto C = tryEmitAbstract(E, nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *
ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
                                          QualType destType) {
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  auto C = tryEmitAbstract(value, nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
                                                         QualType destType) {
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
                                                         QualType destType) {
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  auto C = tryEmitPrivate(value, nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
                                               llvm::Constant *C,
                                               QualType destType) {
  // For an _Atomic-qualified constant, we may need to add tail padding.
  if (auto AT = destType->getAs<AtomicType>()) {
    QualType destValueType = AT->getValueType();
    C = emitForMemory(CGM, C, destValueType);

    uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
    uint64_t outerSize = CGM.getContext().getTypeSize(destType);
    if (innerSize == outerSize)
      return C;

    assert(innerSize < outerSize && "emitted over-large constant for atomic");
    llvm::Constant *elts[] = {
      C,
      llvm::ConstantAggregateZero::get(
          llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
    };
    return llvm::ConstantStruct::getAnon(elts);
  }

  // Zero-extend bool.
  if (C->getType()->isIntegerTy(1)) {
    llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
    return llvm::ConstantExpr::getZExt(C, boolTy);
  }

  return C;
}

llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
                                                QualType destType) {
  Expr::EvalResult Result;

  bool Success = false;

  if (destType->isReferenceType())
    Success = E->EvaluateAsLValue(Result, CGM.getContext());
  else
    Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);

  llvm::Constant *C;
  if (Success && !Result.HasSideEffects)
    C = tryEmitPrivate(Result.Val, destType);
  else
    C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);

  return C;
}

llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
  return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
}

namespace {
/// A struct which can be used to peephole certain kinds of finalization
/// that normally happen during l-value emission.
struct ConstantLValue {
  llvm::Constant *Value;
  bool HasOffsetApplied;

  /*implicit*/ ConstantLValue(llvm::Constant *value,
                              bool hasOffsetApplied = false)
    : Value(value), HasOffsetApplied(false) {}

  /*implicit*/ ConstantLValue(ConstantAddress address)
    : ConstantLValue(address.getPointer()) {}
};

/// A helper class for emitting constant l-values.
class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
                                                      ConstantLValue> {
  CodeGenModule &CGM;
  ConstantEmitter &Emitter;
  const APValue &Value;
  QualType DestType;

  // Befriend StmtVisitorBase so that we don't have to expose Visit*.
  friend StmtVisitorBase;

public:
  ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
                        QualType destType)
    : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}

  llvm::Constant *tryEmit();

private:
  llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
  ConstantLValue tryEmitBase(const APValue::LValueBase &base);

  ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
  ConstantLValue VisitConstantExpr(const ConstantExpr *E);
  ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
  ConstantLValue VisitStringLiteral(const StringLiteral *E);
  ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
  ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
  ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
  ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
  ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
  ConstantLValue VisitCallExpr(const CallExpr *E);
  ConstantLValue VisitBlockExpr(const BlockExpr *E);
  ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
  ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
  ConstantLValue VisitMaterializeTemporaryExpr(
                                         const MaterializeTemporaryExpr *E);

  bool hasNonZeroOffset() const {
    return !Value.getLValueOffset().isZero();
  }

  /// Return the value offset.
  llvm::Constant *getOffset() {
    return llvm::ConstantInt::get(CGM.Int64Ty,
                                  Value.getLValueOffset().getQuantity());
  }

  /// Apply the value offset to the given constant.
  llvm::Constant *applyOffset(llvm::Constant *C) {
    if (!hasNonZeroOffset())
      return C;

    llvm::Type *origPtrTy = C->getType();
    unsigned AS = origPtrTy->getPointerAddressSpace();
    llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
    C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
    C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
    C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
    return C;
  }
};

}

llvm::Constant *ConstantLValueEmitter::tryEmit() {
  const APValue::LValueBase &base = Value.getLValueBase();

  // The destination type should be a pointer or reference
  // type, but it might also be a cast thereof.
  //
  // FIXME: the chain of casts required should be reflected in the APValue.
  // We need this in order to correctly handle things like a ptrtoint of a
  // non-zero null pointer and addrspace casts that aren't trivially
  // represented in LLVM IR.
  auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
  assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));

  // If there's no base at all, this is a null or absolute pointer,
  // possibly cast back to an integer type.
  if (!base) {
    return tryEmitAbsolute(destTy);
  }

  // Otherwise, try to emit the base.
  ConstantLValue result = tryEmitBase(base);

  // If that failed, we're done.
  llvm::Constant *value = result.Value;
  if (!value) return nullptr;

  // Apply the offset if necessary and not already done.
  if (!result.HasOffsetApplied) {
    value = applyOffset(value);
  }

  // Convert to the appropriate type; this could be an lvalue for
  // an integer.  FIXME: performAddrSpaceCast
  if (isa<llvm::PointerType>(destTy))
    return llvm::ConstantExpr::getPointerCast(value, destTy);

  return llvm::ConstantExpr::getPtrToInt(value, destTy);
}

/// Try to emit an absolute l-value, such as a null pointer or an integer
/// bitcast to pointer type.
llvm::Constant *
ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
  // If we're producing a pointer, this is easy.
  auto destPtrTy = cast<llvm::PointerType>(destTy);
  if (Value.isNullPointer()) {
    // FIXME: integer offsets from non-zero null pointers.
    return CGM.getNullPointer(destPtrTy, DestType);
  }

  // Convert the integer to a pointer-sized integer before converting it
  // to a pointer.
  // FIXME: signedness depends on the original integer type.
  auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
  llvm::Constant *C;
  C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
                                         /*isSigned*/ false);
  C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
  return C;
}

ConstantLValue
ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
  // Handle values.
  if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
    if (D->hasAttr<WeakRefAttr>())
      return CGM.GetWeakRefReference(D).getPointer();

    if (auto FD = dyn_cast<FunctionDecl>(D))
      return CGM.GetAddrOfFunction(FD);

    if (auto VD = dyn_cast<VarDecl>(D)) {
      // We can never refer to a variable with local storage.
      if (!VD->hasLocalStorage()) {
        if (VD->isFileVarDecl() || VD->hasExternalStorage())
          return CGM.GetAddrOfGlobalVar(VD);

        if (VD->isLocalVarDecl()) {
          return CGM.getOrCreateStaticVarDecl(
              *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
        }
      }
    }

    return nullptr;
  }

  // Handle typeid(T).
  if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
    llvm::Type *StdTypeInfoPtrTy =
        CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
    llvm::Constant *TypeInfo =
        CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
    if (TypeInfo->getType() != StdTypeInfoPtrTy)
      TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
    return TypeInfo;
  }

  // Otherwise, it must be an expression.
  return Visit(base.get<const Expr*>());
}

ConstantLValue
ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
  return Visit(E->getSubExpr());
}

ConstantLValue
ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
  return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
}

ConstantLValue
ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
  return CGM.GetAddrOfConstantStringFromLiteral(E);
}

ConstantLValue
ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
  return CGM.GetAddrOfConstantStringFromObjCEncode(E);
}

static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
                                                    QualType T,
                                                    CodeGenModule &CGM) {
  auto C = CGM.getObjCRuntime().GenerateConstantString(S);
  return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
}

ConstantLValue
ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
  return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
}

ConstantLValue
ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
  assert(E->isExpressibleAsConstantInitializer() &&
         "this boxed expression can't be emitted as a compile-time constant");
  auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
  return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
}

ConstantLValue
ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
  return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
}

ConstantLValue
ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
  assert(Emitter.CGF && "Invalid address of label expression outside function");
  llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
  Ptr = llvm::ConstantExpr::getBitCast(Ptr,
                                   CGM.getTypes().ConvertType(E->getType()));
  return Ptr;
}

ConstantLValue
ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
  unsigned builtin = E->getBuiltinCallee();
  if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
      builtin != Builtin::BI__builtin___NSStringMakeConstantString)
    return nullptr;

  auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
  if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
    return CGM.getObjCRuntime().GenerateConstantString(literal);
  } else {
    // FIXME: need to deal with UCN conversion issues.
    return CGM.GetAddrOfConstantCFString(literal);
  }
}

ConstantLValue
ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
  StringRef functionName;
  if (auto CGF = Emitter.CGF)
    functionName = CGF->CurFn->getName();
  else
    functionName = "global";

  return CGM.GetAddrOfGlobalBlock(E, functionName);
}

ConstantLValue
ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
  QualType T;
  if (E->isTypeOperand())
    T = E->getTypeOperand(CGM.getContext());
  else
    T = E->getExprOperand()->getType();
  return CGM.GetAddrOfRTTIDescriptor(T);
}

ConstantLValue
ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
  return CGM.GetAddrOfUuidDescriptor(E);
}

ConstantLValue
ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
                                            const MaterializeTemporaryExpr *E) {
  assert(E->getStorageDuration() == SD_Static);
  SmallVector<const Expr *, 2> CommaLHSs;
  SmallVector<SubobjectAdjustment, 2> Adjustments;
  const Expr *Inner = E->GetTemporaryExpr()
      ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
  return CGM.GetAddrOfGlobalTemporary(E, Inner);
}

llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
                                                QualType DestType) {
  switch (Value.getKind()) {
  case APValue::None:
  case APValue::Indeterminate:
    // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
    return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
  case APValue::LValue:
    return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
  case APValue::Int:
    return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
  case APValue::FixedPoint:
    return llvm::ConstantInt::get(CGM.getLLVMContext(),
                                  Value.getFixedPoint().getValue());
  case APValue::ComplexInt: {
    llvm::Constant *Complex[2];

    Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
                                        Value.getComplexIntReal());
    Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
                                        Value.getComplexIntImag());

    // FIXME: the target may want to specify that this is packed.
    llvm::StructType *STy =
        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
    return llvm::ConstantStruct::get(STy, Complex);
  }
  case APValue::Float: {
    const llvm::APFloat &Init = Value.getFloat();
    if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
        !CGM.getContext().getLangOpts().NativeHalfType &&
        CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
      return llvm::ConstantInt::get(CGM.getLLVMContext(),
                                    Init.bitcastToAPInt());
    else
      return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
  }
  case APValue::ComplexFloat: {
    llvm::Constant *Complex[2];

    Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
                                       Value.getComplexFloatReal());
    Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
                                       Value.getComplexFloatImag());

    // FIXME: the target may want to specify that this is packed.
    llvm::StructType *STy =
        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
    return llvm::ConstantStruct::get(STy, Complex);
  }
  case APValue::Vector: {
    unsigned NumElts = Value.getVectorLength();
    SmallVector<llvm::Constant *, 4> Inits(NumElts);

    for (unsigned I = 0; I != NumElts; ++I) {
      const APValue &Elt = Value.getVectorElt(I);
      if (Elt.isInt())
        Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
      else if (Elt.isFloat())
        Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
      else
        llvm_unreachable("unsupported vector element type");
    }
    return llvm::ConstantVector::get(Inits);
  }
  case APValue::AddrLabelDiff: {
    const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
    const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
    llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
    llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
    if (!LHS || !RHS) return nullptr;

    // Compute difference
    llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
    LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
    RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
    llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);

    // LLVM is a bit sensitive about the exact format of the
    // address-of-label difference; make sure to truncate after
    // the subtraction.
    return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
  }
  case APValue::Struct:
  case APValue::Union:
    return ConstStructBuilder::BuildStruct(*this, Value, DestType);
  case APValue::Array: {
    const ConstantArrayType *CAT =
        CGM.getContext().getAsConstantArrayType(DestType);
    unsigned NumElements = Value.getArraySize();
    unsigned NumInitElts = Value.getArrayInitializedElts();

    // Emit array filler, if there is one.
    llvm::Constant *Filler = nullptr;
    if (Value.hasArrayFiller()) {
      Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
                                        CAT->getElementType());
      if (!Filler)
        return nullptr;
    }

    // Emit initializer elements.
    SmallVector<llvm::Constant*, 16> Elts;
    if (Filler && Filler->isNullValue())
      Elts.reserve(NumInitElts + 1);
    else
      Elts.reserve(NumElements);

    llvm::Type *CommonElementType = nullptr;
    for (unsigned I = 0; I < NumInitElts; ++I) {
      llvm::Constant *C = tryEmitPrivateForMemory(
          Value.getArrayInitializedElt(I), CAT->getElementType());
      if (!C) return nullptr;

      if (I == 0)
        CommonElementType = C->getType();
      else if (C->getType() != CommonElementType)
        CommonElementType = nullptr;
      Elts.push_back(C);
    }

    // This means that the array type is probably "IncompleteType" or some
    // type that is not ConstantArray.
    if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) {
      const ArrayType *AT = CGM.getContext().getAsArrayType(DestType);
      CommonElementType = CGM.getTypes().ConvertType(AT->getElementType());
      llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType,
                                                    NumElements);
      return llvm::ConstantAggregateZero::get(AType);
    }

    llvm::ArrayType *Desired =
        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
                             Filler);
  }
  case APValue::MemberPointer:
    return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
  }
  llvm_unreachable("Unknown APValue kind");
}

llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
    const CompoundLiteralExpr *E) {
  return EmittedCompoundLiterals.lookup(E);
}

void CodeGenModule::setAddrOfConstantCompoundLiteral(
    const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
  bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
  (void)Ok;
  assert(Ok && "CLE has already been emitted!");
}

ConstantAddress
CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
  assert(E->isFileScope() && "not a file-scope compound literal expr");
  return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
}

llvm::Constant *
CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
  // Member pointer constants always have a very particular form.
  const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
  const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();

  // A member function pointer.
  if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
    return getCXXABI().EmitMemberFunctionPointer(method);

  // Otherwise, a member data pointer.
  uint64_t fieldOffset = getContext().getFieldOffset(decl);
  CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
  return getCXXABI().EmitMemberDataPointer(type, chars);
}

static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
                                               llvm::Type *baseType,
                                               const CXXRecordDecl *base);

static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
                                        const RecordDecl *record,
                                        bool asCompleteObject) {
  const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
  llvm::StructType *structure =
    (asCompleteObject ? layout.getLLVMType()
                      : layout.getBaseSubobjectLLVMType());

  unsigned numElements = structure->getNumElements();
  std::vector<llvm::Constant *> elements(numElements);

  auto CXXR = dyn_cast<CXXRecordDecl>(record);
  // Fill in all the bases.
  if (CXXR) {
    for (const auto &I : CXXR->bases()) {
      if (I.isVirtual()) {
        // Ignore virtual bases; if we're laying out for a complete
        // object, we'll lay these out later.
        continue;
      }

      const CXXRecordDecl *base =
        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());

      // Ignore empty bases.
      if (base->isEmpty() ||
          CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
              .isZero())
        continue;

      unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
      llvm::Type *baseType = structure->getElementType(fieldIndex);
      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
    }
  }

  // Fill in all the fields.
  for (const auto *Field : record->fields()) {
    // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
    // will fill in later.)
    if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
      unsigned fieldIndex = layout.getLLVMFieldNo(Field);
      elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
    }

    // For unions, stop after the first named field.
    if (record->isUnion()) {
      if (Field->getIdentifier())
        break;
      if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
        if (FieldRD->findFirstNamedDataMember())
          break;
    }
  }

  // Fill in the virtual bases, if we're working with the complete object.
  if (CXXR && asCompleteObject) {
    for (const auto &I : CXXR->vbases()) {
      const CXXRecordDecl *base =
        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());

      // Ignore empty bases.
      if (base->isEmpty())
        continue;

      unsigned fieldIndex = layout.getVirtualBaseIndex(base);

      // We might have already laid this field out.
      if (elements[fieldIndex]) continue;

      llvm::Type *baseType = structure->getElementType(fieldIndex);
      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
    }
  }

  // Now go through all other fields and zero them out.
  for (unsigned i = 0; i != numElements; ++i) {
    if (!elements[i])
      elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
  }

  return llvm::ConstantStruct::get(structure, elements);
}

/// Emit the null constant for a base subobject.
static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
                                               llvm::Type *baseType,
                                               const CXXRecordDecl *base) {
  const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);

  // Just zero out bases that don't have any pointer to data members.
  if (baseLayout.isZeroInitializableAsBase())
    return llvm::Constant::getNullValue(baseType);

  // Otherwise, we can just use its null constant.
  return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
}

llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
                                                   QualType T) {
  return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
}

llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
  if (T->getAs<PointerType>())
    return getNullPointer(
        cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);

  if (getTypes().isZeroInitializable(T))
    return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));

  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
    llvm::ArrayType *ATy =
      cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));

    QualType ElementTy = CAT->getElementType();

    llvm::Constant *Element =
      ConstantEmitter::emitNullForMemory(*this, ElementTy);
    unsigned NumElements = CAT->getSize().getZExtValue();
    SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
    return llvm::ConstantArray::get(ATy, Array);
  }

  if (const RecordType *RT = T->getAs<RecordType>())
    return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);

  assert(T->isMemberDataPointerType() &&
         "Should only see pointers to data members here!");

  return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
}

llvm::Constant *
CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
  return ::EmitNullConstant(*this, Record, false);
}