reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
===============================
ASTImporter: Merging Clang ASTs
===============================

The ``ASTImporter`` class is part of Clang's core library, the AST library.
It imports nodes of an ``ASTContext`` into another ``ASTContext``.

In this document, we assume basic knowledge about the Clang AST.  See the :doc:`Introduction
to the Clang AST <IntroductionToTheClangAST>` if you want to learn more
about how the AST is structured.
Knowledge about :doc:`matching the Clang AST <LibASTMatchers>` and the `reference for the matchers <https://clang.llvm.org/docs/LibASTMatchersReference.html>`_ are also useful.

.. contents::
   :local:

Introduction
------------

``ASTContext`` holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic analysis of a file.
In some cases it is preferable to work with more than one ``ASTContext``.
For example, we'd like to parse multiple different files inside the same Clang tool.
It may be convenient if we could view the set of the resulting ASTs as if they were one AST resulting from the parsing of each file together.
``ASTImporter`` provides the way to copy types or declarations from one ``ASTContext`` to another.
We refer to the context from which we import as the **"from" context** or *source context*; and the context into which we import as the **"to" context** or *destination context*.

Existing clients of the ``ASTImporter`` library are Cross Translation Unit (CTU) static analysis and the LLDB expression parser.
CTU static analysis imports a definition of a function if its definition is found in another translation unit (TU).
This way the analysis can breach out from the single TU limitation.
LLDB's ``expr`` command parses a user-defined expression, creates an ``ASTContext`` for that and then imports the missing definitions from the AST what we got from the debug information (DWARF, etc).

Algorithm of the import
-----------------------

Importing one AST node copies that node into the destination ``ASTContext``.
Why do we have to copy the node?
Isn't enough to insert the pointer to that node into the destination context?
One reason is that the "from" context may outlive the "to" context.
Also, the Clang AST consider nodes (or certain properties of nodes) equivalent if they have the same address!

The import algorithm has to ensure that the structurally equivalent nodes in the different translation units are not getting duplicated in the merged AST.
E.g. if we include the definition of the vector template (``#include <vector>``) in two translation units, then their merged AST should have only one node which represents the template.
Also, we have to discover *one definition rule* (ODR) violations.
For instance, if there is a class definition with the same name in both translation units, but one of the definition contains a different number of fields.
So, we look up existing definitions, and then we check the structural equivalency on those nodes.
The following pseudo-code demonstrates the basics of the import mechanism:

.. code-block:: cpp

  // Pseudo-code(!) of import:
  ErrorOrDecl Import(Decl *FromD) {
    Decl *ToDecl = nullptr;
    FoundDeclsList = Look up all Decls in the "to" Ctx with the same name of FromD;
    for (auto FoundDecl : FoundDeclsList) {
      if (StructurallyEquivalentDecls(FoundDecl, FromD)) {
        ToDecl = FoundDecl;
        Mark FromD as imported;
        break;
      } else {
        Report ODR violation;
        return error;
      }
    }
    if (FoundDeclsList is empty) {
      Import dependent declarations and types of ToDecl;
      ToDecl = create a new AST node in "to" Ctx;
      Mark FromD as imported;
    }
    return ToDecl;
  }

Two AST nodes are *structurally equivalent* if they are

- builtin types and refer to the same type, e.g. ``int`` and ``int`` are structurally equivalent,
- function types and all their parameters have structurally equivalent types,
- record types and all their fields in order of their definition have the same identifier names and structurally equivalent types,
- variable or function declarations and they have the same identifier name and their types are structurally equivalent.

We could extend the definition of structural equivalency to templates similarly.

If A and B are AST nodes and *A depends on B*, then we say that A is a **dependant** of B and B is a **dependency** of A.
The words "dependant" and "dependency" are nouns in British English.
Unfortunately, in American English, the adjective "dependent" is used for both meanings.
In this document, with the "dependent" adjective we always address the dependencies, the B node in the example.

API
---

Let's create a tool which uses the ASTImporter class!
First, we build two ASTs from virtual files; the content of the virtual files are synthesized from string literals:

.. code-block:: cpp

  std::unique_ptr<ASTUnit> ToUnit = buildASTFromCode(
      "", "to.cc"); // empty file
  std::unique_ptr<ASTUnit> FromUnit = buildASTFromCode(
      R"(
      class MyClass {
        int m1;
        int m2;
      };
      )",
      "from.cc");

The first AST corresponds to the destination ("to") context - which is empty - and the second for the source ("from") context.
Next, we define a matcher to match ``MyClass`` in the "from" context:

.. code-block:: cpp

  auto Matcher = cxxRecordDecl(hasName("MyClass"));
  auto *From = getFirstDecl<CXXRecordDecl>(Matcher, FromUnit);

Now we create the Importer and do the import:

.. code-block:: cpp

  ASTImporter Importer(ToUnit->getASTContext(), ToUnit->getFileManager(),
                       FromUnit->getASTContext(), FromUnit->getFileManager(),
                       /*MinimalImport=*/true);
  llvm::Expected<Decl *> ImportedOrErr = Importer.Import(From);

The ``Import`` call returns with ``llvm::Expected``, so, we must check for any error.
Please refer to the `error handling <http://llvm.org/docs/ProgrammersManual.html#recoverable-errors>`_ documentation for details.

.. code-block:: cpp

  if (!ImportedOrErr) {
    llvm::Error Err = ImportedOrErr.takeError();
    llvm::errs() << "ERROR: " << Err << "\n";
    consumeError(std::move(Err));
    return 1;
  }

If there's no error then we can get the underlying value.
In this example we will print the AST of the "to" context.

.. code-block:: cpp

  Decl *Imported = *ImportedOrErr;
  Imported->getTranslationUnitDecl()->dump();

Since we set **minimal import** in the constructor of the importer, the AST will not contain the declaration of the members (once we run the test tool).

.. code-block:: bash

  TranslationUnitDecl 0x68b9a8 <<invalid sloc>> <invalid sloc>
  `-CXXRecordDecl 0x6c7e30 <line:2:7, col:13> col:13 class MyClass definition
    `-DefinitionData pass_in_registers standard_layout trivially_copyable trivial literal
      |-DefaultConstructor exists trivial needs_implicit
      |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param
      |-MoveConstructor exists simple trivial needs_implicit
      |-CopyAssignment trivial has_const_param needs_implicit implicit_has_const_param
      |-MoveAssignment exists simple trivial needs_implicit
      `-Destructor simple irrelevant trivial needs_implicit

We'd like to get the members too, so, we use ``ImportDefinition`` to copy the whole definition of ``MyClass`` into the "to" context.
Then we dump the AST again.

.. code-block:: cpp

  if (llvm::Error Err = Importer.ImportDefinition(From)) {
    llvm::errs() << "ERROR: " << Err << "\n";
    consumeError(std::move(Err));
    return 1;
  }
  llvm::errs() << "Imported definition.\n";
  Imported->getTranslationUnitDecl()->dump();

This time the AST is going to contain the members too.

.. code-block:: bash

  TranslationUnitDecl 0x68b9a8 <<invalid sloc>> <invalid sloc>
  `-CXXRecordDecl 0x6c7e30 <line:2:7, col:13> col:13 class MyClass definition
    |-DefinitionData pass_in_registers standard_layout trivially_copyable trivial literal
    | |-DefaultConstructor exists trivial needs_implicit
    | |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param
    | |-MoveConstructor exists simple trivial needs_implicit
    | |-CopyAssignment trivial has_const_param needs_implicit implicit_has_const_param
    | |-MoveAssignment exists simple trivial needs_implicit
    | `-Destructor simple irrelevant trivial needs_implicit
    |-CXXRecordDecl 0x6c7f48 <col:7, col:13> col:13 implicit class MyClass
    |-FieldDecl 0x6c7ff0 <line:3:9, col:13> col:13 m1 'int'
    `-FieldDecl 0x6c8058 <line:4:9, col:13> col:13 m2 'int'

We can spare the call for ``ImportDefinition`` if we set up the importer to do a "normal" (not minimal) import.

.. code-block:: cpp

  ASTImporter Importer( ....  /*MinimalImport=*/false);

With **normal import**, all dependent declarations are imported normally.
However, with minimal import, the dependent Decls are imported without definition, and we have to import their definition for each if we later need that.

Putting this all together here is how the source of the tool looks like:

.. code-block:: cpp

  #include "clang/AST/ASTImporter.h"
  #include "clang/ASTMatchers/ASTMatchFinder.h"
  #include "clang/ASTMatchers/ASTMatchers.h"
  #include "clang/Tooling/Tooling.h"

  using namespace clang;
  using namespace tooling;
  using namespace ast_matchers;

  template <typename Node, typename Matcher>
  Node *getFirstDecl(Matcher M, const std::unique_ptr<ASTUnit> &Unit) {
    auto MB = M.bind("bindStr"); // Bind the to-be-matched node to a string key.
    auto MatchRes = match(MB, Unit->getASTContext());
    // We should have at least one match.
    assert(MatchRes.size() >= 1);
    // Get the first matched and bound node.
    Node *Result =
        const_cast<Node *>(MatchRes[0].template getNodeAs<Node>("bindStr"));
    assert(Result);
    return Result;
  }

  int main() {
    std::unique_ptr<ASTUnit> ToUnit = buildASTFromCode(
        "", "to.cc");
    std::unique_ptr<ASTUnit> FromUnit = buildASTFromCode(
        R"(
        class MyClass {
          int m1;
          int m2;
        };
        )",
        "from.cc");
    auto Matcher = cxxRecordDecl(hasName("MyClass"));
    auto *From = getFirstDecl<CXXRecordDecl>(Matcher, FromUnit);

    ASTImporter Importer(ToUnit->getASTContext(), ToUnit->getFileManager(),
                         FromUnit->getASTContext(), FromUnit->getFileManager(),
                         /*MinimalImport=*/true);
    llvm::Expected<Decl *> ImportedOrErr = Importer.Import(From);
    if (!ImportedOrErr) {
      llvm::Error Err = ImportedOrErr.takeError();
      llvm::errs() << "ERROR: " << Err << "\n";
      consumeError(std::move(Err));
      return 1;
    }
    Decl *Imported = *ImportedOrErr;
    Imported->getTranslationUnitDecl()->dump();

    if (llvm::Error Err = Importer.ImportDefinition(From)) {
      llvm::errs() << "ERROR: " << Err << "\n";
      consumeError(std::move(Err));
      return 1;
    }
    llvm::errs() << "Imported definition.\n";
    Imported->getTranslationUnitDecl()->dump();

    return 0;
  };

We may extend the ``CMakeLists.txt`` under let's say ``clang/tools`` with the build and link instructions:

.. code-block:: bash

  add_clang_executable(astimporter-demo ASTImporterDemo.cpp)
  clang_target_link_libraries(astimporter-demo
    PRIVATE
    LLVMSupport
    clangAST
    clangASTMatchers
    clangBasic
    clangFrontend
    clangSerialization
    clangTooling
    )

Then we can build and execute the new tool.

.. code-block:: bash

  $ ninja astimporter-demo && ./bin/astimporter-demo

Errors during the import process
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Normally, either the source or the destination context contains the definition of a declaration.
However, there may be cases when both of the contexts have a definition for a given symbol.
If these definitions differ, then we have a name conflict, in C++ it is known as ODR (one definition rule) violation.
Let's modify the previous tool we had written and try to import a ``ClassTemplateSpecializationDecl`` with a conflicting definition:

.. code-block:: cpp

  int main() {
    std::unique_ptr<ASTUnit> ToUnit = buildASTFromCode(
        R"(
        // primary template
        template <typename T>
        struct X {};
        // explicit specialization
        template<>
        struct X<int> { int i; };
        )",
        "to.cc");
    ToUnit->enableSourceFileDiagnostics();
    std::unique_ptr<ASTUnit> FromUnit = buildASTFromCode(
        R"(
        // primary template
        template <typename T>
        struct X {};
        // explicit specialization
        template<>
        struct X<int> { int i2; };
        // field mismatch:  ^^
        )",
        "from.cc");
    FromUnit->enableSourceFileDiagnostics();
    auto Matcher = classTemplateSpecializationDecl(hasName("X"));
    auto *From = getFirstDecl<ClassTemplateSpecializationDecl>(Matcher, FromUnit);
    auto *To = getFirstDecl<ClassTemplateSpecializationDecl>(Matcher, ToUnit);

    ASTImporter Importer(ToUnit->getASTContext(), ToUnit->getFileManager(),
                         FromUnit->getASTContext(), FromUnit->getFileManager(),
                         /*MinimalImport=*/false);
    llvm::Expected<Decl *> ImportedOrErr = Importer.Import(From);
    if (!ImportedOrErr) {
      llvm::Error Err = ImportedOrErr.takeError();
      llvm::errs() << "ERROR: " << Err << "\n";
      consumeError(std::move(Err));
      To->getTranslationUnitDecl()->dump();
      return 1;
    }
    return 0;
  };

When we run the tool we have the following warning:

.. code-block:: bash

  to.cc:7:14: warning: type 'X<int>' has incompatible definitions in different translation units [-Wodr]
        struct X<int> { int i; };
               ^
  to.cc:7:27: note: field has name 'i' here
        struct X<int> { int i; };
                            ^
  from.cc:7:27: note: field has name 'i2' here
        struct X<int> { int i2; };
                          ^

Note, because of these diagnostics we had to call ``enableSourceFileDiagnostics`` on the ``ASTUnit`` objects.

Since we could not import the specified declaration (``From``), we get an error in the return value.
The AST does not contain the conflicting definition, so we are left with the original AST.

.. code-block:: bash

  ERROR: NameConflict
  TranslationUnitDecl 0xe54a48 <<invalid sloc>> <invalid sloc>
  |-ClassTemplateDecl 0xe91020 <to.cc:3:7, line:4:17> col:14 X
  | |-TemplateTypeParmDecl 0xe90ed0 <line:3:17, col:26> col:26 typename depth 0 index 0 T
  | |-CXXRecordDecl 0xe90f90 <line:4:7, col:17> col:14 struct X definition
  | | |-DefinitionData empty aggregate standard_layout trivially_copyable pod trivial literal has_constexpr_non_copy_move_ctor can_const_default_init
  | | | |-DefaultConstructor exists trivial constexpr needs_implicit defaulted_is_constexpr
  | | | |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param
  | | | |-MoveConstructor exists simple trivial needs_implicit
  | | | |-CopyAssignment trivial has_const_param needs_implicit implicit_has_const_param
  | | | |-MoveAssignment exists simple trivial needs_implicit
  | | | `-Destructor simple irrelevant trivial needs_implicit
  | | `-CXXRecordDecl 0xe91270 <col:7, col:14> col:14 implicit struct X
  | `-ClassTemplateSpecialization 0xe91340 'X'
  `-ClassTemplateSpecializationDecl 0xe91340 <line:6:7, line:7:30> col:14 struct X definition
    |-DefinitionData pass_in_registers aggregate standard_layout trivially_copyable pod trivial literal
    | |-DefaultConstructor exists trivial needs_implicit
    | |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param
    | |-MoveConstructor exists simple trivial needs_implicit
    | |-CopyAssignment trivial has_const_param needs_implicit implicit_has_const_param
    | |-MoveAssignment exists simple trivial needs_implicit
    | `-Destructor simple irrelevant trivial needs_implicit
    |-TemplateArgument type 'int'
    |-CXXRecordDecl 0xe91558 <col:7, col:14> col:14 implicit struct X
    `-FieldDecl 0xe91600 <col:23, col:27> col:27 i 'int'

Error propagation
"""""""""""""""""

If there is a dependent node we have to import before we could import a given node then the import error associated to the dependency propagates to the dependant node.
Let's modify the previous example and import a ``FieldDecl`` instead of the ``ClassTemplateSpecializationDecl``.

.. code-block:: cpp

  auto Matcher = fieldDecl(hasName("i2"));
  auto *From = getFirstDecl<FieldDecl>(Matcher, FromUnit);

In this case we can see that an error is associated (``getImportDeclErrorIfAny``) to the specialization also, not just to the field:

.. code-block:: cpp

  llvm::Expected<Decl *> ImportedOrErr = Importer.Import(From);
  if (!ImportedOrErr) {
    llvm::Error Err = ImportedOrErr.takeError();
    consumeError(std::move(Err));

    // check that the ClassTemplateSpecializationDecl is also marked as
    // erroneous.
    auto *FromSpec = getFirstDecl<ClassTemplateSpecializationDecl>(
        classTemplateSpecializationDecl(hasName("X")), FromUnit);
    assert(Importer.getImportDeclErrorIfAny(FromSpec));
    // Btw, the error is also set for the FieldDecl.
    assert(Importer.getImportDeclErrorIfAny(From));
    return 1;
  }

Polluted AST
""""""""""""

We may recognize an error during the import of a dependent node. However, by that time, we had already created the dependant.
In these cases we do not remove the existing erroneous node from the "to" context, rather we associate an error to that node.
Let's extend the previous example with another class ``Y``.
This class has a forward definition in the "to" context, but its definition is in the "from" context.
We'd like to import the definition, but it contains a member whose type conflicts with the type in the "to" context:

.. code-block:: cpp

  std::unique_ptr<ASTUnit> ToUnit = buildASTFromCode(
      R"(
      // primary template
      template <typename T>
      struct X {};
      // explicit specialization
      template<>
      struct X<int> { int i; };

      class Y;
      )",
      "to.cc");
  ToUnit->enableSourceFileDiagnostics();
  std::unique_ptr<ASTUnit> FromUnit = buildASTFromCode(
      R"(
      // primary template
      template <typename T>
      struct X {};
      // explicit specialization
      template<>
      struct X<int> { int i2; };
      // field mismatch:  ^^

      class Y { void f() { X<int> xi; } };
      )",
      "from.cc");
  FromUnit->enableSourceFileDiagnostics();
  auto Matcher = cxxRecordDecl(hasName("Y"));
  auto *From = getFirstDecl<CXXRecordDecl>(Matcher, FromUnit);
  auto *To = getFirstDecl<CXXRecordDecl>(Matcher, ToUnit);

This time we create a shared_ptr for ``ASTImporterSharedState`` which owns the associated errors for the "to" context.
Note, there may be several different ASTImporter objects which import into the same "to" context but from different "from" contexts; they should share the same ``ASTImporterSharedState``.
(Also note, we have to include the corresponding ``ASTImporterSharedState.h`` header file.)

.. code-block:: cpp

  auto ImporterState = std::make_shared<ASTImporterSharedState>();
  ASTImporter Importer(ToUnit->getASTContext(), ToUnit->getFileManager(),
                       FromUnit->getASTContext(), FromUnit->getFileManager(),
                       /*MinimalImport=*/false, ImporterState);
  llvm::Expected<Decl *> ImportedOrErr = Importer.Import(From);
  if (!ImportedOrErr) {
    llvm::Error Err = ImportedOrErr.takeError();
    consumeError(std::move(Err));

    // ... but the node had been created.
    auto *ToYDef = getFirstDecl<CXXRecordDecl>(
        cxxRecordDecl(hasName("Y"), isDefinition()), ToUnit);
    ToYDef->dump();
    // An error is set for "ToYDef" in the shared state.
    Optional<ImportError> OptErr =
        ImporterState->getImportDeclErrorIfAny(ToYDef);
    assert(OptErr);

    return 1;
  }

If we take a look at the AST, then we can see that the Decl with the definition is created, but the field is missing.

.. code-block:: bash

  |-CXXRecordDecl 0xf66678 <line:9:7, col:13> col:13 class Y
  `-CXXRecordDecl 0xf66730 prev 0xf66678 <:10:7, col:13> col:13 class Y definition
    |-DefinitionData pass_in_registers empty aggregate standard_layout trivially_copyable pod trivial literal has_constexpr_non_copy_move_ctor can_const_default_init
    | |-DefaultConstructor exists trivial constexpr needs_implicit defaulted_is_constexpr
    | |-CopyConstructor simple trivial has_const_param needs_implicit implicit_has_const_param
    | |-MoveConstructor exists simple trivial needs_implicit
    | |-CopyAssignment trivial has_const_param needs_implicit implicit_has_const_param
    | |-MoveAssignment exists simple trivial needs_implicit
    | `-Destructor simple irrelevant trivial needs_implicit
    `-CXXRecordDecl 0xf66828 <col:7, col:13> col:13 implicit class Y

We do not remove the erroneous nodes because by the time when we recognize the error it is too late to remove the node, there may be additional references to that already in the AST.
This is aligned with the overall `design principle of the Clang AST <InternalsManual.html#immutability>`_: Clang AST nodes (types, declarations, statements, expressions, and so on) are generally designed to be **immutable once created**.
Thus, clients of the ASTImporter library should always check if there is any associated error for the node which they inspect in the destination context.
We recommend skipping the processing of those nodes which have an error associated with them.

Using the ``-ast-merge`` Clang front-end action
-----------------------------------------------

The ``-ast-merge <pch-file>`` command-line switch can be used to merge from the given serialized AST file.
This file represents the source context.
When this switch is present then each top-level AST node of the source context is being merged into the destination context.
If the merge was successful then ``ASTConsumer::HandleTopLevelDecl`` is called for the Decl.
This results that we can execute the original front-end action on the extended AST.

Example for C
^^^^^^^^^^^^^

Let's consider the following three files:

.. code-block:: c

  // bar.h
  #ifndef BAR_H
  #define BAR_H
  int bar();
  #endif /* BAR_H */

  // bar.c
  #include "bar.h"
  int bar() {
    return 41;
  }

  // main.c
  #include "bar.h"
  int main() {
      return bar();
  }

Let's generate the AST files for the two source files:

.. code-block:: bash

  $ clang -cc1 -emit-pch -o bar.ast bar.c
  $ clang -cc1 -emit-pch -o main.ast main.c

Then, let's check how the merged AST would look like if we consider only the ``bar()`` function:

.. code-block:: bash

  $ clang -cc1 -ast-merge bar.ast -ast-merge main.ast /dev/null -ast-dump
  TranslationUnitDecl 0x12b0738 <<invalid sloc>> <invalid sloc>
  |-FunctionDecl 0x12b1470 </path/bar.h:4:1, col:9> col:5 used bar 'int ()'
  |-FunctionDecl 0x12b1538 prev 0x12b1470 </path/bar.c:3:1, line:5:1> line:3:5 used bar 'int ()'
  | `-CompoundStmt 0x12b1608 <col:11, line:5:1>
  |   `-ReturnStmt 0x12b15f8 <line:4:3, col:10>
  |     `-IntegerLiteral 0x12b15d8 <col:10> 'int' 41
  |-FunctionDecl 0x12b1648 prev 0x12b1538 </path/bar.h:4:1, col:9> col:5 used bar 'int ()'

We can inspect that the prototype of the function and the definition of it is merged into the same redeclaration chain.
What's more there is a third prototype declaration merged to the chain.
The functions are merged in a way that prototypes are added to the redecl chain if they refer to the same type, but we can have only one definition.
The first two declarations are from ``bar.ast``, the third is from ``main.ast``.

Now, let's create an object file from the merged AST:

.. code-block:: bash

  $ clang -cc1 -ast-merge bar.ast -ast-merge main.ast /dev/null -emit-obj -o main.o

Next, we may call the linker and execute the created binary file.

.. code-block:: bash

  $ clang -o a.out main.o
  $ ./a.out
  $ echo $?
  41
  $

Example for C++
^^^^^^^^^^^^^^^

In the case of C++, the generation of the AST files and the way how we invoke the front-end is a bit different.
Assuming we have these three files:

.. code-block:: cpp

  // foo.h
  #ifndef FOO_H
  #define FOO_H
  struct foo {
      virtual int fun();
  };
  #endif /* FOO_H */

  // foo.cpp
  #include "foo.h"
  int foo::fun() {
    return 42;
  }

  // main.cpp
  #include "foo.h"
  int main() {
      return foo().fun();
  }

We shall generate the AST files, merge them, create the executable and then run it:

.. code-block:: bash

  $ clang++ -x c++-header -o foo.ast foo.cpp
  $ clang++ -x c++-header -o main.ast main.cpp
  $ clang++ -cc1 -x c++ -ast-merge foo.ast -ast-merge main.ast /dev/null -ast-dump
  $ clang++ -cc1 -x c++ -ast-merge foo.ast -ast-merge main.ast /dev/null -emit-obj -o main.o
  $ clang++ -o a.out main.o
  $ ./a.out
  $ echo $?
  42
  $