reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
//===- ScopeInfo.h - Information about a semantic context -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines FunctionScopeInfo and its subclasses, which contain
// information about a single function, block, lambda, or method body.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
#define LLVM_CLANG_SEMA_SCOPEINFO_H

#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Type.h"
#include "clang/Basic/CapturedStmt.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Sema/CleanupInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <utility>

namespace clang {

class BlockDecl;
class CapturedDecl;
class CXXMethodDecl;
class CXXRecordDecl;
class ImplicitParamDecl;
class NamedDecl;
class ObjCIvarRefExpr;
class ObjCMessageExpr;
class ObjCPropertyDecl;
class ObjCPropertyRefExpr;
class ParmVarDecl;
class RecordDecl;
class ReturnStmt;
class Scope;
class Stmt;
class SwitchStmt;
class TemplateParameterList;
class TemplateTypeParmDecl;
class VarDecl;

namespace sema {

/// Contains information about the compound statement currently being
/// parsed.
class CompoundScopeInfo {
public:
  /// Whether this compound stamement contains `for' or `while' loops
  /// with empty bodies.
  bool HasEmptyLoopBodies = false;

  /// Whether this compound statement corresponds to a GNU statement
  /// expression.
  bool IsStmtExpr;

  CompoundScopeInfo(bool IsStmtExpr) : IsStmtExpr(IsStmtExpr) {}

  void setHasEmptyLoopBodies() {
    HasEmptyLoopBodies = true;
  }
};

class PossiblyUnreachableDiag {
public:
  PartialDiagnostic PD;
  SourceLocation Loc;
  llvm::TinyPtrVector<const Stmt*> Stmts;

  PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
                          ArrayRef<const Stmt *> Stmts)
      : PD(PD), Loc(Loc), Stmts(Stmts) {}
};

/// Retains information about a function, method, or block that is
/// currently being parsed.
class FunctionScopeInfo {
protected:
  enum ScopeKind {
    SK_Function,
    SK_Block,
    SK_Lambda,
    SK_CapturedRegion
  };

public:
  /// What kind of scope we are describing.
  ScopeKind Kind : 3;

  /// Whether this function contains a VLA, \@try, try, C++
  /// initializer, or anything else that can't be jumped past.
  bool HasBranchProtectedScope : 1;

  /// Whether this function contains any switches or direct gotos.
  bool HasBranchIntoScope : 1;

  /// Whether this function contains any indirect gotos.
  bool HasIndirectGoto : 1;

  /// Whether a statement was dropped because it was invalid.
  bool HasDroppedStmt : 1;

  /// True if current scope is for OpenMP declare reduction combiner.
  bool HasOMPDeclareReductionCombiner : 1;

  /// Whether there is a fallthrough statement in this function.
  bool HasFallthroughStmt : 1;

  /// Whether we make reference to a declaration that could be
  /// unavailable.
  bool HasPotentialAvailabilityViolations : 1;

  /// A flag that is set when parsing a method that must call super's
  /// implementation, such as \c -dealloc, \c -finalize, or any method marked
  /// with \c __attribute__((objc_requires_super)).
  bool ObjCShouldCallSuper : 1;

  /// True when this is a method marked as a designated initializer.
  bool ObjCIsDesignatedInit : 1;

  /// This starts true for a method marked as designated initializer and will
  /// be set to false if there is an invocation to a designated initializer of
  /// the super class.
  bool ObjCWarnForNoDesignatedInitChain : 1;

  /// True when this is an initializer method not marked as a designated
  /// initializer within a class that has at least one initializer marked as a
  /// designated initializer.
  bool ObjCIsSecondaryInit : 1;

  /// This starts true for a secondary initializer method and will be set to
  /// false if there is an invocation of an initializer on 'self'.
  bool ObjCWarnForNoInitDelegation : 1;

  /// True only when this function has not already built, or attempted
  /// to build, the initial and final coroutine suspend points
  bool NeedsCoroutineSuspends : 1;

  /// An enumeration represeting the kind of the first coroutine statement
  /// in the function. One of co_return, co_await, or co_yield.
  unsigned char FirstCoroutineStmtKind : 2;

  /// First coroutine statement in the current function.
  /// (ex co_return, co_await, co_yield)
  SourceLocation FirstCoroutineStmtLoc;

  /// First 'return' statement in the current function.
  SourceLocation FirstReturnLoc;

  /// First C++ 'try' statement in the current function.
  SourceLocation FirstCXXTryLoc;

  /// First SEH '__try' statement in the current function.
  SourceLocation FirstSEHTryLoc;

  /// Used to determine if errors occurred in this function or block.
  DiagnosticErrorTrap ErrorTrap;

  /// A SwitchStmt, along with a flag indicating if its list of case statements
  /// is incomplete (because we dropped an invalid one while parsing).
  using SwitchInfo = llvm::PointerIntPair<SwitchStmt*, 1, bool>;

  /// SwitchStack - This is the current set of active switch statements in the
  /// block.
  SmallVector<SwitchInfo, 8> SwitchStack;

  /// The list of return statements that occur within the function or
  /// block, if there is any chance of applying the named return value
  /// optimization, or if we need to infer a return type.
  SmallVector<ReturnStmt*, 4> Returns;

  /// The promise object for this coroutine, if any.
  VarDecl *CoroutinePromise = nullptr;

  /// A mapping between the coroutine function parameters that were moved
  /// to the coroutine frame, and their move statements.
  llvm::SmallMapVector<ParmVarDecl *, Stmt *, 4> CoroutineParameterMoves;

  /// The initial and final coroutine suspend points.
  std::pair<Stmt *, Stmt *> CoroutineSuspends;

  /// The stack of currently active compound stamement scopes in the
  /// function.
  SmallVector<CompoundScopeInfo, 4> CompoundScopes;

  /// The set of blocks that are introduced in this function.
  llvm::SmallPtrSet<const BlockDecl *, 1> Blocks;

  /// The set of __block variables that are introduced in this function.
  llvm::TinyPtrVector<VarDecl *> ByrefBlockVars;

  /// A list of PartialDiagnostics created but delayed within the
  /// current function scope.  These diagnostics are vetted for reachability
  /// prior to being emitted.
  SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;

  /// A list of parameters which have the nonnull attribute and are
  /// modified in the function.
  llvm::SmallPtrSet<const ParmVarDecl *, 8> ModifiedNonNullParams;

public:
  /// Represents a simple identification of a weak object.
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  ///
  /// This is used to determine if two weak accesses refer to the same object.
  /// Here are some examples of how various accesses are "profiled":
  ///
  /// Access Expression |     "Base" Decl     |          "Property" Decl
  /// :---------------: | :-----------------: | :------------------------------:
  /// self.property     | self (VarDecl)      | property (ObjCPropertyDecl)
  /// self.implicitProp | self (VarDecl)      | -implicitProp (ObjCMethodDecl)
  /// self->ivar.prop   | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
  /// cxxObj.obj.prop   | obj (FieldDecl)     | prop (ObjCPropertyDecl)
  /// [self foo].prop   | 0 (unknown)         | prop (ObjCPropertyDecl)
  /// self.prop1.prop2  | prop1 (ObjCPropertyDecl)    | prop2 (ObjCPropertyDecl)
  /// MyClass.prop      | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
  /// MyClass.foo.prop  | +foo (ObjCMethodDecl)       | -prop (ObjCPropertyDecl)
  /// weakVar           | 0 (known)           | weakVar (VarDecl)
  /// self->weakIvar    | self (VarDecl)      | weakIvar (ObjCIvarDecl)
  ///
  /// Objects are identified with only two Decls to make it reasonably fast to
  /// compare them.
  class WeakObjectProfileTy {
    /// The base object decl, as described in the class documentation.
    ///
    /// The extra flag is "true" if the Base and Property are enough to uniquely
    /// identify the object in memory.
    ///
    /// \sa isExactProfile()
    using BaseInfoTy = llvm::PointerIntPair<const NamedDecl *, 1, bool>;
    BaseInfoTy Base;

    /// The "property" decl, as described in the class documentation.
    ///
    /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
    /// case of "implicit" properties (regular methods accessed via dot syntax).
    const NamedDecl *Property = nullptr;

    /// Used to find the proper base profile for a given base expression.
    static BaseInfoTy getBaseInfo(const Expr *BaseE);

    inline WeakObjectProfileTy();
    static inline WeakObjectProfileTy getSentinel();

  public:
    WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
    WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
    WeakObjectProfileTy(const DeclRefExpr *RE);
    WeakObjectProfileTy(const ObjCIvarRefExpr *RE);

    const NamedDecl *getBase() const { return Base.getPointer(); }
    const NamedDecl *getProperty() const { return Property; }

    /// Returns true if the object base specifies a known object in memory,
    /// rather than, say, an instance variable or property of another object.
    ///
    /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
    /// considered an exact profile if \c foo is a local variable, even if
    /// another variable \c foo2 refers to the same object as \c foo.
    ///
    /// For increased precision, accesses with base variables that are
    /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
    /// be exact, though this is not true for arbitrary variables
    /// (foo.prop1.prop2).
    bool isExactProfile() const {
      return Base.getInt();
    }

    bool operator==(const WeakObjectProfileTy &Other) const {
      return Base == Other.Base && Property == Other.Property;
    }

    // For use in DenseMap.
    // We can't specialize the usual llvm::DenseMapInfo at the end of the file
    // because by that point the DenseMap in FunctionScopeInfo has already been
    // instantiated.
    class DenseMapInfo {
    public:
      static inline WeakObjectProfileTy getEmptyKey() {
        return WeakObjectProfileTy();
      }

      static inline WeakObjectProfileTy getTombstoneKey() {
        return WeakObjectProfileTy::getSentinel();
      }

      static unsigned getHashValue(const WeakObjectProfileTy &Val) {
        using Pair = std::pair<BaseInfoTy, const NamedDecl *>;

        return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
                                                           Val.Property));
      }

      static bool isEqual(const WeakObjectProfileTy &LHS,
                          const WeakObjectProfileTy &RHS) {
        return LHS == RHS;
      }
    };
  };

  /// Represents a single use of a weak object.
  ///
  /// Stores both the expression and whether the access is potentially unsafe
  /// (i.e. it could potentially be warned about).
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  class WeakUseTy {
    llvm::PointerIntPair<const Expr *, 1, bool> Rep;

  public:
    WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}

    const Expr *getUseExpr() const { return Rep.getPointer(); }
    bool isUnsafe() const { return Rep.getInt(); }
    void markSafe() { Rep.setInt(false); }

    bool operator==(const WeakUseTy &Other) const {
      return Rep == Other.Rep;
    }
  };

  /// Used to collect uses of a particular weak object in a function body.
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  using WeakUseVector = SmallVector<WeakUseTy, 4>;

  /// Used to collect all uses of weak objects in a function body.
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  using WeakObjectUseMap =
      llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
                          WeakObjectProfileTy::DenseMapInfo>;

private:
  /// Used to collect all uses of weak objects in this function body.
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  WeakObjectUseMap WeakObjectUses;

protected:
  FunctionScopeInfo(const FunctionScopeInfo&) = default;

public:
  FunctionScopeInfo(DiagnosticsEngine &Diag)
      : Kind(SK_Function), HasBranchProtectedScope(false),
        HasBranchIntoScope(false), HasIndirectGoto(false),
        HasDroppedStmt(false), HasOMPDeclareReductionCombiner(false),
        HasFallthroughStmt(false), HasPotentialAvailabilityViolations(false),
        ObjCShouldCallSuper(false), ObjCIsDesignatedInit(false),
        ObjCWarnForNoDesignatedInitChain(false), ObjCIsSecondaryInit(false),
        ObjCWarnForNoInitDelegation(false), NeedsCoroutineSuspends(true),
        ErrorTrap(Diag) {}

  virtual ~FunctionScopeInfo();

  /// Record that a weak object was accessed.
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  template <typename ExprT>
  inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);

  void recordUseOfWeak(const ObjCMessageExpr *Msg,
                       const ObjCPropertyDecl *Prop);

  /// Record that a given expression is a "safe" access of a weak object (e.g.
  /// assigning it to a strong variable.)
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  void markSafeWeakUse(const Expr *E);

  const WeakObjectUseMap &getWeakObjectUses() const {
    return WeakObjectUses;
  }

  void setHasBranchIntoScope() {
    HasBranchIntoScope = true;
  }

  void setHasBranchProtectedScope() {
    HasBranchProtectedScope = true;
  }

  void setHasIndirectGoto() {
    HasIndirectGoto = true;
  }

  void setHasDroppedStmt() {
    HasDroppedStmt = true;
  }

  void setHasOMPDeclareReductionCombiner() {
    HasOMPDeclareReductionCombiner = true;
  }

  void setHasFallthroughStmt() {
    HasFallthroughStmt = true;
  }

  void setHasCXXTry(SourceLocation TryLoc) {
    setHasBranchProtectedScope();
    FirstCXXTryLoc = TryLoc;
  }

  void setHasSEHTry(SourceLocation TryLoc) {
    setHasBranchProtectedScope();
    FirstSEHTryLoc = TryLoc;
  }

  bool NeedsScopeChecking() const {
    return !HasDroppedStmt &&
        (HasIndirectGoto ||
          (HasBranchProtectedScope && HasBranchIntoScope));
  }

  // Add a block introduced in this function.
  void addBlock(const BlockDecl *BD) {
    Blocks.insert(BD);
  }

  // Add a __block variable introduced in this function.
  void addByrefBlockVar(VarDecl *VD) {
    ByrefBlockVars.push_back(VD);
  }

  bool isCoroutine() const { return !FirstCoroutineStmtLoc.isInvalid(); }

  void setFirstCoroutineStmt(SourceLocation Loc, StringRef Keyword) {
    assert(FirstCoroutineStmtLoc.isInvalid() &&
                   "first coroutine statement location already set");
    FirstCoroutineStmtLoc = Loc;
    FirstCoroutineStmtKind = llvm::StringSwitch<unsigned char>(Keyword)
            .Case("co_return", 0)
            .Case("co_await", 1)
            .Case("co_yield", 2);
  }

  StringRef getFirstCoroutineStmtKeyword() const {
    assert(FirstCoroutineStmtLoc.isValid()
                   && "no coroutine statement available");
    switch (FirstCoroutineStmtKind) {
    case 0: return "co_return";
    case 1: return "co_await";
    case 2: return "co_yield";
    default:
      llvm_unreachable("FirstCoroutineStmtKind has an invalid value");
    };
  }

  void setNeedsCoroutineSuspends(bool value = true) {
    assert((!value || CoroutineSuspends.first == nullptr) &&
            "we already have valid suspend points");
    NeedsCoroutineSuspends = value;
  }

  bool hasInvalidCoroutineSuspends() const {
    return !NeedsCoroutineSuspends && CoroutineSuspends.first == nullptr;
  }

  void setCoroutineSuspends(Stmt *Initial, Stmt *Final) {
    assert(Initial && Final && "suspend points cannot be null");
    assert(CoroutineSuspends.first == nullptr && "suspend points already set");
    NeedsCoroutineSuspends = false;
    CoroutineSuspends.first = Initial;
    CoroutineSuspends.second = Final;
  }

  /// Clear out the information in this function scope, making it
  /// suitable for reuse.
  void Clear();

  bool isPlainFunction() const { return Kind == SK_Function; }
};

class Capture {
  // There are three categories of capture: capturing 'this', capturing
  // local variables, and C++1y initialized captures (which can have an
  // arbitrary initializer, and don't really capture in the traditional
  // sense at all).
  //
  // There are three ways to capture a local variable:
  //  - capture by copy in the C++11 sense,
  //  - capture by reference in the C++11 sense, and
  //  - __block capture.
  // Lambdas explicitly specify capture by copy or capture by reference.
  // For blocks, __block capture applies to variables with that annotation,
  // variables of reference type are captured by reference, and other
  // variables are captured by copy.
  enum CaptureKind {
    Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_VLA
  };

  union {
    /// If Kind == Cap_VLA, the captured type.
    const VariableArrayType *CapturedVLA;

    /// Otherwise, the captured variable (if any).
    VarDecl *CapturedVar;
  };

  /// The source location at which the first capture occurred.
  SourceLocation Loc;

  /// The location of the ellipsis that expands a parameter pack.
  SourceLocation EllipsisLoc;

  /// The type as it was captured, which is the type of the non-static data
  /// member that would hold the capture.
  QualType CaptureType;

  /// The CaptureKind of this capture.
  unsigned Kind : 2;

  /// Whether this is a nested capture (a capture of an enclosing capturing
  /// scope's capture).
  unsigned Nested : 1;

  /// Whether this is a capture of '*this'.
  unsigned CapturesThis : 1;

  /// Whether an explicit capture has been odr-used in the body of the
  /// lambda.
  unsigned ODRUsed : 1;

  /// Whether an explicit capture has been non-odr-used in the body of
  /// the lambda.
  unsigned NonODRUsed : 1;

  /// Whether the capture is invalid (a capture was required but the entity is
  /// non-capturable).
  unsigned Invalid : 1;

public:
  Capture(VarDecl *Var, bool Block, bool ByRef, bool IsNested,
          SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType,
          bool Invalid)
      : CapturedVar(Var), Loc(Loc), EllipsisLoc(EllipsisLoc),
        CaptureType(CaptureType),
        Kind(Block ? Cap_Block : ByRef ? Cap_ByRef : Cap_ByCopy),
        Nested(IsNested), CapturesThis(false), ODRUsed(false),
        NonODRUsed(false), Invalid(Invalid) {}

  enum IsThisCapture { ThisCapture };
  Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
          QualType CaptureType, const bool ByCopy, bool Invalid)
      : Loc(Loc), CaptureType(CaptureType),
        Kind(ByCopy ? Cap_ByCopy : Cap_ByRef), Nested(IsNested),
        CapturesThis(true), ODRUsed(false), NonODRUsed(false),
        Invalid(Invalid) {}

  enum IsVLACapture { VLACapture };
  Capture(IsVLACapture, const VariableArrayType *VLA, bool IsNested,
          SourceLocation Loc, QualType CaptureType)
      : CapturedVLA(VLA), Loc(Loc), CaptureType(CaptureType), Kind(Cap_VLA),
        Nested(IsNested), CapturesThis(false), ODRUsed(false),
        NonODRUsed(false), Invalid(false) {}

  bool isThisCapture() const { return CapturesThis; }
  bool isVariableCapture() const {
    return !isThisCapture() && !isVLATypeCapture();
  }

  bool isCopyCapture() const { return Kind == Cap_ByCopy; }
  bool isReferenceCapture() const { return Kind == Cap_ByRef; }
  bool isBlockCapture() const { return Kind == Cap_Block; }
  bool isVLATypeCapture() const { return Kind == Cap_VLA; }

  bool isNested() const { return Nested; }

  bool isInvalid() const { return Invalid; }

  /// Determine whether this capture is an init-capture.
  bool isInitCapture() const;

  bool isODRUsed() const { return ODRUsed; }
  bool isNonODRUsed() const { return NonODRUsed; }
  void markUsed(bool IsODRUse) {
    if (IsODRUse)
      ODRUsed = true;
    else
      NonODRUsed = true;
  }

  VarDecl *getVariable() const {
    assert(isVariableCapture());
    return CapturedVar;
  }

  const VariableArrayType *getCapturedVLAType() const {
    assert(isVLATypeCapture());
    return CapturedVLA;
  }

  /// Retrieve the location at which this variable was captured.
  SourceLocation getLocation() const { return Loc; }

  /// Retrieve the source location of the ellipsis, whose presence
  /// indicates that the capture is a pack expansion.
  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }

  /// Retrieve the capture type for this capture, which is effectively
  /// the type of the non-static data member in the lambda/block structure
  /// that would store this capture.
  QualType getCaptureType() const { return CaptureType; }
};

class CapturingScopeInfo : public FunctionScopeInfo {
protected:
  CapturingScopeInfo(const CapturingScopeInfo&) = default;

public:
  enum ImplicitCaptureStyle {
    ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
    ImpCap_CapturedRegion
  };

  ImplicitCaptureStyle ImpCaptureStyle;

  CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
      : FunctionScopeInfo(Diag), ImpCaptureStyle(Style) {}

  /// CaptureMap - A map of captured variables to (index+1) into Captures.
  llvm::DenseMap<VarDecl*, unsigned> CaptureMap;

  /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
  /// zero if 'this' is not captured.
  unsigned CXXThisCaptureIndex = 0;

  /// Captures - The captures.
  SmallVector<Capture, 4> Captures;

  /// - Whether the target type of return statements in this context
  /// is deduced (e.g. a lambda or block with omitted return type).
  bool HasImplicitReturnType = false;

  /// ReturnType - The target type of return statements in this context,
  /// or null if unknown.
  QualType ReturnType;

  void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested,
                  SourceLocation Loc, SourceLocation EllipsisLoc,
                  QualType CaptureType, bool Invalid) {
    Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
                               EllipsisLoc, CaptureType, Invalid));
    CaptureMap[Var] = Captures.size();
  }

  void addVLATypeCapture(SourceLocation Loc, const VariableArrayType *VLAType,
                         QualType CaptureType) {
    Captures.push_back(Capture(Capture::VLACapture, VLAType,
                               /*FIXME: IsNested*/ false, Loc, CaptureType));
  }

  void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
                      bool ByCopy);

  /// Determine whether the C++ 'this' is captured.
  bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }

  /// Retrieve the capture of C++ 'this', if it has been captured.
  Capture &getCXXThisCapture() {
    assert(isCXXThisCaptured() && "this has not been captured");
    return Captures[CXXThisCaptureIndex - 1];
  }

  /// Determine whether the given variable has been captured.
  bool isCaptured(VarDecl *Var) const {
    return CaptureMap.count(Var);
  }

  /// Determine whether the given variable-array type has been captured.
  bool isVLATypeCaptured(const VariableArrayType *VAT) const;

  /// Retrieve the capture of the given variable, if it has been
  /// captured already.
  Capture &getCapture(VarDecl *Var) {
    assert(isCaptured(Var) && "Variable has not been captured");
    return Captures[CaptureMap[Var] - 1];
  }

  const Capture &getCapture(VarDecl *Var) const {
    llvm::DenseMap<VarDecl*, unsigned>::const_iterator Known
      = CaptureMap.find(Var);
    assert(Known != CaptureMap.end() && "Variable has not been captured");
    return Captures[Known->second - 1];
  }

  static bool classof(const FunctionScopeInfo *FSI) {
    return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
                                 || FSI->Kind == SK_CapturedRegion;
  }
};

/// Retains information about a block that is currently being parsed.
class BlockScopeInfo final : public CapturingScopeInfo {
public:
  BlockDecl *TheDecl;

  /// TheScope - This is the scope for the block itself, which contains
  /// arguments etc.
  Scope *TheScope;

  /// BlockType - The function type of the block, if one was given.
  /// Its return type may be BuiltinType::Dependent.
  QualType FunctionType;

  BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
      : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
        TheScope(BlockScope) {
    Kind = SK_Block;
  }

  ~BlockScopeInfo() override;

  static bool classof(const FunctionScopeInfo *FSI) {
    return FSI->Kind == SK_Block;
  }
};

/// Retains information about a captured region.
class CapturedRegionScopeInfo final : public CapturingScopeInfo {
public:
  /// The CapturedDecl for this statement.
  CapturedDecl *TheCapturedDecl;

  /// The captured record type.
  RecordDecl *TheRecordDecl;

  /// This is the enclosing scope of the captured region.
  Scope *TheScope;

  /// The implicit parameter for the captured variables.
  ImplicitParamDecl *ContextParam;

  /// The kind of captured region.
  unsigned short CapRegionKind;

  unsigned short OpenMPLevel;
  unsigned short OpenMPCaptureLevel;

  CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
                          RecordDecl *RD, ImplicitParamDecl *Context,
                          CapturedRegionKind K, unsigned OpenMPLevel,
                          unsigned OpenMPCaptureLevel)
      : CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
        TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
        ContextParam(Context), CapRegionKind(K), OpenMPLevel(OpenMPLevel),
        OpenMPCaptureLevel(OpenMPCaptureLevel) {
    Kind = SK_CapturedRegion;
  }

  ~CapturedRegionScopeInfo() override;

  /// A descriptive name for the kind of captured region this is.
  StringRef getRegionName() const {
    switch (CapRegionKind) {
    case CR_Default:
      return "default captured statement";
    case CR_ObjCAtFinally:
      return "Objective-C @finally statement";
    case CR_OpenMP:
      return "OpenMP region";
    }
    llvm_unreachable("Invalid captured region kind!");
  }

  static bool classof(const FunctionScopeInfo *FSI) {
    return FSI->Kind == SK_CapturedRegion;
  }
};

class LambdaScopeInfo final : public CapturingScopeInfo {
public:
  /// The class that describes the lambda.
  CXXRecordDecl *Lambda = nullptr;

  /// The lambda's compiler-generated \c operator().
  CXXMethodDecl *CallOperator = nullptr;

  /// Source range covering the lambda introducer [...].
  SourceRange IntroducerRange;

  /// Source location of the '&' or '=' specifying the default capture
  /// type, if any.
  SourceLocation CaptureDefaultLoc;

  /// The number of captures in the \c Captures list that are
  /// explicit captures.
  unsigned NumExplicitCaptures = 0;

  /// Whether this is a mutable lambda.
  bool Mutable = false;

  /// Whether the (empty) parameter list is explicit.
  bool ExplicitParams = false;

  /// Whether any of the capture expressions requires cleanups.
  CleanupInfo Cleanup;

  /// Whether the lambda contains an unexpanded parameter pack.
  bool ContainsUnexpandedParameterPack = false;

  /// Packs introduced by this lambda, if any.
  SmallVector<NamedDecl*, 4> LocalPacks;

  /// If this is a generic lambda, use this as the depth of
  /// each 'auto' parameter, during initial AST construction.
  unsigned AutoTemplateParameterDepth = 0;

  /// The number of parameters in the template parameter list that were
  /// explicitly specified by the user, as opposed to being invented by use
  /// of an auto parameter.
  unsigned NumExplicitTemplateParams = 0;

  /// Source range covering the explicit template parameter list (if it exists).
  SourceRange ExplicitTemplateParamsRange;

  /// Store the list of the template parameters for a generic lambda.
  /// If this is a generic lambda, this holds the explicit template parameters
  /// followed by the auto parameters converted into TemplateTypeParmDecls.
  /// It can be used to construct the generic lambda's template parameter list
  /// during initial AST construction.
  SmallVector<NamedDecl*, 4> TemplateParams;

  /// If this is a generic lambda, and the template parameter
  /// list has been created (from the TemplateParams) then store
  /// a reference to it (cache it to avoid reconstructing it).
  TemplateParameterList *GLTemplateParameterList = nullptr;

  /// Contains all variable-referring-expressions (i.e. DeclRefExprs
  ///  or MemberExprs) that refer to local variables in a generic lambda
  ///  or a lambda in a potentially-evaluated-if-used context.
  ///
  ///  Potentially capturable variables of a nested lambda that might need
  ///   to be captured by the lambda are housed here.
  ///  This is specifically useful for generic lambdas or
  ///  lambdas within a potentially evaluated-if-used context.
  ///  If an enclosing variable is named in an expression of a lambda nested
  ///  within a generic lambda, we don't always know know whether the variable
  ///  will truly be odr-used (i.e. need to be captured) by that nested lambda,
  ///  until its instantiation. But we still need to capture it in the
  ///  enclosing lambda if all intervening lambdas can capture the variable.
  llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;

  /// Contains all variable-referring-expressions that refer
  ///  to local variables that are usable as constant expressions and
  ///  do not involve an odr-use (they may still need to be captured
  ///  if the enclosing full-expression is instantiation dependent).
  llvm::SmallSet<Expr *, 8> NonODRUsedCapturingExprs;

  /// A map of explicit capture indices to their introducer source ranges.
  llvm::DenseMap<unsigned, SourceRange> ExplicitCaptureRanges;

  /// Contains all of the variables defined in this lambda that shadow variables
  /// that were defined in parent contexts. Used to avoid warnings when the
  /// shadowed variables are uncaptured by this lambda.
  struct ShadowedOuterDecl {
    const VarDecl *VD;
    const VarDecl *ShadowedDecl;
  };
  llvm::SmallVector<ShadowedOuterDecl, 4> ShadowingDecls;

  SourceLocation PotentialThisCaptureLocation;

  LambdaScopeInfo(DiagnosticsEngine &Diag)
      : CapturingScopeInfo(Diag, ImpCap_None) {
    Kind = SK_Lambda;
  }

  /// Note when all explicit captures have been added.
  void finishedExplicitCaptures() {
    NumExplicitCaptures = Captures.size();
  }

  static bool classof(const FunctionScopeInfo *FSI) {
    return FSI->Kind == SK_Lambda;
  }

  /// Is this scope known to be for a generic lambda? (This will be false until
  /// we parse a template parameter list or the first 'auto'-typed parameter).
  bool isGenericLambda() const {
    return !TemplateParams.empty() || GLTemplateParameterList;
  }

  /// Add a variable that might potentially be captured by the
  /// lambda and therefore the enclosing lambdas.
  ///
  /// This is also used by enclosing lambda's to speculatively capture
  /// variables that nested lambda's - depending on their enclosing
  /// specialization - might need to capture.
  /// Consider:
  /// void f(int, int); <-- don't capture
  /// void f(const int&, double); <-- capture
  /// void foo() {
  ///   const int x = 10;
  ///   auto L = [=](auto a) { // capture 'x'
  ///      return [=](auto b) {
  ///        f(x, a);  // we may or may not need to capture 'x'
  ///      };
  ///   };
  /// }
  void addPotentialCapture(Expr *VarExpr) {
    assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr) ||
           isa<FunctionParmPackExpr>(VarExpr));
    PotentiallyCapturingExprs.push_back(VarExpr);
  }

  void addPotentialThisCapture(SourceLocation Loc) {
    PotentialThisCaptureLocation = Loc;
  }

  bool hasPotentialThisCapture() const {
    return PotentialThisCaptureLocation.isValid();
  }

  /// Mark a variable's reference in a lambda as non-odr using.
  ///
  /// For generic lambdas, if a variable is named in a potentially evaluated
  /// expression, where the enclosing full expression is dependent then we
  /// must capture the variable (given a default capture).
  /// This is accomplished by recording all references to variables
  /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
  /// PotentialCaptures. All such variables have to be captured by that lambda,
  /// except for as described below.
  /// If that variable is usable as a constant expression and is named in a
  /// manner that does not involve its odr-use (e.g. undergoes
  /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
  /// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
  /// if we can determine that the full expression is not instantiation-
  /// dependent, then we can entirely avoid its capture.
  ///
  ///   const int n = 0;
  ///   [&] (auto x) {
  ///     (void)+n + x;
  ///   };
  /// Interestingly, this strategy would involve a capture of n, even though
  /// it's obviously not odr-used here, because the full-expression is
  /// instantiation-dependent.  It could be useful to avoid capturing such
  /// variables, even when they are referred to in an instantiation-dependent
  /// expression, if we can unambiguously determine that they shall never be
  /// odr-used.  This would involve removal of the variable-referring-expression
  /// from the array of PotentialCaptures during the lvalue-to-rvalue
  /// conversions.  But per the working draft N3797, (post-chicago 2013) we must
  /// capture such variables.
  /// Before anyone is tempted to implement a strategy for not-capturing 'n',
  /// consider the insightful warning in:
  ///    /cfe-commits/Week-of-Mon-20131104/092596.html
  /// "The problem is that the set of captures for a lambda is part of the ABI
  ///  (since lambda layout can be made visible through inline functions and the
  ///  like), and there are no guarantees as to which cases we'll manage to build
  ///  an lvalue-to-rvalue conversion in, when parsing a template -- some
  ///  seemingly harmless change elsewhere in Sema could cause us to start or stop
  ///  building such a node. So we need a rule that anyone can implement and get
  ///  exactly the same result".
  void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
    assert(isa<DeclRefExpr>(CapturingVarExpr) ||
           isa<MemberExpr>(CapturingVarExpr) ||
           isa<FunctionParmPackExpr>(CapturingVarExpr));
    NonODRUsedCapturingExprs.insert(CapturingVarExpr);
  }
  bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
    assert(isa<DeclRefExpr>(CapturingVarExpr) ||
           isa<MemberExpr>(CapturingVarExpr) ||
           isa<FunctionParmPackExpr>(CapturingVarExpr));
    return NonODRUsedCapturingExprs.count(CapturingVarExpr);
  }
  void removePotentialCapture(Expr *E) {
    PotentiallyCapturingExprs.erase(
        std::remove(PotentiallyCapturingExprs.begin(),
            PotentiallyCapturingExprs.end(), E),
        PotentiallyCapturingExprs.end());
  }
  void clearPotentialCaptures() {
    PotentiallyCapturingExprs.clear();
    PotentialThisCaptureLocation = SourceLocation();
  }
  unsigned getNumPotentialVariableCaptures() const {
    return PotentiallyCapturingExprs.size();
  }

  bool hasPotentialCaptures() const {
    return getNumPotentialVariableCaptures() ||
                                  PotentialThisCaptureLocation.isValid();
  }

  void visitPotentialCaptures(
      llvm::function_ref<void(VarDecl *, Expr *)> Callback) const;
};

FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
    : Base(nullptr, false) {}

FunctionScopeInfo::WeakObjectProfileTy
FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
  FunctionScopeInfo::WeakObjectProfileTy Result;
  Result.Base.setInt(true);
  return Result;
}

template <typename ExprT>
void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
  assert(E);
  WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
  Uses.push_back(WeakUseTy(E, IsRead));
}

inline void CapturingScopeInfo::addThisCapture(bool isNested,
                                               SourceLocation Loc,
                                               QualType CaptureType,
                                               bool ByCopy) {
  Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
                             ByCopy, /*Invalid*/ false));
  CXXThisCaptureIndex = Captures.size();
}

} // namespace sema

} // namespace clang

#endif // LLVM_CLANG_SEMA_SCOPEINFO_H