reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
//===- FixedPoint.cpp - Fixed point constant handling -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Defines the implementation for the fixed point number interface.
//
//===----------------------------------------------------------------------===//

#include "clang/Basic/FixedPoint.h"

namespace clang {

APFixedPoint APFixedPoint::convert(const FixedPointSemantics &DstSema,
                                   bool *Overflow) const {
  llvm::APSInt NewVal = Val;
  unsigned DstWidth = DstSema.getWidth();
  unsigned DstScale = DstSema.getScale();
  bool Upscaling = DstScale > getScale();
  if (Overflow)
    *Overflow = false;

  if (Upscaling) {
    NewVal = NewVal.extend(NewVal.getBitWidth() + DstScale - getScale());
    NewVal <<= (DstScale - getScale());
  } else {
    NewVal >>= (getScale() - DstScale);
  }

  auto Mask = llvm::APInt::getBitsSetFrom(
      NewVal.getBitWidth(),
      std::min(DstScale + DstSema.getIntegralBits(), NewVal.getBitWidth()));
  llvm::APInt Masked(NewVal & Mask);

  // Change in the bits above the sign
  if (!(Masked == Mask || Masked == 0)) {
    // Found overflow in the bits above the sign
    if (DstSema.isSaturated())
      NewVal = NewVal.isNegative() ? Mask : ~Mask;
    else if (Overflow)
      *Overflow = true;
  }

  // If the dst semantics are unsigned, but our value is signed and negative, we
  // clamp to zero.
  if (!DstSema.isSigned() && NewVal.isSigned() && NewVal.isNegative()) {
    // Found negative overflow for unsigned result
    if (DstSema.isSaturated())
      NewVal = 0;
    else if (Overflow)
      *Overflow = true;
  }

  NewVal = NewVal.extOrTrunc(DstWidth);
  NewVal.setIsSigned(DstSema.isSigned());
  return APFixedPoint(NewVal, DstSema);
}

int APFixedPoint::compare(const APFixedPoint &Other) const {
  llvm::APSInt ThisVal = getValue();
  llvm::APSInt OtherVal = Other.getValue();
  bool ThisSigned = Val.isSigned();
  bool OtherSigned = OtherVal.isSigned();
  unsigned OtherScale = Other.getScale();
  unsigned OtherWidth = OtherVal.getBitWidth();

  unsigned CommonWidth = std::max(Val.getBitWidth(), OtherWidth);

  // Prevent overflow in the event the widths are the same but the scales differ
  CommonWidth += getScale() >= OtherScale ? getScale() - OtherScale
                                          : OtherScale - getScale();

  ThisVal = ThisVal.extOrTrunc(CommonWidth);
  OtherVal = OtherVal.extOrTrunc(CommonWidth);

  unsigned CommonScale = std::max(getScale(), OtherScale);
  ThisVal = ThisVal.shl(CommonScale - getScale());
  OtherVal = OtherVal.shl(CommonScale - OtherScale);

  if (ThisSigned && OtherSigned) {
    if (ThisVal.sgt(OtherVal))
      return 1;
    else if (ThisVal.slt(OtherVal))
      return -1;
  } else if (!ThisSigned && !OtherSigned) {
    if (ThisVal.ugt(OtherVal))
      return 1;
    else if (ThisVal.ult(OtherVal))
      return -1;
  } else if (ThisSigned && !OtherSigned) {
    if (ThisVal.isSignBitSet())
      return -1;
    else if (ThisVal.ugt(OtherVal))
      return 1;
    else if (ThisVal.ult(OtherVal))
      return -1;
  } else {
    // !ThisSigned && OtherSigned
    if (OtherVal.isSignBitSet())
      return 1;
    else if (ThisVal.ugt(OtherVal))
      return 1;
    else if (ThisVal.ult(OtherVal))
      return -1;
  }

  return 0;
}

APFixedPoint APFixedPoint::getMax(const FixedPointSemantics &Sema) {
  bool IsUnsigned = !Sema.isSigned();
  auto Val = llvm::APSInt::getMaxValue(Sema.getWidth(), IsUnsigned);
  if (IsUnsigned && Sema.hasUnsignedPadding())
    Val = Val.lshr(1);
  return APFixedPoint(Val, Sema);
}

APFixedPoint APFixedPoint::getMin(const FixedPointSemantics &Sema) {
  auto Val = llvm::APSInt::getMinValue(Sema.getWidth(), !Sema.isSigned());
  return APFixedPoint(Val, Sema);
}

FixedPointSemantics FixedPointSemantics::getCommonSemantics(
    const FixedPointSemantics &Other) const {
  unsigned CommonScale = std::max(getScale(), Other.getScale());
  unsigned CommonWidth =
      std::max(getIntegralBits(), Other.getIntegralBits()) + CommonScale;

  bool ResultIsSigned = isSigned() || Other.isSigned();
  bool ResultIsSaturated = isSaturated() || Other.isSaturated();
  bool ResultHasUnsignedPadding = false;
  if (!ResultIsSigned) {
    // Both are unsigned.
    ResultHasUnsignedPadding = hasUnsignedPadding() &&
                               Other.hasUnsignedPadding() && !ResultIsSaturated;
  }

  // If the result is signed, add an extra bit for the sign. Otherwise, if it is
  // unsigned and has unsigned padding, we only need to add the extra padding
  // bit back if we are not saturating.
  if (ResultIsSigned || ResultHasUnsignedPadding)
    CommonWidth++;

  return FixedPointSemantics(CommonWidth, CommonScale, ResultIsSigned,
                             ResultIsSaturated, ResultHasUnsignedPadding);
}

APFixedPoint APFixedPoint::add(const APFixedPoint &Other,
                               bool *Overflow) const {
  auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
  APFixedPoint ConvertedThis = convert(CommonFXSema);
  APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
  llvm::APSInt ThisVal = ConvertedThis.getValue();
  llvm::APSInt OtherVal = ConvertedOther.getValue();
  bool Overflowed = false;

  llvm::APSInt Result;
  if (CommonFXSema.isSaturated()) {
    Result = CommonFXSema.isSigned() ? ThisVal.sadd_sat(OtherVal)
                                     : ThisVal.uadd_sat(OtherVal);
  } else {
    Result = ThisVal.isSigned() ? ThisVal.sadd_ov(OtherVal, Overflowed)
                                : ThisVal.uadd_ov(OtherVal, Overflowed);
  }

  if (Overflow)
    *Overflow = Overflowed;

  return APFixedPoint(Result, CommonFXSema);
}

void APFixedPoint::toString(llvm::SmallVectorImpl<char> &Str) const {
  llvm::APSInt Val = getValue();
  unsigned Scale = getScale();

  if (Val.isSigned() && Val.isNegative() && Val != -Val) {
    Val = -Val;
    Str.push_back('-');
  }

  llvm::APSInt IntPart = Val >> Scale;

  // Add 4 digits to hold the value after multiplying 10 (the radix)
  unsigned Width = Val.getBitWidth() + 4;
  llvm::APInt FractPart = Val.zextOrTrunc(Scale).zext(Width);
  llvm::APInt FractPartMask = llvm::APInt::getAllOnesValue(Scale).zext(Width);
  llvm::APInt RadixInt = llvm::APInt(Width, 10);

  IntPart.toString(Str, /*Radix=*/10);
  Str.push_back('.');
  do {
    (FractPart * RadixInt)
        .lshr(Scale)
        .toString(Str, /*Radix=*/10, Val.isSigned());
    FractPart = (FractPart * RadixInt) & FractPartMask;
  } while (FractPart != 0);
}

APFixedPoint APFixedPoint::negate(bool *Overflow) const {
  if (!isSaturated()) {
    if (Overflow)
      *Overflow =
          (!isSigned() && Val != 0) || (isSigned() && Val.isMinSignedValue());
    return APFixedPoint(-Val, Sema);
  }

  // We never overflow for saturation
  if (Overflow)
    *Overflow = false;

  if (isSigned())
    return Val.isMinSignedValue() ? getMax(Sema) : APFixedPoint(-Val, Sema);
  else
    return APFixedPoint(Sema);
}

llvm::APSInt APFixedPoint::convertToInt(unsigned DstWidth, bool DstSign,
                                        bool *Overflow) const {
  llvm::APSInt Result = getIntPart();
  unsigned SrcWidth = getWidth();

  llvm::APSInt DstMin = llvm::APSInt::getMinValue(DstWidth, !DstSign);
  llvm::APSInt DstMax = llvm::APSInt::getMaxValue(DstWidth, !DstSign);

  if (SrcWidth < DstWidth) {
    Result = Result.extend(DstWidth);
  } else if (SrcWidth > DstWidth) {
    DstMin = DstMin.extend(SrcWidth);
    DstMax = DstMax.extend(SrcWidth);
  }

  if (Overflow) {
    if (Result.isSigned() && !DstSign) {
      *Overflow = Result.isNegative() || Result.ugt(DstMax);
    } else if (Result.isUnsigned() && DstSign) {
      *Overflow = Result.ugt(DstMax);
    } else {
      *Overflow = Result < DstMin || Result > DstMax;
    }
  }

  Result.setIsSigned(DstSign);
  return Result.extOrTrunc(DstWidth);
}

APFixedPoint APFixedPoint::getFromIntValue(const llvm::APSInt &Value,
                                           const FixedPointSemantics &DstFXSema,
                                           bool *Overflow) {
  FixedPointSemantics IntFXSema = FixedPointSemantics::GetIntegerSemantics(
      Value.getBitWidth(), Value.isSigned());
  return APFixedPoint(Value, IntFXSema).convert(DstFXSema, Overflow);
}

}  // namespace clang